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Abstract

Wu (2006) showed that every nonzero computably enumerable degree
splits into two 1‐generic degrees, and therefore, no two computably enu‐
merable degrees bound the same class of 1‐generic degrees. By relativizing
this result with respect to the Lachlan set, it can be shown that (^{*} ) every
nonzero d.c. \mathrm{e} degree splits into four 1‐generic degrees. Here, a set A is
d.c. \mathrm{e} . (or, 2‐c.e.) if there are two computably enumerable sets B and
C such that A = B-C (set difference). Turing degree of a d.c. \mathrm{e} . set
is called a d.c. \mathrm{e} . degree. By (^{*} ), no two d.c. \mathrm{e} . degrees bound the same
class of 1‐generic degrees. Chong and Yu (2016) improved the result (^{*} ).
In fact, it is split into two 1‐generic degrees. In this note, we propose a
construction with rollbacks of stages. By means of this construction, we
give an alternative proof of (^{*} ).

Keywords: 1‐generic set; Ershov hierarchy; d.c. \mathrm{e} . set; 2‐c.e. set

1 Introduction

A set G of natural numbers is 1‐generic if for any computably enumerable set
W, G has a fimite initial segment a such that either (i) a belongs to W or (ii)
no extension of a belongs to W . Turing degree of a 1‐generic set is called a
1‐generic degree.

Among many interesting properties of 1‐generic degrees, it is well‐known
that 0' , the degree of halting problem, splits into two 1‐generic degrees. More
precisely, there is a pair of 1‐generic sets whose join is Turing equivalent to the
halting problem. The join of two sets A and B is \{2n:n\in A\}\cup\{2n+1:n\in B\},
and denoted by A\oplus B.

Wu [11] extended the above fact to all nonzero c.e. degrees. Every nonzero
c.e. degree splits into two 1‐generic degrees.

’The corresponding author. This work was partially supported by the Research Insti‐
tute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.
(houji6@gmai1.com)

 $\dagger$ This work was partially supported by Japan Society for the Promotion of Science (JSPS)
KAKENHI (C)  16\mathrm{K}05255.

数理解析研究所講究録
第2083巻 2018年 8-25

8



We investigate this result under a relaxed assumption. Suppose that a set
A of natural numbers is a set difference of two c.e. sets, in other words, there
are two computably enumerable sets B and C such that A= B-C . Such A

is called a d.c.e . set. Turing degree of A is called a d.c.e . degree.There exists a
degree a such that a d.c. \mathrm{e} . set belongs to a but no c.e. set belongs to a [2, 5].

It is known that A is d.c. \mathrm{e} . if and only if A has an approximation sequence
\{A_{s}\}_{s\in $\omega$} with number of mind changes at most two. To be more precise, \{A_{s}\}_{s\in $\omega$}
is a computable sequence of fimite sets, each natural number x belongs to A if
and only if x belongs to all but finitely many A_{s}, A_{0} is empty, and for each x

there are at most two \mathcal{S} such that x\in(A_{s+1}-A_{s})\cup(A_{s}-A_{s+1}) .

We show that every nonzero d.c. \mathrm{e} . degree splits into at most four 1‐generic
degrees.

Main Theorem Suppose that A  $\iota$ s a non‐computable d.c.e . set. Then, there
exist 1‐generic sets G_{0} , G_{1} , G_{2} and G3 such that A is Turvng equivalent to  G_{0}\oplus
 G_{1} \oplus G_{2}\oplus G_{3} . The major differences between our construction and the

original construction by Wu are the following. (1) We introduce real stages and
ostensible stages to use in construction. (2) We define a set H of real stages,
and we make use of the set for construction and verification.

We are going to sketch the above‐mentioned (1) and (2). Firstly, we describe
(1). Our construction has real stages and ostensible stages. The former are the
stages in a usual finite injury priority argument. Each real stage r has its
ostensible stage s(r) . For many r , we have s(r+1) = s(r)+1 . However, for
some r , we have s(r+1) <s(r) . We may roll ostensible stages back.

For example, suppose that A_{0} = \emptyset, A_{1} = {a1}, A_{2} = \{a_{1}, a_{2}\}, A3= {a1},
A_{4} = \emptyset, A5= {a5}, and A_{6} = \{a_{5}, a_{6}\} . At each real stage r \leq  3 , the corre‐
sponding ostensible stage is s=r . We perform our construction using A_{s} . At
real stage r=3, a_{2} drops out of A_{3} . We roll important parameters back to their
values at the end of real stage r= 1 , the moment just before a_{2} is enumerated
into A . This time we skip the operation we performed at real stage r=2 . At
real stage r =4 , the ostensible stage is 3. At real stage r = 5 , the ostensible
stage is 4. Thus, we look at A_{4} . Then a_{1} drops out of A_{4} . We roll important
parameters back to their values at the end of real stage r=0 , the moment just
before a_{1} is enumerated into A . This time we skip the operation we performed
at real stage r=1 . At real stage r=6 , the ostensible is 2. Figure 1 illustrates
the ostensible stage s in the above example as a function of the real stage r.

Secondly, we describe (2).When an element of A is drop out,we put “This
will drop out of A”mark on the element.The set H of real stage is defined with
reference to “This will drop out of A”marks.The set H is infinite and $\Pi$_{1}^{0}.\mathrm{B}\mathrm{y}
means of H,\mathrm{w}\mathrm{e} show that G_{0} and G_{1} are 1‐generic and A is Turing equivalent
to G_{0}\oplus G_{1}\oplus H. Since H is equivalent to a c.e.set, by \mathrm{W}\mathrm{u}'\mathrm{s} result, H is Turing
equivalent to join of two 1‐generic sets.Thus, a splits into at most four 1‐generic
degrees.

In section 2, we present our notation. We give technical details of our proof
of the main theorem in section 3. As a corollary, we get that no two d.c. \mathrm{e}.
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Figure 1: ostensible stage \mathcal{S} as a function of real stage r

degrees bound the same class of 1‐generic degrees.

2 Notation

Definition 2.1. Suppose that A is a set of natural numbers. For a positive
integer k, A is k‐c. e . if there exists a comptable function f :  $\omega$ \times $\omega$ \rightarrow \{0 , 1 \}
such that for each natural number x , the following hold.

\bullet  f(x, 0)=0.

\bullet \exists n\forall s\geq nf(x, s)=A(x) . (We say \displaystyle \lim_{n}f(X, \mathcal{S})=A(x) ” . )

\bullet |\{s : f(x, s)\neq f(X, \mathcal{S}+1 \leq k . (We say “the number of mind changes at
x is at most k” .)

A set is co‐k‐c. e . if the complement is k‐c.e.

The sequence \{A_{s}\}_{s\in $\omega$} (with A_{s}(x) = f(x, s) ) is called an approximation
sequence of A.

l‐c.e. sets are computably enumerable sets. It is known that a set A is 2‐c.e.
if and only if it is d.c. \mathrm{e}.

k‐c.e. sets for positive integers k forms the finite levels of the Ershov hier‐
archy [6, 7, 8, 9]. The Ershov hierarchy does not collapse. In particular, it is
known that there exists a set A such that both of A and its complement are
2‐c.e. and neither A nor its complement is c.e.

Given natural numbers a, b , we let [a, b] denote the closed interval of natural
numbers.

3 Construction

3.1 A brief review of Wu’s original construction

Suppose that A is a c.e. set and \{A_{s}\}_{s\in $\omega$} is an approximation sequence of A

with the number of mind changes at most one. We let a denote the Turing
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degree of A.

By means of \{A_{s}\}_{s\in $\omega$} , Wu [11] performs,a fimite injury priority argument,
and splits a into two 1‐generic degrees. We review the requirements in \mathrm{W}\mathrm{u}^{\mathrm{T}}\mathrm{s}

original construction.
In the following, our notation is similar to that of the original one, but we

have some exceptions. In particular, 1‐generic sets are written as A_{0} and A_{1} in
[11], but we write them as G_{0} and G_{1}.

At stage \mathcal{S} , strings $\alpha$_{0,s} , $\alpha$_{1,s} and $\Gamma$_{s} are defined. G_{0} and G_{1} are defined as
limits of $\alpha$_{0,s} and $\alpha$_{1,s} (s \rightarrow \infty) , respectively. For example, for each natural
number x, G_{0}(x) = \displaystyle \lim_{s}$\alpha$_{0,s}(x) . $\Gamma$_{s} plays a role of an approximation of an
initial segment of A . We define a finite function $\gamma$_{s} from the domain of $\Gamma$_{s} to  $\omega$.

$\gamma$_{s} plays a role of use. We let  $\Gamma$ denote the limit of  $\Gamma$_{s} (s\rightarrow\infty) .
Three types of requirements are considered. The suffix e runs over all natural

numbers and i runs over \{0 , 1 \}.

C :  $\Gamma$ gives a reduction of  A to G_{0}\oplus G_{1} . (Coding)
\mathcal{P} : G_{0}\oplus G_{1} \leq \mathrm{T} A. (Permitting)
\mathcal{G}_{e,x} : \{e\}^{G_{1}}(e)\downarrow \vee (\exists $\sigma$\subseteq G_{ $\iota$}) (\forall $\tau$\supseteq $\sigma$) \{e\}^{ $\tau$}(e)\uparrow (Genericity)

In order to satisfy \mathcal{G}_{e, $\iota$} , we run \mathrm{c}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}_{e, $\iota$}(n) , for some natural numbers n . For
each n, \mathrm{c}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}_{e. $\iota$}(n) has three parameters k_{e, $\iota$}^{n} , $\sigma$_{e_{i} $\iota$}^{n} and $\tau$_{e. $\iota$}^{n} . These are called
threshold, pretarget and target, respectively. If there is no worry of misreading,
we omit subscripts e, i.

The following (1)-(4) describe the move of cycle (n) .
(1) We choose a big number k^{n} at stage s_{n} . If the domain of $\Gamma$_{s_{n}-1} , which is

a natural number, is less than k^{n}+1(=\{0, \ldots, k^{n}\}) then we extend the domain
of $\Gamma$_{s_{n}} to k^{n}+1 by filling in each missing part, say x , by A_{s_{n}}(x) . For each
such x , we define $\gamma$_{s_{n}}(x) as a big number. We extend $\alpha$_{ $\iota$.s_{n}-1} to $\sigma$^{n} of length
$\gamma$_{s_{ $\eta$}}(k^{n}) by concatenating Os after $\alpha$_{ $\iota$.s_{ $\eta$}-1} . We call $\sigma$^{n} the pretarget of cycle (n) .
We define $\alpha$_{$\iota$_{:}s_{n}} =$\sigma$^{n} , and $\alpha$_{1- $\iota$.s_{n}} =$\alpha$_{1-x_{:}s_{n}-1}.

(2) At each stage s>s_{n} , we search for an extension $\tau$^{n} of the pretarget such
that |$\tau$^{n}| <s and \{e\}_{s}^{ $\tau$}(e)\downarrow , where the superscript  $\tau$ denotes  $\tau$^{n} . We call such
a $\tau$^{n} a target of cycle (n) (if such $\tau$^{n} exists).

(3) Suppose that at stage u>s , we find a target $\tau$^{n} . For each y<k^{n} such
that f(y) is not defined, we define f_{e, $\iota$}(y) to be A_{u}(y) . We start cycle (n+1)_{-}
(we take out insurance against failure of cycle (n) ).

(4) Suppose that at a stage t_{n}>u , a natural number y<k^{n} is enumerated
into A . Then we put $\gamma$_{t_{n}-1}(y) into G_{1- $\iota$} , in other words, we let $\alpha$_{1- $\iota$}($\gamma$_{t_{n}-1}(y)) =

1 . We undefine $\Gamma$_{t_{n}}(x) for each x \geq y , and define $\alpha$_{ $\iota$,t_{ $\eta$}} =$\tau$^{n} . We declare that
\mathcal{G}_{e_{i} $\iota$} is satisfied via the target $\tau$_{e. $\iota$}^{n}.

If (1) happens at stage s_{n} , and at stage s'>s_{n} , a natural number y<k^{n} is
enumerated into A and we do not have found the target yet, then we say that
cycle (n) is refreshed at stage \mathcal{S}'.

If (4) happens, we say that $\tau$_{e_{i} $\iota$}^{n} is realized at stage t_{n}.

We say that \mathcal{G}_{e,x} requires attention at stage s if one of the following (\mathrm{i})-(\mathrm{i}\mathrm{v})
happens.
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(i) We do not have started any cycle for \mathcal{G}_{e,v} yet by stage s.

(ii) For some n, \mathrm{c}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}_{e_{:} $\iota$}(n) is refreshed at stage s.

(iii) For some n , we find the target $\tau$_{ex}^{n} at stage s.

(iv) For some n , the target $\tau$_{e_{i} $\iota$}^{n} is realízed at stage \mathcal{S}.

We fix a bijection \langle , \rangle : $\omega$^{2} \rightarrow  $\omega$ such that both { , \rangle and its inverse is
computable. If \{e, i\} < \{e', i we say that \mathcal{G}_{e, $\iota$} has higher priority than \mathcal{G}_{e_{i}'i'}.

Whenever \mathcal{G}_{e, $\iota$} requires attention, all \mathcal{G}_{e'.$\iota$'} with lower priority are initialized.
All \mathrm{c}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}_{e. $\iota$},(n) are also initialized.

3.2 Components of our construction

We are going to explain components of our construction. We make an agreement
on an approximation sequence. We sketch concepts of ostensible stages, real
stages, “Do not enter range of gamma”’ mark, and “This will drop out of A”
mark. We modify requirements in \mathrm{W}\mathrm{u}^{J}\mathrm{s} original construction.

Suppose that A is a d.c. \mathrm{e} . set of natural numbers. There exists an approxi‐
mation sequence \{A_{s}\}_{s\in $\omega$} of A such that the following hold.

1. A_{0}=\emptyset.

2. \displaystyle \lim_{s}A_{s}=A.

3. For each s, A_{2s}\triangle A_{2s+1} is a singleton, and A_{2s+1} = A_{2(s+1)}. (X\triangle \mathrm{Y}
denotes the symmetric difference (X-Y)\cup(\mathrm{Y}-X

We fix such a sequence. We denote the unique element of A_{2s}\triangle A_{2s+1} by
a_{s+1}.

Our construction has real stages and ostensible stages. A real stage is a
stage in the usual sense of priority arguments. An ostensible stage s is a func‐
tion of a real stage r . The difference r-s is always a nonnegative even number.
In the usual case, every time a real stage increases one, the corresponding os‐
tensible stage increases one. When a certain condition holds, we decrease the
ostensible stage. In the following description of construction, stage means an
ostensible stage, unless specified. We abbreviate real stage unless there is a risk
of confusion.

During the construction, \mathrm{w}\mathrm{e}\backslash mark some natural numbers. We have two kinds
of marks. One is “Do not enter range of gamma”’ mark. If a natural number
x has this mark at stage s (with real stage r ), at stage s+1 (with real stage
r+1) , x can not be in the range of $\gamma$_{s+1}.

The other is “This will drop out of A” mark. When a_{s+1} \in A_{s}-A_{s+1} , We
roll important parameters back to their values at the end of real stage, say r',
the moment just before a_{s+1} is enumerated into A . We put “This will drop out
of A” mark on a_{s+1}.

We have some exceptions of rollback. Once a natural number n receives
“Do not enter range of gamma” mark, n holds the mark even if we roll other
parameters back. The same convention applies to “This will drop out of A”
mark.

In the initial setting, both of the real stage and the ostensible stage are 0.
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3.3 Main body of our construction

Ostensible stage 0 (with real stage 0 ):
Start cycle(0) of requirement \mathcal{G}_{0,0} as follows.
(a) Choose k_{0,0}^{0} as a big number. In particular, k_{0,0}^{0}>a_{1}.
(b) We define functions $\Gamma$_{0} : [0, k_{0,0}^{0}] \rightarrow \{0 , 1 \} and $\gamma$_{0} : [0, k_{0,0}^{0}] \rightarrow  $\omega$ . For

each  x\leq k_{0,0}^{0} , $\Gamma$_{0}(x) :=0. $\gamma$_{0}(x) are big enough and in increasing order.
(c) We define $\sigma$_{0,0}^{0}[0] , the pretarget of cycle(0), as the following function.

$\sigma$_{0,0}^{0} [0] : [0, $\gamma$_{0}(k_{0,0}^{0}))\rightarrow\{0\}
We define $\alpha$_{0,0} :=$\sigma$_{0,0}^{0}[0] and $\alpha$_{1,0} :=\emptyset.

Go to next ostensible stage (with next real stage).

Ostensible stage s+1 (with real stage r+1 ):

I. s is even (enumeration of A ):

Case IA: a_{s+1} has “This will drop out of A” mark. Go to next ostensible stage
(with next real stage).

Case IB: a_{s+1} does not have “This will drop out of A” mark and a_{s+1} \in A_{s+1}-
A_{s}.

Take the least \langle e, i } <s+1 such that \mathcal{G}_{e. $\iota$,\prime} requires attention. Then we have
a_{s+1} \leq k_{e_{:} $\iota$}^{n}.

For some n , one of the following holds.
(i) $\tau$_{e, $\iota$}^{n} is realized by a_{s+1} at stage s+1 (with real stage r+1 ).
(ii) cycle (n) is refreshed at stage s+1 (with real stage r+1 ).
We choose the least such n . We define $\alpha$_{1- $\iota$,s+1}, $\Gamma$_{s+1} and $\gamma$_{s+1} as follows.

$\alpha$_{1-\mathrm{z},s+1} := ($\alpha$_{1- $\iota$.s} \mathrm{r}$\gamma$_{s}(a_{s+1}))^{-}\{1\}
$\Gamma$_{s+1} :=$\Gamma$_{s} \mathrm{r}a_{s+1}
$\gamma$_{s+1} :=$\gamma$_{s} [a_{s+1}
To be more precise, we define $\alpha$_{1- $\iota$.s+1} as follows. For each x < $\gamma$_{s}(a_{s+1}) ,

if $\alpha$_{1-x.s}(x) is defined we define $\alpha$_{1-$\iota$_{-}s+1}(x) = $\alpha$_{1- $\iota$.s}(x) ; otherwise, we let
$\alpha$_{1- $\iota$,s+1}(x)=0 . We define $\alpha$_{1- $\iota$,s+1}($\gamma$_{s}(a_{s+1}))=1.

We initialize all the strategies with lower priority, and cancel all cycles (m)
of \mathcal{G}_{e, $\iota$} with m>n.

Subcase IB (i): (i) happens.
$\alpha$_{$\iota$_{i}s+1} :=$\tau$_{e_{i} $\iota$}^{n}[s]
We put “Do not enter range of gamma” marks on all natural numbers in the

domain of the target minus pretarget, in other words, we put the marks on all
natural numbers in \mathrm{d}\mathrm{o}\mathrm{m}($\tau$_{\mathrm{e}_{:} $\iota$}^{n}[s]-$\sigma$_{\mathrm{e}_{i} $\iota$}^{n}[s]) .

Subcase IB (ii): Otherwise. Thus, (i) does not happen and (ii) happens.
We redfine $\Gamma$_{s+1} as a function [0, k_{e_{i} $\iota$}^{n}]\rightarrow\{0 , 1 \} . For each x<a_{s+1} , we have

defined $\Gamma$_{s+1}(x) . For each x such that a_{s+1} \leq  x \leq  k_{e_{\dot{J}} $\iota$}^{n} and x has “This will
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drop out of A” mark, we define $\Gamma$_{s+1}(x) :=0 . Otherwise, we define $\Gamma$_{s+1}(x) :=

A_{\mathrm{s}+1}(x) .

We redfine $\gamma$_{s+1} as a function [0, k_{e_{:}x}^{n}] \rightarrow  $\omega$ . For each  x < a_{s+1} , we have
defined $\gamma$_{s+1}(x) . We define $\gamma$_{s+1}(x) , for x=a_{s+1},

\cdots ,  k_{e_{:} $\iota$}^{n} in this order, obeying
the following rules.

\bullet If there is a stage  t with real stage r' <r and a natural number x' such
that $\gamma$_{t}(x') is defined, then $\gamma$_{s+1}(x) \geq$\gamma$_{t}(x') . In particular, if x'<x then
$\gamma$_{s+1}(x) is bigger enough than $\gamma$_{t}(x') .

\bullet $\gamma$_{s+1}(x) is bigger enough than $\gamma$_{s+1}(x-1) .

\bullet We choose a natural number without “Do not enter range of gamma”
mark as the value of $\gamma$_{s+1}(x) .

We define $\sigma$_{e. $\iota$}^{n}[s+1] :=$\alpha$_{ $\iota$,s}^{-}\langle 0, \cdots ,  0 } with domain [0, $\gamma$_{s+1}(k_{e, $\iota$}^{n}) ).
$\alpha$_{ $\iota$,s+1} =$\sigma$_{e. $\iota$}^{n}[\mathcal{S}+1]\prime.

In both Subcases IB (i) and IB (ii), go to next stage (with next real stage).

Case IC: Otherwise. That is, a_{s+1} does not have
(

This will drop out of A”
mark and we have a_{s+1} \in A_{s}-A_{s+1}.

Recall that the real stage is r+1.

We observe the construction from the beginning, and find the largest r_{0}<r

such that, letting t_{0}+1 be the ostensible stage at real stage r_{0}+1 , we have
t_{0}<s and a_{t_{0}+1}=a_{s+1} \in A_{t_{\mathrm{O}}+1}-A_{t_{\mathrm{O}}}.

We call (r+1, s+1) and (r_{0}+1, t_{0}+1) local time at origin and local time
at destination of this Case IC, respectively.

We define $\alpha$_{0,s+1}, $\alpha$_{1,s+1}\prime, $\Gamma$_{s+1} and $\gamma$_{s+1} (of real stage r+1 ) as $\alpha$_{0,t_{0}}, $\alpha$_{1,t_{\mathrm{O}}},

$\Gamma$_{t_{0}} and $\gamma$_{t_{\mathrm{O}}} (of real stage r_{0} ), respectively.
We redefine status of requirements, cycles, targets and pretargets as those

in stage t_{0} with real stage r_{0} . We do not erase (the two kinds of) marks written
up to real stage r.

We put “This will drop out of A ” mark on a_{s+1}.

Go to ostensible stage t_{0}+2 with real stage r+2 . In real stage r+2 , for
example, $\alpha$_{0,t_{0}} denotes $\alpha$_{0,s+1} defined above.

II. s is odd (defining permission markers, pretargets and targets):
Choose the least \langle e,  i\rangle < \mathcal{S}+1 such that \mathcal{G}_{e, $\iota$} requires attention. Then for

some n , one of the following holds.
(i) \mathcal{G}_{e_{:} $\iota$} is not in a cycle.
(ii) \mathcal{G}_{\mathrm{e},\mathrm{z}} founds a target.

Subcase II (i): (i) happens.
Start cycle(0) of requirement \mathcal{G}_{e, $\iota$} as follows.
(a) Choose k_{e_{i}x}^{0} as a big number. In particular, k_{e. $\iota$}^{0,}>a_{s+2}.
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(b) We extend $\Gamma$_{s} to a function $\Gamma$_{s+1} : [0, k_{e_{i} $\iota$}^{0}] \rightarrow \{0 , 1 \} , and extend $\gamma$_{s} to a
function $\gamma$_{s+1} : [0, k_{e_{:}i}^{0}]\rightarrow $\omega$.

Suppose x \leq  k_{e_{:} $\iota$}^{0} and we do not have defined $\Gamma$_{s}(x) . If x has “This will
drop out of A” mark, we define $\Gamma$_{s+1}(x) :=0 . Otherwise, we define $\Gamma$_{s+1}(x) :=

A_{s+1}(x) .

We define $\gamma$_{s+1}(x) in the same way as Subcase IB (ii).
(c) We define $\sigma$_{e_{:} $\iota$}^{0}[0] , the pretarget of cycle(0), and $\alpha$_{$\iota$_{:}s+1} in the same way

as Subcase IB (ii).
We define $\alpha$_{1-$\iota$_{i}s+1} :=$\alpha$_{1-$\iota$_{:}s}.

Go to next stage (with next real stage).

Subase II (ii): Otherwise. Then (i) does not happen and (ii) happens.
Choose the largest n such that cycle (n) of \mathcal{G}_{e,0} founds a target, and let $\tau$_{e. $\iota$}^{n}

be the target.
For z < k_{e_{:} $\iota$}^{n} , if f_{e, $\iota$} is undefined then define f_{e, $\iota$}(z) :=A_{s+1}(z) and declare

that $\tau$_{e. $\iota$}^{n} is waiting for an A‐permission below k_{e_{i} $\iota$}^{n}.
Start cycle(n+1) of \mathcal{G}_{e, $\iota$} as follows.
(a) Choose k_{e_{:} $\iota$}^{n+1} as a big number. In particular, k_{e_{:} $\iota$}^{n+1} >a_{s+2}.

(b) We extend $\Gamma$_{s} to a function $\Gamma$_{s+1} : [0, k_{e_{:} $\iota$}^{n+1}]\rightarrow\{0 , 1 \} , and extend $\gamma$_{s} to a
function $\gamma$_{s+1} : [0, k_{e, $\iota$}^{n+1}]\rightarrow \mathrm{w} , in the same way as in Subcase II (ii).

(c) We define $\sigma$_{e $\iota$}^{n.+1}[0] , the pretarget of cycle (\mathrm{n}+1) , and $\alpha$_{\mathrm{t}_{-}S+1} in the same
way as Subcase IB (ii).

We define $\alpha$_{1- $\iota$,s+1} :=$\alpha$_{1-$\iota$_{:}s}.

For each i\in\{0 , 1 \} , we define G_{ $\iota$} as \displaystyle \lim_{s}$\alpha$_{\mathrm{t}}, s.

This completes the construction of G_{0} and G_{1}.

Remark. We have defined k_{e_{:} $\iota$}^{n} as a large enough number. In particular,

k_{e,\mathrm{z}}^{0} > a_{1} (ostensible stage 0 ), k_{e_{:} $\iota$}^{0} > a_{s+2} (ostensible stage s+1 , II (i)) and

k_{e_{:} $\iota$}^{n+1} > a_{s+2} (ostensible stage s+1 , II (ii)). Hence, in ostensible stage s+1

Case IB, there is at least one \langle e,  i\rangle < s+1 such that \mathcal{G}_{\mathrm{e}, $\iota$} requires attention.
In addition, when ostensible stage s+1 II begins for odd s , there are at least
(s-1)/2 many \{e,  i\rangle < s+1 such that \mathcal{G}_{e_{:} $\iota$} is not in a cycle, hence there is at
least one \{e, i ) <s+1 such that \mathcal{G}_{e, $\iota$} requires attention.

4 Basic property of stage regression

We overview basic property of our construction with focus on regression of
stages.

By induction on t , we get the following: For each natural number t , letting k

be the number of real stages whose ostensible stage =t, k is positive and finite.

Definition 4.1. 1. For each natural number s , let $\rho$_{0}(s) denote the least
real stage whose ostensible stage is \mathcal{S}.
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2. For each natural number s , let $\rho$_{1}(s) denote the largest real stage r such
that the ostensible stage of real stage r+1 is \leq s+1.

3. A real stage r is nzce if r=$\rho$_{1}(s) for some s.

Example 4.1. The following are some basic properties of $\rho$_{0} and $\rho$_{1}.

\bullet  t<s if and only if $\rho$_{0}(t) <$\rho$_{0}(\mathcal{S}) .

\bullet For each natural number  s, $\rho$_{1}(s) equals the largest real stage r such that
the ostensible stage of real stage r+1 is s+1.

\bullet If  r > $\rho$_{1}(s) then the ostensible stage at real stage r+1 is larger than
\mathcal{S}+1 . Therefore, t<s if and only if $\rho$_{1}(t) <$\rho$_{1}(s) .

\bullet If there is only one real stage where ostensible stage is  t+1 then $\rho$_{0}(t)=
$\rho$_{1}(t) .

\bullet Suppose that Case IC happens with local time at origin (r+1, s+1)
and local time at destination (r_{0}+1, t_{0}+1) . In addition, suppose that
r+1 = $\rho$_{1}(t+1) for some t . In this case, r+1 = $\rho$_{1}(t_{0}+1) . Note that
r+1\neq$\rho$_{1}(s+1) .

Proposition 4.1. Suppose that r_{0}^{*}, r_{1} and r_{1}^{*} are natural numbers such that
r_{0}^{*} <r_{1} <r_{1}^{*} . Let t_{0}^{*}+1 , t_{1}+1 and t_{1}^{*}+1 denote the ostensible stages of of real
stages r_{0}^{*}+1, r_{1}+1 and r_{1}^{*}+1 , respectively. Suppose that Case IC happens with
local time at origin (r_{1}^{*}+1, t_{1}^{*}+1) and local time at destination (r_{0}^{*}+1, t_{0}^{*}+1) .
Then the following hold.

1. a_{t_{0}^{*}+1} \in A_{t_{1}+1}

2. a_{t_{\mathrm{O}}^{*}+1} \not\in A

3. t_{0}^{*} <t_{1} <t_{1}^{*}

Proof. (1) Let a := a_{t_{\mathrm{O}}^{*}+1} . By the above assumption on Case IC, we have
a\in A_{t_{0}^{*}+1} -A_{t_{0}^{*}} and a\in A_{t_{1}^{*}} -A_{t_{1}^{*}+1}.

Since r_{1} <r_{1}^{*}, a does not have “This will drop out of A” mark at real stage
r_{1}+1.

Therefore, if a\not\in A_{t_{1}+1} then a should be enumerated into A after real stage
r_{1} +1 before real stage r_{1}^{*}+1 . However, then the destination r_{0}^{*}+1 is larger
than r_{1}+1 , which contradicts to our assumption of r_{0}^{*} <r_{1}.

Hence we have a\in A_{t_{1}+1}.
(2) Since the number of mind changes is at most 2, for all t such that t<t_{0}^{*}

or t\geq t_{1}^{*} , we have a\not\in A_{t+1} . Therefore, we have a\not\in A.
(3) However, by (1), we have a\in A_{t_{1}+1} . Hence t_{0}^{*}\leq t_{1} <t_{1}^{*}.
If t_{0}^{*}=t_{1} then the destination r_{0}^{*}+1 is at least r_{1}+1 , a contradiction.
Therefore, we have t_{0}^{*} <t_{1} <t_{1}^{*}. \square 
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Definition 4.2. We define a set H of natural numbers as follows, where we let
t_{ $\iota$}+1 denote ostensible stage of real stage r_{x}+1 (for i=1 , 2).

H :=\{r_{1}+1:\mathrm{F}\mathrm{o}\mathrm{r} every x\in A_{t_{1}+1} such that x does not have

“This will drop out of A” mark at the end of real stage r_{1}+1,

\forall r_{2}>r_{1} x\in A_{t_{2}+1}.\}

Proposition 4.2. 1. H is a $\Pi$_{1}^{0} set.

2. If r_{1}+1  $\iota$ s a real \mathcal{S}tage, t_{1}+1 is its ostensible stage and r_{1}+1=$\varrho$_{1}(t_{1}+1) ,
then r_{1}+1\in H.

3. H is an infinite set (provided that A is an infinite set).

4. H\leq$\tau$^{A}

Proof. (1) is obvious.
(2) Assume for a contradiction that r_{1}+1=$\rho$_{1}(t_{1}+1) and ostensible stage

of real stage r_{1}+1=t_{1}+1 , and r_{1}+1\not\in H.
Then, there exists x\in A_{t_{1}+1} such that x does not have “This will drop out

of A” mark at real stage r_{1}+1 , and for some s+1>t_{1}+1, x\not\in A_{s+1}.
Fix such x . Choose the least real stage r_{2}+1 >r_{1}+1 such that, letting t_{2}+1

be ostensible stage of real stage r_{2}+1 , we have t_{2}+1>t_{1}+1 and x\not\in A_{t_{2}+1}.
It is easy to see that x does not have the mark at real stage r_{2}+1 . Thus,

Case IC happens with local time at origin (r_{2}+1, t_{2} +1) and local time at
destination (r_{0,2}+1, t_{0.2}+1) for some r_{0,2} and t_{0,2}.

Since x\in A_{t_{1}+1} , for some real stage r_{3}+1\leq r_{1}+1 , letting its ostensible be
t_{3}+1 , we have t_{3}+1\leq t_{2}+1 and we have x=a_{t_{3}+1} . Choose the least such r3.

Recall that r_{0,2}+1 is the largest r+1 <r_{2}+1 such that x is enumerated
into A . Therefore, we have r_{0,2} =r_{3} and t_{0_{:}2} =t_{3} . Thus, we have t_{0,2} \leq t_{1} , in

\prime other words,  t_{0,2}+2\leq t_{1}+2.
By the definition of $\varrho$_{1} , it holds that $\rho$_{1}(t_{1}+1) \geq r_{2}+1.

On the other hand, r_{2} + 1 > r_{1} + 1 , and by our assumption, r_{1} + 1 =

$\rho$_{1}(t_{0,1}+1) . Hence, $\rho$_{1}(t_{1}+1) >$\varrho$_{1}(t_{1}+1) , a contradiction.
(3) If x\in A then x is in A_{s+1}-A_{s} for a unique s , and for all t>s, x\in A_{t}.

Thus, if r+1 is the largest real stage whose ostensible stage is s+1 , then
r+1 = $\varrho$_{1}(\mathcal{S}+1) . Under our assumption that A is an infinite set, there are
infinitely many such x and thus, such r . By (2), all the such r belong to H.

(4) It is easy to see that H equals the following set, where we let t_{1} +1

denote ostensible stage of real stage r_{1}+1.

\{r_{1}+1:\mathrm{F}\mathrm{o}\mathrm{r} every x\in A_{t_{1}+1} such that x does not have

“This will drop out of A” mark at real stage r_{1}+1,

x\in A.\}
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\square 

Lemma 4.1. If the assumptions of Proposition 4.1 except for r_{0}^{*} <r_{1} ” hold,
and in addition, if  $\iota$ t holds that r_{1}+1\in H , then we have r_{0}^{*} >r_{1} and t_{0}^{*}>t_{1}.

Proof. Suppose that the assumptions of Propostion 4.1 hold, and let a be a_{t_{0}^{*}+1}
at the end of real stage r_{0}^{*}+1 . Then, by Propostion 4.1 and its proof, a does
not haye “This will drop out of A” mark at real stage r_{1} +1, a \in  A_{t_{1}+1} and
a\not\in A . Then by the definition of H , we have r_{1}+1\not\in H.

In summary, under the assumptions of Proposition 4.1 except for r_{0}^{*} <r_{1} ” ,
we have the following.

r_{0}^{*} <r_{1} \rightarrow r_{1}+1\not\in H

By taking the contrapositive, r_{1}+1 \in H implies r_{0}^{*} \geq r_{1}.

Now, assume the assumptions of Proposition 4.1 except for r_{0}^{*} < r_{1} ” and
assume that r_{1}+1 \in H.

By the definition of H, r_{1}+1 is not a real stage of a destination of Case IC,
while r_{0}^{*}+1 is a real stage of a destination. Therefore, r_{0}^{*} \neq r_{1} . Hence we have
r_{0}^{*} >r_{1}.

According to the above discussion, after real stage r_{1}+1 , there is no chance
that an ostensible stage has a value less than t_{1}+2 . Thus t_{0}^{*} >t_{1}. \square 

Proposition 4.3. In the following, r_{\mathrm{t}}, r_{l}', t_{\mathrm{t}} and t_{l}' are natural numbers (i \in

\{0 , 1 Suppose that the following hold.

\bullet  r_{1} and rí are even numbers.

\bullet  r_{1} <r\'{i}

\bullet Case  IC happens with local time at origm (r_{1}+1, t_{1}+1) and local tzme at
destinateon (r_{0}+1, t_{0}+1) .

\bullet Case  IC happens with local time at origin (rí + l, tí + l) and local time at
destination (rÓ + 1, tÓ + 1).

Then rÓ + 1 <r_{0}+1 or rÓ + 1 >r_{1}+1.

Proof., Both of r_{1} and rí are even numbers and we have  r_{1}+2\leq rí + l, thus it
holds that r_{1}+2< rí + l.

Now, assume for a contradiction that r_{0}+1 \leq rÓ + 1 \leq r_{1}+1 . Then the
following holds.

 r_{0}+1\leq rÓ + 1 <r_{1}+2<r_{1}'+1 (1)

Let a denote atÓ + l. We are going to show a \not\in A_{t_{0}+2} . We apply Proposi‐
ton 4.1 to this setting, where we substitute (r_{0}+1, t_{0}+1) , (rÓ + 1, tÓ + 1) and
(r_{1}+1, t_{1}+1) for (r_{0}+1, t_{0}+1) , (r_{1}+1, t_{1}+1) and (r_{2}+1, t_{2}+1) of Proposi‐
ton 4.1, respectively. By Propositon 4.1, we have t_{0} < tÓ. Since both of t_{0} and
tÓ are even, we have t_{0}+2 \leq t\'{O}, thus we have t_{0}+2 < tÓ + 1. On the other
hand, since the number of mind changes is at most 2, tÓ + 1 is the least t such
that a\in A_{t} . Hence, a\not\in A_{t_{0}+2}.
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At real stage r_{1}+2 , the ostensible stage is t_{0}+2 , thus by the above pragraph,
a is not enumerated into A at real stage r_{1}+2 . In addition, at real stage r_{1}+2,
a does not have “This will drop out of A” mark yet [proof: among real stages
larger than rÓ + 1, rí + l is the least one at which a has the mark. However, by
(1), r_{1}+2< rí + l However, a causes Case IC at real stage r_{1}'+1.

Therefore, there exists r such that r_{1}+2<r+1< rí + l and a is enumerated
into A at real stage r+1 . By (1), we have rÓ + 1 < r+1 <r\'{i} +1 . This
contradicts to our assumption that rÓ + 1 is the local time at destination of
Case IC at rí + l. \square 

5 Verification

5.1 Genericity

Proposition 5.1. Suppose that r_{1}, t_{1}, n, e and r_{0} are natural numbers with the
following propettes.

\bullet  r_{1} is even, and at real stage r_{1} , ostensible stage is t_{1}.

\bullet  r_{0}+1 is the largest real stage \mathcal{S}uch that r_{0}+1\leq r_{1} , and pretarget $\sigma$_{e, $\iota$}^{n} (for
these particular n and e) is defined at real stage r_{0}+1.

\bullet At real stage  r_{1}+1 , cycle (n) of requirement \mathcal{G}_{e, $\iota$} receives attention.

Then, $\gamma$_{t_{1}}(k_{e.\mathrm{z}}^{n}) (at real stage r_{1} ) equals $\gamma$_{t_{\mathrm{O}}+1}(k_{e. $\iota$}^{n}) (at real stage r_{0}+1).

Proof. Suppose that r_{2} is a natural number such that r_{0}+1<r_{2}+1\leq r_{1} . Let
t_{2}+1 be ostensible stage of real stage r_{2}+1 . Suppose that for every r such
that r_{0}+1<r+1<r_{2}+1 , at real stage r+1,

By the third item of the assumptions, cycle (n) of requirement \mathcal{G}_{e, $\iota$} is not
canceled at real stage r_{2}+1 . Therefore, if Case IB happens at real stage r_{2}+1,

we have a_{t_{2}+1} \geq k_{e.\mathrm{z}}^{n} . Therefore, the value of  $\gamma$(k_{e_{i}x}^{n}) does not chage at real stage
r_{2}+1.

Next, we observe the case where Case IC happens with local time at origin
(r_{2}+1, t_{2}+1) and local time at destination (rÓ + 1, tÓ + 1), for some (rÓ + 1, tÓ + 1).
Again, by the third item of the assumptions, $\sigma$_{e.\mathrm{z}}^{n} is not erased at real stage
r_{2}+1 . Thus, we have rÓ > r0. Therefore, $\gamma$_{t_{1}}(k_{e_{:} $\iota$}^{n}) (at real stage r_{2}+1 ) equals
$\gamma$_{t_{0}+1}(k_{e_{i} $\iota$}^{n}) (at real stage r_{0}+1 ). \square 

Lemma 5.1. For each e , the following hold.

1. There are only finitely ,many nice real stages at which \mathcal{G}_{e,x} is inztialized.

2. There are only finitely many nice real stages at which \mathcal{G}_{e, $\iota$} runs new cycles.

3. There are only finitely many nice real stages at which \mathcal{G}_{e, $\iota$} requires atten‐
tion.

4. \mathcal{G}_{e. $\iota$} is satisfied. Thus, G_{\mathrm{t}} is 1‐generic.
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Proof. Suppose that e is given and that (1) -(4) hold for all e'<e.

There is a natural number s such that for t > \mathcal{S} , at real stage $\rho$_{1}(t) , no
requirement e'<e requires attention.

By concentrating on nice real stages, we can prove (1) -(3) in similar ways
to Wu’s original proofs of Lemma 4.1 (1)-(3) in [11].

Now, assume the following.

1. r_{1}+1>$\rho$_{1}(s+1)

2. t_{1}+1 is ostensible stage of real stage r_{1}+1.

3. r_{1} +1 is the last real stage at which \mathcal{G}_{\mathrm{e}, $\iota$} requires attention.

4. r_{1}+1 is a nice stage. In other words, r_{1}+1=$\varrho$_{1}(u+1) for some u.

5. At real stage r_{1}+1 , Case IB (i) happens for cycle (n) , and $\alpha$_{$\iota$_{i}t_{1}+1} is defined
as $\tau$_{\mathrm{e}_{i}\mathrm{z}}^{n} [t1].

On the one hand, r_{1}+1=$\varrho$_{1}(u+1) . On the other hand, at real stage r_{1}+2,
ostensible stage is t_{1}+2 . Hence, we have u=t_{1} . Thus, r_{1}+1=$\rho$_{1}(t_{1}+1) . By
Proposition 4.2, we have r_{1}+1 \in H.

Hence, by Lemma 4.1, if Case IC happens, say with local time at origin
(r', t') and local time at destination (rÓ, tÓ), we have r_{1} \leq rÓ.

In addition, by Proposition 4.3, the above rÓ avoids each interval that pre‐
vious Case IC made.

Thus, Case IC after real stage  r_{1}+1 does not injure the value of $\alpha$_{ $\iota$}(x) .
It is enough to investigate Case IB.

Claim 1. Suppose that at a real stage r_{2}+1>r_{1}+1 , letting t_{2} be ostensible
stage of real stage r_{2}+1 , Case IB happens. Then, it holds that $\alpha$_{$\iota$_{i}t_{2}+1} (of real
stage r_{2}+1 ) extends $\alpha$_{ $\iota$,t_{1}+1} (of real stage r_{1}+1 ).

Proof of Claim 1: Suppose that x is in the domain of $\alpha$_{x_{i}t+1} . By Proposi‐
tion 5.1, we have two cases: (i) x is in the domain of the pretarget $\sigma$_{e. $\iota$,\prime}^{n}[t] , that
is, x < $\gamma$_{t}(k_{e, $\iota$}^{n}) ; (ii) x is in the domain of the target minus pretarget (that is,
$\tau$_{e_{:}\mathrm{z}}^{n}[t]-$\sigma$_{e_{:} $\iota$}^{n}[t]) and x\geq$\gamma$_{t}(k_{e_{\backslash } $\iota$}^{n}) .

Now, suppose r_{2}+1 >r_{1}+1 . We are going to show that the value of $\alpha$_{0}(x)
is not injured at real stage r_{2}+1.

By our choice of t , we have a_{t_{2}+1} \geq k_{e_{i}x}^{n} , therefore the following hold.

$\gamma$_{t_{2}}(a_{t_{2}+1})\geq$\gamma$_{t_{2}}(k_{e_{:} $\iota$}^{n})\geq$\gamma$_{t_{1}}(k_{e_{i} $\iota$}^{n}) (2)

In the case of (i), $\gamma$_{t_{2}}(a_{t_{2}+1}) > x , thus the value of $\alpha$_{ $\iota$}(x) is not injured at
real stage r_{2}+1.

In the case of (ii), by our rule on “Do not enter range of gamma”’ mark,
x\neq$\gamma$_{u}(a_{u+1}) . Thus the value of $\alpha$_{0}(x) is not injured because of $\alpha$_{ $\iota$}($\gamma$_{u}(a_{u+1}))
is set as 1.

In addition, in the case of (ii), by (2), $\gamma$_{t_{2}}(a_{t_{2}+1}) is not in the domain of the
pretarget $\sigma$_{e. $\iota$}^{n}[t_{1}] (of real stage r_{1} ). Again, by our rule on “Do not enter range
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of gamma”’ mark, $\gamma$_{t_{2}},(a_{t_{2}+1}) is not in the domain of the target $\tau$_{e. $\iota$}^{n}[t_{1}] minus
pretarget $\sigma$_{\mathrm{e},\mathrm{z}}^{n} [t1]. In summary, $\gamma$_{t_{2}}(a_{t_{2}+1}) is larger than the largest value in the
domain of the target $\tau$_{e,x}^{n} [t1].

However, the least value of the domain of target $\tau$_{-: $\iota$}^{-} (of real stage r_{2} ) minus
pretarget $\sigma$_{-: $\iota$}^{-} (of real stage r_{2} ) is $\gamma$_{t_{2}}(a_{t_{2}+1}) . Therefore, the value of $\alpha$_{ $\iota$}(x) is
not injured because of x is in the domain of target $\tau$_{-: $\iota$}^{-} minus pretarget $\sigma$_{-ix}^{-}.
Q.E.D. (Claim 1)

By means of Claim 1, we can prove (4) in a similar way to \mathrm{W}\mathrm{u}'\mathrm{s} original
proof of Lemma 4. 1 (4) in [11]. \square 

5.2 Reduction of \mathrm{G} to \mathrm{A}

Lemma 5.2. G_{0}\oplus G_{1} \leq_{T}A.

Proof. By Proposition 4.2, we have H \leq $\tau$  A . Thus, it is enough to show that
G_{ $\iota$} \leq_{T}A\oplus H for each i=0 , 1. Let i\in\{0 , 1 \}.

Throughout this proof, unless otherwise specified,  $\gamma$,  $\Gamma$ and  $\alpha$ with sufix
 t_{1}+1 denote those at real stage r_{1}+1.

Given x , by means of oracle A\oplus H , we find (r_{1}, t_{1}) of the following properties.

\bullet  r_{1} is an even number and r_{1}+1\in H

\bullet Ostensible stage of real stage  r_{1}+1 is t_{1}+1.

\bullet A \mathrm{r}(x+1)=A_{t_{1}+1} \mathrm{r}(x+1) .

\bullet For each  i\in\{0 , 1 \}, x is in the domain of $\alpha$_{x_{:}t_{1}+1}.

Our goal is to show that $\alpha$_{$\iota$_{:}t_{1}+1}(x)=G_{\mathrm{t}}(x) .
For each natural number r\geq r_{1} , we define assertion  $\Psi$(r+1) as follows.

 $\Psi$(r+1) : “Let t+1 denote the ostensible stage of real stage r+1. $\gamma$_{t+1} \mathrm{r}(x+1)
( $\Gamma$_{t+1} \mathrm{r}(x+1) and $\alpha$_{ $\iota$.t+1}(x) , respectively) at the end of real stage r+1 equals

$\gamma$_{t_{1}+1} \mathrm{r}(x+1) ($\Gamma$_{t_{1}+1} [(x+1) and $\alpha$_{$\iota$_{-}t_{1}+1}(x) , respectively

Letting r_{1} be the first term, we define a sequence \{r_{ $\iota$}\}_{ $\iota$=1}^{\infty} as follows. We
define r_{ $\iota$+1} accroding to the following two cases.

The first case is when for some r_{1}^{*}, r_{0}^{*}, t_{1}^{*} and t_{0}^{*} , Case IC happens with local
time at origin (r_{1}^{*}+1, t_{1}^{*}+1) and local time at destination (r_{0}^{*}+1, t_{0}^{*}+1) and
we have r_{ $\iota$} =r_{0}^{*} . In this case we define r_{ $\iota$+1} as r_{1}^{*}+1 (thus r_{ $\iota$+1}+1=r_{1}^{*}+2).

Otherwise, we define r_{ $\iota$+1} as r_{\mathrm{t}}+1 (thus r_{i+1}+1=r_{ $\iota$}+2).
It is enough to show the following claim.

Claim 1. For every i\geq 1,  $\Psi$(r_{x}+1) holds.

We show the claim by induction. The base case  $\Psi$(r_{1}+1) is obvious.
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Throughout the discussion on induction step, we always keep in our mind
that Lemma 4.1 holds, and that Cases IB or IC can happen only at real stages
r+1 such that r is even.

Suppose that i > 1 and that  $\Psi$(r, +1) holds for all j such that 1 \leq j \leq i.

Let r=r_{ $\iota$+1} . Let t+1 denote the ostensible stage at real stage r+1.

We investigate the following three cases.
Case 1: r>r_{ $\iota$}+1.

Case 2: r=r_{ $\iota$}+1 , Case IB holds at real stage r+1 , and a :=a_{t+1} \leq x.

Case 3: None of the following two cases happens.
We look at the easiest case first.

Case 3: By our definition of \{r_{\mathrm{t}}\}_{ $\iota$=1}^{\infty} , Case IC does not hold at real stage r+1.

Thus, either r_{l} is odd, Case IA happens at real stage r+1 or Case IB happens
at real stage r+1 but a := a_{t+1} > x . Hence,  $\gamma$ \mathrm{r} (x+1) ,  $\Gamma$ \mathrm{r} (x+1) , $\alpha$_{0}(x)
and $\alpha$_{1}(x) at real stage r+1 are the same as those at real stage r_{ $\iota$} . Therefore
 $\Psi$(r+1) holds.

Then we look at the other two cases.

Case 1: Since both r_{1} and r_{\mathrm{t}} are even and r_{1} <r_{\mathrm{z}} , we have r_{1}+2\leq r_{ $\iota$} . Thus
we have i\geq 3 and r_{\mathrm{t}}-1=r_{ $\iota$-1} . By induction hypothesis,  $\Psi$(r_{ $\iota$-1}+1) , in other
words,  $\Psi$(r_{l}) holds.

By our definition of \{r_{ $\iota$}\}_{ $\iota$=1}^{\infty} and the definition of Case IC,  $\gamma$ \mathrm{r} (x+1) ,  $\Gamma$ [
(x+1) , $\alpha$_{0}(x) and $\alpha$_{1}(x) at the end of real stage r+1 are the same as those at
real stage r_{ $\iota$} . Hence, by the previous paragraph,  $\Psi$(r+1) holds.

Case 2: In this case we have a\not\in A_{t} , and a does not have the “This will drop
out of A” mark at real stage r+1 . Thus a does not have the mark at real stage
r_{1}+1 . By the definition of H , we have a\not\in A_{t_{1}+1} . By our assumption, a\not\in A.

However, we have a\in A_{t+1} . Therefore at some real stage, sáy r_{1}^{*}+1(>r+1) ,
Case IC happens and the real stage of its destination, say r_{0}^{*}+1 is r+1 or smaller.

By our assumption of r=r_{i}+1 , we have r_{0}^{*}+1\neq r+1 . Hence r_{0}^{*}+1<r+1.
This contradicts to our definition of \{r_{l}\}_{ $\iota$=1}^{\infty} (such r should be skipped).

Thus we have shown Claim 1. Hence, the lemma holds. \square 

5.3 Reduction of A to \mathrm{G}

Proposition 5.2. Suppose a natural number x is given. Then, for all but
finitely many real stages r+ 1 , letting t+ 1 be the ostenszble stage, we have
$\Gamma$_{t+1}(x)\downarrow=A_{t+1}(x)=A(x) .

Proof. Throughout this proof, t+1 denotes the ostensible stage of real stage
r+1.

By our construction, at each real stage r+1 and for each y in the domain
of $\Gamma$_{t+1} , we have either $\Gamma$_{t+1}(y)=A_{t+1}(y) or $\Gamma$_{t+1}(y)=A(y) .

On the other hand, for all but finitely many real stages r+ 1 , we have
a_{t+1} >x , hence the following hold.

\bullet  A_{t+1}(x)=A(x)
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\bullet $\Gamma$_{t+1}(x)\simeq$\Gamma$_{t}(x) (The left‐hand side is defined if and only if the right‐hand
side is defined, and in this case they have the same value.)

In particular, among such real stages, there exists r'+1 , letting t'+1 be its
ostensible stage, such that Case IB happens at real stage r'+1 . Since a_{t'+1} >x,

we have x < k_{e_{\backslash }0}^{n} , where e and n are indices of the requirement and the cycle
payed attention, and therefore x is in the domain of $\Gamma$_{t'+1}.

By the previous three paragrahps, for each r \geq  r' , we have $\Gamma$_{t+1}(x) \downarrow=
A_{t+1}(x)=A(x) at real stages r+1. \square 

Lemma 5.3. A\leq $\tau$ G_{0}\oplus G_{1}\oplus H.

Proof. Given x , by means of oracle G_{0}\oplus G_{1}\oplus H , we find r_{1} and t_{1} satisfying
the following (1)-(5) .

1. At real stage r_{1}+1 , the ostensible stage is t_{1}+1.

2. For all y\leq x, $\gamma$_{t_{1}}(y)\downarrow \mathrm{a}\mathrm{t} real stage r_{1}.

3. For all y\leq x, $\gamma$_{t_{1}+1}(y)\downarrow \mathrm{a}\mathrm{t} real stage r_{1}+1 , and it equals $\gamma$_{t_{1}}(y) of real
stage r_{1}.

4. For each i\in\{0 , 1 \}, \forall \mathrm{w}\leq$\gamma$_{t_{1}+1}(x) , $\alpha$_{ $\iota$,t_{1}+1}(\mathrm{w})\downarrow=G_{ $\iota$}(\mathrm{w}) .

5. a_{t_{1}+1} >x.

We output $\Gamma$_{t_{1}+1}(x) of real stage r_{1}+1.

We are going to show that our output equals \displaystyle \lim_{s}$\Gamma$_{s}(x) . By Proposition 5.2,
\displaystyle \lim_{s}$\Gamma$_{s}(x)=\lim_{s}A_{s}(x)=A(x) .

Thus, A is Turing reducible to G_{0}\oplus G_{1}.
To complete the proof, it is enough to show that for each t_{2} > t_{1} , at real

stage $\rho$_{1}(t_{2}+1) , $\Gamma$_{t_{2}+1}(x)\downarrow=$\Gamma$_{t_{1}+1}(x) .

Let assertion  $\Psi$(r+1) and sequence \{r_{ $\iota$}\}_{ $\iota$=1}^{\infty} be those defined in the proof of
Lemma 5.2. It is enough to show the following claim.

Claim 1. For every i\geq 1,  $\Psi$(r_{ $\iota$}+1) holds.

This is the same claim as before, however we are going to prove it under
different assumptions. The base case is the same as before. At induction step,
we investigate the same three cases as in the proof of Lemma 5.2. Then the
same proofs for Cases 3 and 1 work.

Case 2: r=r_{l}+1 , Case IB holds at real stage r+1 , and a:=a_{t+1} \leq x.

As in the proof of Lemma 5.2, we have a\not\in A_{t_{1}+1} . Thus at the end of real
stage r_{1}+1 , we have $\alpha$_{1,t_{1}+1}($\gamma$_{t_{1}}(a)) =0.

On the other hand, we have $\alpha$_{1,t+1}($\gamma$_{t}(a)) = 1 at the end of real stage
r+1 . By induction hypothesis, we have $\gamma$_{t_{1}}(a) = $\gamma$_{t}(a) . Hence it holds that
$\alpha$_{1,t+1}($\gamma$_{t_{1}}(a)) \neq $\alpha$_{1,t_{1}+1}($\gamma$_{t_{1}}(a)) = G_{1}($\gamma$_{t_{1}}(a)) . The last equality is by our as‐
sumption of the lemma.
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Hence the wrong value of $\alpha$_{1,t+1}($\gamma$_{t_{1}}(a)) should be canceled at a later stage.
The only means to do this is Case IC. Therefore at some real stage, say r_{1}^{*}+1
(>r+1) , Case IC happens and the real stage of its destination, say r_{0}^{*}+1 is
r+1 or smaller. The remainder of the proof is the same as that in the proof of
Lemma 5.2.

Thus we have shown Claim 1. Hence, the lemma holds. \square 

5.4 1‐Generic Splitting

Theorem 5.4. (Main theorem) Suppose that A is a non‐computable d.c.e . set.
Then, there exist 1‐generic sets G_{0},G_{1}, G_{2} and G3 such that A  $\iota$ s Turing equiv‐
alent to G_{0}\oplus G_{1}\oplus G_{2}\oplus G_{3}.

Proof. By Lemma 5.1, G_{0} and G_{1} are 1‐generic sets. By Proposition 4.2 and
Lemmas 5.2 and 5.3, A\equiv $\tau$ G_{0}\oplus G_{1}\oplus H.

In the case where H is computable, we have A\equiv $\tau$ G_{0}\oplus G_{1}.
Otherwise, by Proposition 4.2, H is a $\Pi$_{1}^{0} set that is non‐computable. There‐

fore, Turing degree of H is a nonzero c.e. degree. Hence, by \mathrm{W}\mathrm{u}'\mathrm{s} result
[11], there are 1‐generic sets G_{2} and G3 such that H \equiv $\tau$  G_{2}\oplus G_{3} . Hence,
A\equiv $\tau$ G_{0}\oplus G_{1}\oplus G_{2}\oplus G_{3}. \square 

Corollary 5.5. No two d.c.e . degrees bound the same class of 1‐generic degrees.
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