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1 Mathematical Preliminary

In this section, we introduce Knaster‐Tarski Theorem [7].

Theorem 1. Let \mathcal{L} be a complete lattice, f:\mathcal{L}\rightarrow \mathcal{L} be an increasing function and F be
the set of all fixed poinls of f . Then, F forms a complete lattice. In particular, F is not

empty.

Proof. We only prove existence of greatest and least fixed points. Let

u:=\vee\{x\in \mathcal{L}|x\leq f(x)\} . (1)

Let x\leq f(x) . Then, f(x)\leq f(u) by the definition of u and f being increasing. Because
x \leq  f(x) , x \leq  f(u) . Thus, u \leq  f(u) . Therefore, f(u) \leq  f(f(u)) . This means f(u) \in

\{x\in \mathcal{L}|x\leq f(x)\} . We can conclude f(u) \leq u and therefore, f(u)=u . Thus, u is the

greatest fixed point.

Applying a similar construction to the dual lattice \mathcal{L}^{\mathrm{o}\mathrm{p}} , we obtain the least fixed point

1 :=\wedge\{x\in \mathcal{L}|f(x)\leq x\} . (2)

口

This proof, although simple and short, uses ari impredicative definition, because we

assume u is already contained in the set \{x\in \mathcal{L}|x\leq f(x)\} . We discuss the philosophical
issues which arise by using an impredicative defimition to define validity in Section 5.

We have induction principles on the least and greatest fixed points of f.

Lemma 1. Let P \subseteq \mathcal{L} . Assume that x \in  P implies f(x) \in P. Further, if (x_{i})_{i\in I} are
elements of P, \displaystyle \bigwedge_{i\in I}x_{i} \in P. Then, u\in P. Similarly, assume x_{i} \in P if (x_{i})_{i\in I} are
elements of P. Then, l\in P.
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Proof. Let L := \{y \geq u | y \in P\} . By assumption, u_{P} := \wedge L \in  P . Because f(u_{P})
satisfies P and u \leq  f(u_{P}) , f(u_{P}) \in  L . Thus u_{P} \leq  f(u_{P}) . Therefore, u_{P} \leq  u . By

definition. u\leq u_{P} . Therefore, u=u_{P} \in P . The case for the least fixed point is proved

similarly 口

2 Bilateral classical logic

Bilateral classical logic is a formal system for classical logic based on the idea that

in classical logic, statements can have two linguistic forces, not only affirmation but in

addition, denial. The system is most famously proposed by Rumfitt [5], but similar ideas
appear in the other hterature [3, 6]. In this paper, we only consider the implicational
fragment of propositional logic for simplicity.

Definition 1 (Proposition, Statement). Atomic propositions are denoted by symbols
a, b, a_{1} , . . .. Propositions A, B, A_{1} , . . . are defined by

A:=a|A\rightarrow A . (3)

Statements  $\alpha$,  $\beta$, $\alpha$_{1} , . . . are defined by

 $\alpha$:=+A|-A . (4)

In addition, a special symbol \perp appears in derivations. \perp should be understood as a

punctuation symbol, not a statement.

Definition 2. +a and −a for an atomic proposition a are called atomic statements. For

a statement  $\alpha$ , its conjugate  $\alpha$^{*} is defined as

(+A)^{*}\equiv-A (-A)^{*}\equiv+A (5)

Definition 3 (Logical rules).

[+A]

\displaystyle \frac{+^{:}B:}{+A\rightarrow B}+\rightarrow I \frac{+A\rightarrow B+A}{+B}+\rightarrow E (6)

\displaystyle \frac{+A-B}{-A\rightarrow B} -\rightarrow I \frac{-A\rightarrow B}{+A} -\rightarrow E1 \frac{-A\rightarrow B}{-B} -\rightarrow E1 (7)

Definition 4 (Coordination rules).

\displaystyle \frac{+A-A}{\perp} \perp

[ $\alpha$]
:

\displaystyle \frac{\perp:}{$\alpha$^{*}} RAA (8)
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Definition 5. For a set S of atomic statements, the derivations of the system \mathrm{B}\mathrm{C}\mathrm{L}(S)
are derivations starting from atomic statements  $\alpha$ \in  S and assumptions [ $\beta$] using the
logical rules and coordination rules. In the rules +\rightarrow I and RAA, the assumption  $\alpha$ is
discharged and no longer open. If a derivation  $\pi$ does not contain an open assumption,
 $\pi$ is called closed. Otherwise,  $\pi$ is called open.

3 Normalization

The normalization procedure of \mathrm{B}\mathrm{C}\mathrm{L}(S) is defined as follows. The idea is to reduce every
introduction‐elimination pair in a main branch of an inference, counting introduction rules
for logical symbols and RAA as introduction rules and elimination rules for logical symbols
and the law of contradiction as elimination rules. In addition, \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{R}\mathrm{A}\mathrm{A}‐pair is

reduced for simpler normal forms.

[+A]

\displaystyle \frac{+^{:}B:}{+A\rightarrow B} +A:
:

\overline{+B}
+A -B
-A\rightarrow B

\overline{+A}

\displaystyle \frac{+A-B}{-A\rightarrow B}
\overline{-B}

[+周

\displaystyle \frac{\frac{}{}+^{:}B\frac{+A-B::}{-A\rightarrow B}+A\rightarrow B:}{\perp}
[ $\alpha$]

:

\displaystyle \frac{\frac{}{}:$\alpha$^{*}\dot{ $\alpha$}\perp:}{\perp}
[-A\rightarrow B]

:

:

\displaystyle \frac{\perp}{+A\rightarrow B} +A:
:

\overline{+B}

+A:
:

\Rightarrow (9)

+^{:}B

\simeq +A (10)

\Rightarrow -B (11)

+A:
:

\Rightarrow : (12)

\displaystyle \frac{+^{:}B-B}{\perp}
 $\alpha$

\Rightarrow : (13)
:

\perp

\displaystyle \frac{+A[-B]::}{-A\rightarrow B}
\Rightarrow : (14)

:

\displaystyle \frac{\perp}{+B}
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[+A\rightarrow B]
:

:

\displaystyle \frac{\perp}{-A\rightarrow B} (15)

\overline{+A}

[+A] [-A]

\Rightarrow \displaystyle \frac{\frac{\perp}{+B}}{+A\rightarrow B}
:
:

\displaystyle \frac{\perp}{+A}
[+A\rightarrow B]

\displaystyle \frac{\perp::}{-A\rightarrow B}
\overline{-B}

4 Validity and its application

\displaystyle \frac{[+B]}{+A\rightarrow B}
\Rightarrow (16)

\displaystyle \frac{\perp}{-B}

Next, we define a notion of validity following Prawitz [4]. However, slight modification
is made. We introduce the distinction of evidences and valid derivations, in which the

former represent direct verification while the latter represent indirect verification’s which

represent constructions of dirc. (^{:.\mathrm{t}} verification’s.

The set [ $\alpha$](S) of evidences of a statement  $\alpha$ in \mathrm{B}\mathrm{C}\mathrm{L}(S) is defined by induction on  $\alpha$,

using fixed point construction. The construction is inspired by construction of reducibility

candidates in Yamagata [8, 9]. Use of fixed point construction to define reducibility is
started by Barbanera and Berardi [1, 2].

The set [\perp](S) is defined as the set of derivations

\displaystyle \frac{ $\alpha \alpha$^{*}}{\perp} (17)

where  $\alpha$, $\alpha$^{*}\in S.

If (y is an atomic statement and  $\alpha$\in S, \mathrm{A}x( $\alpha$)(S) consists of the derivation

\displaystyle \frac{c\ell\in S}{ $\alpha$} (18)

Then, [+a] and [-a] are defined by equations

[+a](S):=\mathrm{A}x(+a)(S)\cup[-a]^{*}(S) (19)

[-a](S):=\mathrm{A}\mathrm{x}(-a)(S)\cup[+a]^{*}(S) . (20)

[+A\rightarrow B] and [-A\rightarrow B] are defined simultaneously by fixed point construction. Let

the semantic space \mathcal{M}( $\alpha$) be the set of all maps m \in \mathcal{M}( $\alpha$) sending a set of atomic
sentences S to the set m(S) of closed derivations of  $\alpha$.

[+A\rightarrow B](S):=\rightarrow([+A], [+B])(S)\cup[-A\rightarrow B]^{*}(S) (21)
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[-A\rightarrow B](S):=\bullet([+A], [-B])(S)\cup[+A\rightarrow B]^{*}(S) (22)

Here, \rightarrow, \bullet and
*

are defined as follows. \bullet is simplest to define. Let  S_{A} \in \mathcal{M}(+A) and

S_{B}\in \mathcal{M}(+B) . Then,  $\pi$\in\bullet(S_{A}, S_{B})(S) if  $\pi$ has a form

:

:
$\sigma$_{A} :

:
$\sigma$_{B}

+A -B
\overline{-A\rightarrow B} (23)

and all normalization sequences of $\sigma$_{A} lead to elements of \mathcal{S}_{A}(S) and all normalization

sequences of $\sigma$_{B} lead to elements of S_{B}(S) . Similarly,  $\pi$\in\rightarrow(S_{A}, \mathcal{S}_{B})(S) if  $\pi$ has a form

[+川
: $\pi$'

\displaystyle \frac{+^{:}B}{+A\rightarrow B} (24)

and for any set S'\supseteq S of atomic statements and  $\sigma$\in S_{A}(S') ,

 $\sigma$

+A
: $\pi$'

+B (25)

always reduces to an element of S_{B}(S') . Let S_{ $\alpha$} \in \mathcal{M}( $\alpha$) . Then, S_{ $\alpha$}^{*}(S) \in \mathcal{M}($\alpha$^{*}) is

defined by the set of closed derivations of $\alpha$^{*} such that  $\pi$\in S_{ $\alpha$}^{*}(S) if  $\pi$ has a form

[ $\alpha$]
: $\pi$'
:

\displaystyle \frac{\perp}{ $\alpha$}* (26)

and for any set S'\supseteq S of atomic statements and any  $\sigma$\in S_{ $\alpha$}(S') ,

:
 $\sigma$

 $\alpha$^{:}
: $\pi$'
:

\perp (27)

always reduces an element of [\perp](S') .

(19), (20), (21) and (22) depend each other. thus they might not appear well‐defined.
However, this circularity is not vicious. To see this. expand the definition (21).

[+A\rightarrow B](S)=\rightarrow([+A], [+B])(S)\cup[-A\rightarrow B]^{*}(S) (28)

=\rightarrow([+A], [+B1)(S)\cup(\bullet([+A], [-B])(S)\cup

[+A\rightarrow B]^{*}(S))^{*}(S) (29)

117



Let an operator F:\mathcal{M}(+A\rightarrow B)\rightarrow \mathcal{M}(+A\rightarrow B) as follows.

 F(m)(S)=\rightarrow([+A], [+B])(S)\cup

(\bullet([+A], [-B])(S)\cup m^{*}(S))^{\star}(S) (30)

\mathcal{M}(+A\rightarrow B) is a complete Boolean algebra by the point‐wise ordering. Because
*

is a
contra‐variant operator, F is an increasing operator. Thus, Knaster and Tarski theorem
allows the construction of the least fixed point. We choose the least fixed point as a

solution of (28). The definition of the solution of (19) and (20) are similar.

Definition 6. A closed derivation  $\pi$ of  $\alpha$ is valid in \mathrm{B}\mathrm{C}\mathrm{L}(S) if all normalization sequences

of  $\pi$ lead to elements of [ $\alpha$](S) . For a open derivation  $\pi$ with assumptions  $\alpha$_{1} , . . . , $\alpha$_{n},

 $\pi$ is valid if, for any  S' \supseteq  S and closed valid derivations $\sigma$_{1} , . . . , $\sigma$_{n} of \mathrm{B}\mathrm{C}\mathrm{L}(S) , when
substituting $\sigma$_{1\backslash }. . . , $\sigma$_{n} to $\alpha$_{1} , . . . , $\alpha$_{n},  $\pi$ is valid in \mathrm{B}\mathrm{C}\mathrm{L}(S') .

Lemma 2. If all one‐step reducta of  $\pi$ are valid,  $\pi$ is valid

Lemma 3.  $\sigma$ is evidence, its one‐step reducta are also evidences

Corollary 1. Evidences are valid

Theorem 2. All derivations of \mathrm{B}\mathrm{C}\mathrm{L}(S) are valid.

Proof. By induction on the construction of the derivations  $\pi$ . For the sake of simplicity,
we assume that  $\pi$ has no open assumption. If  $\pi$ has open assumptions, the proof is only

different in the respect that we has to consider  $\pi$[$\sigma$_{1}/$\beta$_{1}, . . . , $\sigma$_{n}/$\beta$_{n}] (the derivation which
obtained by substituting $\sigma$_{1} , . . . , $\sigma$_{n} to $\beta$_{1} , . . . , $\beta$_{n} respectively) instead of  $\pi$ itself.

\displaystyle \frac{ $\alpha$\in S}{ $\alpha$} (31)

Because no further normalization is possible, and the derivation is contained in [ $\alpha$](S) ,
the theorem holds for this case.

\displaystyle \frac{[ $\alpha$]}{ $\alpha$} (32)

For this case, the theorem is proved because [ $\alpha$] is already valid.

[ $\alpha$]
:
: $\pi$_{1}

\displaystyle \frac{\perp}{$\alpha$^{\dot{\mathrm{x}}}} (33)

By induction hypothesis, $\pi$_{1} is valid. Thus, $\pi$_{1}\in [ $\alpha$]^{*}(S) . By the definition of evidences,
 $\pi$ is already an evidence of  $\alpha$^{*} in \mathrm{B}\mathrm{C}\mathrm{L}(S) .
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\displaystyle \frac{$\alpha$^{:^{$\pi$_{1}}}$\alpha$^{*}::}{\perp}$\pi$_{2} (34)

It suffices to show that all one‐step normalization lcad to [\perp](S) . We only consider the
case in which  $\pi$ has a form

[$\alpha$^{*}]

\displaystyle \frac{\frac{\perp::}{ $\alpha$}$\pi$_{1_{$\alpha$^{*}}}'::}{\perp}$\pi$_{2} (35)

:

:
$\pi$_{2}

$\alpha$^{*}

:

:  $\pi$ \mathrm{i}
\perp.

and reduces

(36)

By induction hypothesis, $\pi$_{2}' is valid. Thus, by induction hypothesis, substituting $\pi$_{2}' to
$\alpha$^{*} yields a valid derivation. Therefore,  $\pi$ reduces an evidence.

If the last rule of  $\pi$ is a introduction rule, the proof is easy consequence from the
construction of the evidences.

For elimination rules, we only consider  E+\rightarrow‐rule.

:

:
$\pi$_{1} :

:
$\pi$_{2}

+A\rightarrow B +A
\overline{+B} (37)

If all derivations obtained by one‐step normalization are valid, this derivation is also valid.

The only non‐trivial case is that (14) is applied. Therefore,  $\pi$ has a form

[-A\rightarrow B]
 $\pi$í

\displaystyle \frac{\perp}{+A\rightarrow B} +A:^{$\pi$_{2}}
:

\overline{+B} (38)

By induction hypothesis, for any  $\sigma$\in[-B](S') , S'\supset S,

:

:
$\pi$_{2} :

:
 $\sigma$

+A -B
\overline{-A\rightarrow B} (39)
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is an element of [-A\rightarrow B](S') . Thus, by induction hypothesis,

:

:
$\pi$_{2} :

:
 $\sigma$

+A -B
\overline{-A\rightarrow B}

 $\pi$í
\perp (40)

always reduces an element of [\perp](S') . .Therefore,

:
:

$\pi$_{2}

\displaystyle \frac{+A[-B]}{-A\rightarrow B}
 $\pi$í

\displaystyle \frac{\perp}{+B} (41)

is an element of [-B]^{*}(S) , thus an evidence of +B in \mathrm{B}\mathrm{C}\mathrm{L}(S) . 口

Lemma 4. IfS is inconsistent, for any statement  $\alpha$, [ $\alpha$](S) is non‐empty and its elements
are strongly normalizable.

Proof. By induction on  $\alpha$ , using Lemma 1. 口

Corollary 2. \mathrm{B}\mathrm{C}\mathrm{L}(\emptyset) is strongly normalizable.

Proof. By Theorem 2, every derivation  $\pi$ of  $\alpha$ in \mathrm{B}\mathrm{C}\mathrm{L}(\emptyset) is valid. Let [$\beta$_{1}] , . . . , [$\beta$_{n}] be
open assumptions in  $\pi$ . Let  $\sigma$_{1}\in[$\beta$_{1}], \ldots , $\sigma$_{n}\in[$\beta$_{n}] . We choose an inconsistent S . Then,

there are always such $\sigma$_{1} , . . . , $\sigma$_{n} . The derivation $\pi$' which is obtained by substituting

$\sigma$_{1} , . . . , $\sigma$_{n} to open assumptions of  $\pi$ is valid. Thus, all normalization sequences of  $\pi$'

lead to evidences of  $\alpha$ . By Lemma 4, evidences are strongly normalizable. Therefore,
 $\pi$' is strongly normalizable. Because any normalization sequence of $\pi$' terminates, any
normalization sequence \mathrm{o}'\mathrm{f} $\pi$ also terminates. \square 

5 Relation to Dummett’s verificationist semantics

A natural question is how the notion of evidence and validity are related to Dummett’s
verificationist semantics. In Dummett;s program, the meaning of a statement is given by

its direct verification. and the whole practice of inferences is justified because inferences

somehow produce direct evidences. Our notion of an evidence and validity fits in this

picture.

However, Dummett requires “decidability” to the notion of a direct evidence, otherwise,

he argues, such notion is impossible to manifest on a competent speaker of the language.
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Our notion of an evidence appears hopelessly undecidable, due to use of fixed point
construction in the definition. Despite this appearance, we argue that thc situation is not

so simple.

Here, we do not try to show that our notion of an evidence is decidable. However, we
do try to show that “decidability” is a delicate notion which requires further elucidation.

A possible interpretation of “decidability”’ is a realist one. In this view, a property is
decidable or not, independent of our knowledge. The decidability of a property is shown

by, for example, giving a procedure to decide its membership and to show termination
of the procedure for every possible input. To show termination, we may just appeal

experience (The procedure terminates for all inputs so far or use a mathematical
theory of which correctness is justified by, again, experience.  $\Gamma$ \mathrm{r}\mathrm{o}\mathrm{m} a realist view, proving

decidability can also be non‐constructive. The proof of decidability then does not need
to give a concrete decision procedure.

Clearly, the realist view is not Dummett’s view when he is talking about (‘decidability”
Still, this view has a merit to consider, because we are not necessarily seeking to total

anti‐realism, but content with anti‐realism on a particular domain. We may just want

anti‐realism on, say, set theory, past events or ethics, while maintain realism on “concrete”
objects such as decision procedures, proof trees or natural numbers.

Another view to decidability is that, the notion of decidability depends on \mathrm{a}\mathrm{n}\backslash underlining

(possibly informal) theory T . This view is better fitted to Dummett’s anti‐realist view.
However, it is not clear what theory T Dummett has in his mind when he is talking about
verificationist semantics. In particular, he does not offer an argument against a theory T

with impredicative definitions.

If we accept Knaster and Tarski theorem and Lemma 1, we can prove that the set [ $\alpha$](S)
of evidences is decidable, even though its definition appears highly non‐constructive. It
is clear that the set of evidences is decidable if  $\alpha$ is atomic, so we concentrate the case
 $\alpha$\equiv+A\rightarrow B and  $\alpha$\equiv-A\rightarrow B.

Proposition 1.  $\pi$\in[+A\rightarrow B](S) if and only if  $\pi$ has a form either

[+A]
:
:

$\pi$_{1}

\displaystyle \frac{+B}{+A\rightarrow B} (42)

where $\pi$_{1} is a valid derivation, or
[-A\rightarrow B]

:

:
$\pi$_{1}

\displaystyle \frac{\perp}{+A\rightarrow B} (43)

121



where $\pi$_{1} is a valid derivation. Similarly,  $\pi$\in [-A\rightarrow B](S) if and only if  $\pi$ has a form
either

:
:

$\pi$_{1} :
:

$\pi$_{2}

+A -B
\overline{+A\rightarrow B} (44)

where $\pi$_{1}, $\pi$_{2} are valid derivations, or

[+A\rightarrow B]
:
:

$\pi$_{1}

\displaystyle \frac{\perp}{-A\rightarrow B} (45)

where $\pi$_{1} is a valid derivation.

Proof. We only prove the case for +A\rightarrow B . The if part is clear from the definition, so
we prove the only if part. However, all derivations are valid by Theorem 2. Therefore,
the only if part is trivial. \square 

Corollary 3. A derivation of which the last inference is an introduction of logical con‐
nectives or RAA is an evidence. Therefore, the set of evidences are decidable.
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