Generic structures of amalgamation classes for irrationals

岡部峻典

(Shunsuke Okabe)

神戸大学大学院システム情報学研究科

(Kobe University Graduate School of System Informatics)

Abstract

I talked on the case f by the Hrushovski's construction is bounded in the workshop. But in this report, I will show the other construction of unbounded f for an irrationals.

1 Introduction

Definition 1.1. Let $\alpha \in \mathbb{R}$ with $0 < \alpha < 1$ and A finite graphs. We define the predimension of A $\delta_{\alpha}(A) := |A| - \alpha e(A)$ where e(A) is the number of the edges of A. Let $B \subseteq A$. $\delta_{\alpha}(A/B) := \delta_{\alpha}(A) - \delta_{\alpha}(B)$.

- $B <_{\alpha} A : \iff \delta_{\alpha}(XA/A) > 0$ for all $X \subseteq B$.
- $B <_{\alpha} A : \iff \delta_{\alpha}(XA/A) > 0$ for all non empty graph $X \subseteq B \setminus A$. We say that A is *closed* in B.
- $\mathcal{K}_{\alpha} := \{A : \text{finite graph}, \emptyset <_{\alpha} A\}.$

Definition 1.2. Let \mathcal{K} be a class of finite graphs closed isomorphism and containing \emptyset .

- \mathcal{K} has the HP (Hereditary Property) if for all $A \in \mathcal{K}$ and $B \subseteq A$, $B \in \mathcal{K}$.
- $(\mathcal{K}, <_{\alpha})$ has the AP (Amalgamation Property) if for all $A, B_1, B_2 \in \mathcal{K}$ with $A <_{\alpha} B_1, B_2$, there is $C \in \mathcal{K}$ and embeddings $g_i : B_i \to C$ such that $g_i(B_i)$ is closed in C and $g_1 \circ f_1 \upharpoonright A = g_2 \circ f_2 \upharpoonright A$.
- $(K, <_{\alpha})$ has the FAP (Free Amalgamation Property) if for above f_i 's and g_j 's, there is no edge between $g_1(B_1) \setminus g_1 \circ f_1(A)$ and $g_2(B_2) \setminus g_2 \circ f_2(A)$.

If $(\mathcal{K}, <_{\alpha})$ has the HP and the AP, we call $(\mathcal{K}, <_{\alpha})$ an amalgamation class. If $(\mathcal{K}, <_{\alpha})$ has the HP and the FAP, we call $(\mathcal{K}, <_{\alpha})$ a free amalgamation class.

Fact 1.3. If $(K, <_{\alpha})$ is the amalgamation class, then there is a countable graph M called a *generic graph* which holds the following conditions:

- For all $A \subseteq_{\text{fin}} M$, there is $B \subseteq_{\text{fin}} M$ such that $A \subseteq B <_{\alpha} M$.
- Every finite induced subgraph A of M is in K.
- For all $A, B \in \mathcal{K}$ with $A <_{\alpha} M$ and $A <_{\alpha} B$, B can be embedded into M.

Fact 1.4. $(\mathcal{K}_{\alpha}, <_{\alpha})$ is free amalgamation class. So $(\mathcal{K}_{\alpha}, <_{\alpha})$ has a generic structure.

Definition 1.5. Let \mathcal{K} be a free amalgamation class. $A \in \mathcal{K}$ is absolutely closed if for every $B \in \mathcal{K}$ with $A \subseteq B$, $A <_{\alpha} B$.

Absolute closedness is concerned with model completeness of M of $(\mathcal{K}, <_{\alpha})$.

Proposition 1.6. Let $(\mathcal{K}, <_{\alpha})$ be a free amalgamation class and M a generic structure of $(\mathcal{K}, <_{\alpha})$. Assume that for every $A \in \mathcal{K}$, there is $C \in \mathcal{K}$ such that $A <_{\alpha} C$ and C is absolutely closed. Then the theory of M is model complete.

Example 1.7. Let $\alpha = \frac{m}{d}$ such that m, d are relatively prime and $f(x) = \frac{1}{d} \log_2(x+1)$. Then $\mathcal{K}_{\alpha,f} := \{A \in \mathcal{K}_\alpha \mid \delta_\alpha(X) > f(|X|) \text{ for all } X \subseteq A\}$ is the free amalgamation class for α and holds the condition in the proposition 1.6, so M has the model complete theory.

The absolutely closedness in the above is due to that f is unbounded. Hrushovski show that there is an unbounded f for uncountably many α 's, especially for any rational α . So, we define like some height of f, called index of f.

Definition 1.8. Let $\mathcal{K} = \mathcal{K}_{\alpha,f}$ be a free amalgamation class for α . ind_{α}(\mathcal{K}) := max_{$n<\omega$} f(n). If f is unbounded, we define ind_{α}(\mathcal{K}) := ∞ .

2 The construction of an unbounded f for an irrational α

Proposition 2.1. Let $0 < \alpha < 1$ If K_1, K_2 are two free amalgamation classes, then so is $K_1 \cap K_2$.

Corollary 2.2. Assume that \mathcal{A} is a (finite) class of finite graphs and $\mathfrak{F}_{\alpha}(\mathcal{A})$ is a class of free amalgamation classes containing \mathcal{A} . Then there exists a minimal free amalgamation class \mathcal{K} in $\mathfrak{F}_{\alpha}(\mathcal{A})$ and \mathcal{K} is the class generated by \mathcal{A} by amalgamating graphs in \mathcal{A} .

Note that for $0 < \alpha_1 < \alpha_2 < 1$ and A, B a finite graph, $\delta_{\alpha_1}(A) = |A| - \alpha_1 e(A) \ge |A| - \alpha_2 e(A) = \delta_{\alpha_2}(A)$.

Proposition 2.3. Let $0 < \alpha_1 < \alpha_2 < 1$ and \mathcal{K} be a class of finite graphs. If \mathcal{K} has the FAP for α_1 , then it has the FAP for α_2 .

Proof. Fix $A, B, C \in \mathcal{K}$ with $A <_{\alpha_2} B, C$. By the above inequality, $A <_{\alpha_1} B, C$. So $B \otimes_A C \in \mathcal{K}$ by the FAP for α_1 . Hence \mathcal{K} has the FAP for α_2

Lemma 2.4. Let
$$1 > \alpha > \alpha' = \frac{m}{d} > 0$$
 and $f(x) = \frac{1}{d} \log_2(x+1)$.
Then $\mathcal{K}_{\alpha',f} = \mathcal{K}_{\alpha,g}$ where $g(x) = \left(1 - \frac{\alpha}{\alpha'}\right)x + \frac{\alpha}{m} \log_2(x+1)$.

Proof. Change the variables by
$$\begin{pmatrix} 1 & 0 \\ 1 - \frac{\alpha}{\alpha'} & \frac{\alpha}{\alpha'} \end{pmatrix}$$
.

Lemma 2.5. Let
$$1 > \alpha > \alpha' = \frac{m}{d} > 0$$
 and $f(x) = \frac{1}{d} \log_2(x+1)$.
Then $\operatorname{ind}_{\alpha}(\mathcal{K}_{\alpha',f}) = \frac{\alpha}{m \log 2} - 1 + \frac{\alpha}{\alpha'} + \frac{\alpha}{m} \Big\{ \log_2 \alpha - \log_2 d - \log_2(\alpha - \alpha') - \log_2(\log 2) \Big\}$.

Now we will consider the limit of classes for α_n 's obtained in the following. Suppose that $\langle \alpha_n \rangle_{n < \omega} \subseteq \mathbb{Q}_{\geq 0}$ is an increasing sequence converging to α and $\alpha_n = \frac{m_n}{d_n}$ such that d_n, m_n are relatively prime. $f_n(x) = \frac{1}{d_n} \log_2(x+1)$. We define $\mathcal{K}_n := \bigcap_{i < n} \mathcal{K}_{\alpha_i, f_i}$ and $\mathcal{K} := \lim_{n \to \infty} \mathcal{K}_n$. Then $\operatorname{ind}_{\alpha}(\mathcal{K}) = -\lim_{n \to \infty} \frac{C}{d_n} \log_{10}(\alpha - \alpha_n) + D$ for some $C, D \in \mathbb{R}$. So we may find a sequence α_n with $\alpha - \alpha_n$ rapidly diverges than the speed of d_n , like some Liuville numbers.

Proposition 2.6. Let $\alpha_n = \sum_{i < n} \frac{1}{10 \uparrow \uparrow (2i+1)}$ and $\alpha = \lim_{n \to \infty} \alpha_n$ where $x \uparrow \uparrow 0 = 1$ and $x \uparrow \uparrow (y+1) = x^{x \uparrow \uparrow y}$. Then K has the FAP for α and $\operatorname{Ind}_{\alpha}(K) = \infty$.

Proof. For all
$$n < \omega$$
, $\alpha - \alpha_n < \frac{10}{10 \uparrow \uparrow (2n+1)} \ll \frac{1}{10 \uparrow \uparrow 2n}$. Hence $\log_{10}(\alpha - \alpha_n) \ll \frac{1}{10 \uparrow \uparrow (2n-1)} = \frac{1}{d_n}$.

Conjecture 2.7. For α above, f constructed by Hrushovski has infinite index.

References

- [1] J.T. Baldwin, N. Shi, Stable generic structures, Ann. Pure Appl. Log. 79, p.1-35, 1996.
- [2] E. Hrushovski, A stable \aleph_0 -categorical pseudoplane, preprint, 1988.
- [3] F. O. Wagner, *Simple Theories*, Mathematics and Its Applications, Kluwer Academic Publishers, 2000.
- [4] H. Kikyo, Model complete generic graphs I, RIMS Kokyuroku 1938, p.15-25, 2015.
- [5] H. Kikyo, Model Completeness of Generic Graphs in Rational Cases, Preprint, 2016.
- [6] T. Takagi, Shotoseisuron [Elementary number theory], kyoritsu Shuppan, 1931.
- [7] I. Shiokawa, Murisu to Choetsusu [Irrational numbers and Transcendental numbers], Morikita Publishing, 1999.