122

LOLRAT TS TR SE ek 5520878 20184F 122-130
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1. Introduction

We study the following three-components chemotaxis system with a forcing term:

f % =Au—xV - (uVv) + f(u) in Q x (0,00),
6%=Av—v+w in Q x (0, 00),
(E) 751:— =-w+u in Q x (0, 00),
Ou Ov
E=5=0 on 99 x (0, c0),
u(z,0) = ug(z) >0, v(z,0) =vo(z) >0, w(z,0)=wo(z)>0 inQ.

Here, Q C R? is a two-dimensional bounded domain with smooth boundary 8. The system (E)
was presented by Deneubourg [3] (see also [2, 7]) for modeling the self-organized nest construction
process of social insects, specifically, termites. The unknown functions u(z,t), v(z,t), and w(z,t)
are the densities of, respectively, worker insects (hereafter workers), nest building material, and
a chemical substance at position z and time ¢t. The coefficient x is a positive constant which
indicates the intensity of chemotaxis. The function f(u) consists of the migration into the working
area and the resting of workers. The first term of the second equation and the second term of the
third equation represent the weathering of deposited materials and the decay of chemical substance,
respectively. The coefficients § > 0 and 7 > 0 are the time-scale constants of the reactions in the
respective equations.
Deneubourg [3] defined function f as

(1.1) flu)=1-pu, 620,

where p is a positive constant. Here the migration rate of workers is normalized to 1, and p denotes
the resting rate of workers. We adopt this same linear decaying function (1.1) for the system (E)
in the present work. Firstly, we have:
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Theorem 1.1. If x-max{||uo||z,, ||/ u}?/? is sufficiently small, then, for each triplet of nonnegative
initial functions (uo,vo, wo) € HH(Q) x H2(Q) x H3(Q), the system (E) admits a unique global-in-
time solution (u,v,w) in the function space

u € C1((0, 00); H(2)) N C([0, 00); HF (2)) NC((0, 00); HY (1)),
(1.2) v € C((0,00); H*(2)) NC([0, 00); H*(R2)),
w € C1((0, 00); HY(2)) NC([0, 00); HF(2)) N C((0, 00); Hya ().

The solution satisfies the uniform estimate by the norm of initial functions such that
(L.3) lu@ a2 + lv@)llzz + lw@llzs < 9 (luollgz + llvoll gz + llwollzs) . ¢ >0,

for some increasing function ¥(-). In addition, the mapping (ug,vo,wo) — (u(t),v(t),w(t)) is
continuous in H%(Q) x H2(Q) x Hy(Q).

Secondly, we examine the asymptotic behavior of the global solutions by defining the dynamical
system. Uniform estimates for the global solutions derive an absorbing set in the universal space H =
HY(Q) x H?(Q) x H%(). From this, we also construct an invariant set X' for the dynamical system
in the universal space H. Under an additional condition, we then construct a global Lyapunov
functional for the constant equilibrium:

(1.4) U =T v*w]:=T [l 1 lJ .
Hop

For the two-component chemotaxis system with quadratic degradation (the case of § = 0 and f(u) =
u(1l—pu) in (E)), He and Zheng [5] constructed a Lyapunov functional for constant equilibrium under
the condition p > x/4. This is optimal in the sense that the destabilization of the homogeneous
state can occur if the opposite inequality u < x/4 holds by taking a suitable spatial domain. He and
Zheng [5] also extended the result to a three-dimensional bounded smooth domain with u sufficiently
large (the three-dimensional case requires a large u for global existence [9]; for the convergence of
solutions to the constant equilibrium, see also [4, 10]). On the other hand, for the first equation of
(E) with an a-th degradation, f(u) = u®~!(1 — uu), the same procedure as [5] derives the result
that

d [Vul? Vu - Vw 9 1 2
fud —1-1 =_ [ X2 MYV dr — — .
g7 /Q[/,Lu og(pu)] dz /Q w2 dz + X/g " dz — w /Q e (u —u*)*dz

This shows that although quadratic degradation a = 2 introduces an Lg absorbing term —u?|ju —
u*||3,, the linear degradation oo = 1 in (1.1) only introduces an L absorbing —p?|ul|z,, where
u* = 1/p is the first component of the equilibrium. To overcome this difficulty, we use the uniform
boundedness of the maximum norm of u(t) in the eventual invariant set X, included in the ball
with radius r, that is, ||u(t)|lc < 7, (u(t),v(t),w(t)) € X. We can then construct an Lo absorbing
term —(u?/7)||u— u*||%2, which shows the Lyapunov functional is monotone decreasing (Section 3).

Notation. Let A = —A + 1, A be the Laplace operator in Ly(Q2) with the Neumann boundary
condition, the domain of which is H%(f2) with the norm equivalence

(1.5) lwllgz < Cll(=A+ Dwll, < ClAw|L, + [lwllz,) for w e HR(R).
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Then, the domains of the fractional powers of A are characterized by
H?(Q) for 0<6<3,

(1.6) D(A%) = CHY(Q) for 3<6< T,
H2%,(Q) for T<6<3,

with norm equivalence. Here, H},(2) for s > 3/2 and H3»(Q?) for s > 7/2 denote closed subspaces
of H%(Q2) such that

H{(Q) = {w € H°(Q); ?ai:- =0 on 39} for s> g,

H3(Q) = {w € HY(Q); Aw € HF?(Q)}  for s> g

See [11, Theorems 2.8, 2.9 and 16.7].
2. A priori estimates and global-in-time solutions

In this section, we construct several a priori estimates. Let m(y) be the average value over Q for
the integral of L;-function ¢ € L1(f2):

m(p) ==|—§2| /Q lo(@)|de, ¢ € Ly(©),

where |Q| is the measure of domain .

Proposition 2.1. Let (u,v,w) be a local solution to (E). Then, it holds that

_ Q Q
21 @l = [ et do = (uols, - 1)+ EL
Q p p
Proof. Integrating the first equation of (E) over Q, we have
(2.2) i/ udzr = / fu)dz =9 -,u/ udz.
dt Jo Q Q
By solving this in ||u(t)||z,, we obtain (2.1). O

As a corollary, we have

Corollary 2.2. Let Ky be the supremum of ||u(t)||z,. Then, it holds that

Q 1
(2.3) Ky :=sup||u(t)|r, = max {HUOHLu u} = |Q| - max {m(uo), —} .
t>0 © H

Proposition 2.3. Let (u,v,w) be a local solution to (E) and assume the smallness condition (2.8)
below, or equivalently (2.9). Then, it holds that

X0 T
(24) Nhg(w(®) + Lol + X (o)
_ x4 X7 L
< e (Nibytuo) + S ool + Shunlf ) +5 [ eI fu(o)lus + 91) ds

< 9 (Niog(uo) + llvollz, + llwolla1) ,

where di = min{u, 1/(26),1/7} and ¥(-) is some increasing continuous function.
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Proof. Multiplying the first equation of (E) by log(u + 1) and integrating over (2, we have

IVuI

(2.5) %/ﬂ[(u +1)log(u+1) —uldr < — dx + x/ ulAw|dz + /Q(l — pu) log(u + 1)dz

< - L+|1dx+xf ulde + = / IAw|2dx+/(1—,uu)10g(u+1)d:c
Next, multiplying the second equation of (E) by v and integrating over 2, we have
éd 1 1
2.6 —— [ Vdr < -2 [ Ve + = | ulda.
(2.6) 2dth z < 2/dez+2/nuw

Thirdly, multiplying the third equation of (E) by —Aw + w and integrating over 2, we have

2.7 2dt/(w + |Vw|?)dz < ——/(w + |Vuw| )dw——/ [Aw]2da:+/ v2dz.
Adding (2.6) multiplied by 2y, (2.7) multiplied by x/2, and (2.2) to (2.5), we then obtain

IVI

d XT
[Mae(w) + x10l, + X i) < - [ Ldot 2xlull, + [ (1 - ) og(u + 1o

dt

+ [ 0= mode = Kol - Zluis
Here, we have

2 4 2 8 2 2
ez, < llllz, lell?, < Mz, IVI+uli, < llulli, - ColvVI+ulflvi+alz,

2 1
< Collull, 1 +ullZ, - (IVVI+ulZ, + 111+ ulz,)

2 Lo/1 [ |Vul?
< calllf i+ ul, - (5 [ Frlao+ i+ ul).

where Cg = (C’2 3)3 Wlth an embedding constant Cag of the Gagliardo-Nirenberg inequality:
lellzs < Czs|l<ﬁllml|<ﬂllL,, ¢ € H'(Q) (e.g., see [11, p.424]). This leads to

d XT
2 [ Mhew) + 310113, + X w3

IV |2 IVUI

<- dz+2XCGKO (1] + Ko)? (— ode + !|1+UIIL1)

X
+ / (1 — pu)log(u + 1)dz + / (1 — pu)dz — §||u||%2 - Z||w||fql
Q Q
Therefore, by choosing ¥, ||uol|z, and 1/u sufficiently small as

@8) ¢=Fxaef(9l-+ Koyt = Pox-max { ol 5L 100+ ma (o, 21}

S el oo

2
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we have (noting that ¢ < 1)

d 1 2 XT 2
7 [ Mbg(w) + x010113, + XL w3

<4 +ulny + [ (1 ) log(u+ D+ [ (1= pu)de - X0l - Xl
Q Q
X X
<5 [ (1 wdo - udihg(w) — ElolE, - Xl
XT
<59 + [[ulz.) — di [Nbg(w) + xllol, + T wl]

with d; = min{y, 1/(26),1/7}. By solving this differential inequality and using the equality (2.1),
we obtain the estimate (2.4). O

Remark 2.4. The smaliness condition (2.8) has another equivalent expression for the chemotactic
intensity x :

2
Comax { ol 2} ([0 + max {uolz,, 2}]°

(29) x<

p— 2# .
Cg|Q max {pm(uo), 1}3 [u + max {um(uo), 1}]3

Here, the constant Cg is bounded below from |Q|™, as we see in [12, Corollary22]. Hence, the
measure || of the domain Q cannot be a control parameter for reducing the value Cg|Q| to 0, which
implies a wider valid region of (u,x) contained in R of (2.9).

Similarly, we obtain the following three propositions (see [12, Propositions 9, 10 and 12]).

Proposition 2.5. Let (u,v,w) be a local solution to (E). Then, under the smallness condition (2.8),
it holds that

(2.10) [[u(@®)lIZ, + Ollo(@®)lFn + EII(—A + Duw(t)llZ,
T T
< et (Jluoll3, + 8lvo |2 + 1A+ Duol, ) + /0 e B0y Nigg(u(s)) + w(s) | zr) ds
< % (lluollze + llvoll e + llwollzr2) »

where dy = min{2u,1/(26),1/7} and () is some increasing continuous function.

Proposition 2.6. Let (u,v,w) be a local solution to (E). Then, under the smallness condition (2.8),
it holds that

t
(2.11) [|VullZ, < e | VuollZ, + /0 B Ny(Jlu(s)llz, + llw(s) )| m2) ds
< ¥ (llwollar + llvollar + llwollz2)

where d3 = 2u and (-) is some increasing continuous function.
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Proposition 2.7. Let (u,v,w) be a local solution to (E). Then, under the smallness condition (2.8),
it holds that
(212) lulfz + dlloll3e + Tllwlie
£
< e (Jluoll2 + Sllvolizrz + TllwollFs) +/O e EIy(lu(s) | g1 + llw(s)|| =) ds
< P(lluoll gz + llvoll g2 + lwollz2),

where ds = min{2u, 1/(26),2/7} and ¢(-) is some increasing continuous function.

3. Global attractors and Lyapunov function for uniform equilibrium

Throughout this section, we assume the smallness condition (2.8). We here examine the asymptotic
behavior of the global-in-time solutions constructed in Theorem 1.1. Let

H=HY(Q) x H3(Q) x H%(Q)

be the universal space of a dynamical system. We set the initial function space with the smallness
condition (2.8), such as

K = {(u,v,w) € H(Q) x H2(Q) x Hy(Q); u,v,w > 0, u satisfies (2.8)},
Wl = lullzz + llollgz + llwlgs, U=T[wow].

An additional positivity condition is used in the proof of Theorem 3.4. Theorem 1.1 with the strong
comparison principle defines a continuous semigroup of the solution operator S(t) : K — K. Let us
consider the dynamical system (S(t), K, ) hereafter.

Combining the a priori estimates in Section 2, we can construct an absorbing set B for the
dynamical system (S(t), K, H), where we say that a set B C H is absorbing if, for every bounded
set B C K, there exists a time ¢ such that ;5 S(t)B C B.

Theorem 3.1. A ball B in K with sufficiently large radius r :

B = {(u,v,w) € HY(Q) x H*(Q) x H}(Q); [[ullm2 + [[v]lz2 + [wllgs <,
u,v,w >0, u satisfies (2.8)} C K

is an absorbing set for the dynamical system (S(t), K, H).

Proof. The theorem can be shown by inductively applying the uniform Gronwall lemma [8, p.91]
(or [11, Section 1-10]). For the above a priori estimates, however, the absorbing set B can be
constructed by using the following lemma, which is simplified for the estimates. Specifically, applying
Lemma 3.3 with £ = 0,1,2,3 and 4 for (2.1), (2.4), (2.10), (2.11) and (2.12), respectively, proves
the theorem. O

Remark 3.2. The radius r of the absorbing set B is suitably determined by the above a priori
estimates. In particular, r is of order O(1) for large .



128

Lemma 3.3. Let fi € C([0,00);R), £ =0,1,2,...,n, be nonnegative continuous functions. Assume
that the following inequalities hold for each k =1,2,...,n

fi(t) < e %, (0) + /0 t e H =g (fro1(s))ds, t>0,

with a positive constant di, > 0 and an increasing continuous function pg(-). Assume also a uniform
estimate for k = 0 such that fo(t) < 7o for all t > to with a positive constant ro > 0 and a time
to > 0. Then, there exist a positive constant r > 0 and a time t, > 0 such that fx(t) < r for all
t > ti, uniformly in k.

We then construct a global Lyapunov functional for the unique constant equilibrium with suit-
ably large u. In the construction of the Lyapunov functional, the uniform boundedness of the
maximum norm of u plays a crucial role. Let us introduce a positively invariant set

x=|JswBcB

t>tg

The asymptotic behavior of the solutions thereby reduces to the eventual dynamical system (S(¢), X', H).
From the existence of the absorbing set B (Theorem 3.1), there exists a uniform constant M, for
[lu(?)|lc, of order O(1) in large w, that is,

31 u@®)le < CIUG | azxmxms < C -7 i= M, for all U() = T[u(t) v(t) w(?)] € X,

where C is a constant for the embedding inequality ||u[l¢ < C||u| g2, and r is the radius of absorbing
set B. We then show the following:

Theorem 3.4. Assume another largeness condition for u: p > xv/M,/4, where M, is a constant
n (3.1). Then, a functional
o(U(t) = / [uu —1—log pu + 6_,u2( v*)? + (w w*)2] dz
Q M,
satisfies %@(U(t)) <0, ®U) >0 (U # U*), and ®(U*) = 0, that is, D is a Lyapunov functional
for the trivial fized point U* of the dynamical system (S(t), X, H).

Remark 3.5. Because M, = O(1) for sufficiently large p, the region of (x,p) contained in R2
satisfying the inequality p > x/M,/4 is non-empty.

Proof. It is clear that ®(U) > 0 (U # U*) and ®(U*) = 0. We can show %Q(U(t)) <0in a
similar manner to [5, 6] except for the need to construct an Ly absorbing —|lu — u*|3,. By noting
lu@®)|lec £ M,, we have

%/Q(I-‘u—log,uu)da::/ﬂ(u_%) [V'(VU_XUV’LU)-F(].—,uu)] dz
) e
Q

2
/l dz + /Vu vwdac—'u—/(u—u*)zdmc.
M, Jo



Similarly, we have

dt/ O o2 dg =——/(v *)2d.r+—/ (v — v*)(u — u*) da,
and also
jt —(w w*)2da:—/Q(w—’w*)(th)dw=/Q(w—’w*)(Aw+v—w)dz

2 2 2
——X—/ |Vw|2d:c+X—/(v—v*)(w—w*)dw—X—/(w—w*)zdx.
4 Ja 4 Ja 4 Ja
It follows that

d d 2
—o(U(t)) = E/Q [uu —1—logpu+ 6p?(v —v*)2 + %(w - w*)z] dz

2 . 2
——/ﬂdz‘—f-x/wdx—x—/]Vdex
o o U 4 Jo
2 2 2
[ *\2 2“/ * * 2:“’/ *\2
—— [ (u—u")"dr+ — - —u')de —— [ (v—0v*)"dr
b fwmwyder 2 [o-v)w-vyde -2 [w-v)
X X
——/(w—w*)2dx+——/(v—v*)(w—w*)d.’c
4 Jo 4 Jo
Vo _ Xgyl| /‘_2/ : )2
/Q‘ " 2Vw‘ dz M Q[(u u*) — (v —v)])°dz
2 2 2
_~ ) XM
YA Q{(v v*) 8.2 (w—w )} dz
2 2
X (XM, )2
4(1 16”2)/9(@0 w*)* dz.

Therefore, we have £&(U(t)) < 0 under the condition p > xv/M, /4. O

Proposition 3.6. Under the conditions (2.8) and p > x+/M,/4, the convergence of U(t) to U* in
K is uniform:

[u(®) = w*ller = 0, [lv(t) = v*llc =0, lw(t) —w*lcz =0, ¢ oo.

Proof. By referring to, e.g., [1, 5, 6], we can show the convergence. From the proof of Theorem 3.4,
we have

2
(32) So(U() < /Q [[(u—u*)-(v—v*)]2+[(v—v*)—xsi‘f’ - *)]2+(w—w*)2} dz,

where = min {5, § (1~ S8 . Wesch o(9) = Jo [—u')~ (0 ~0)]2+ [(o-07)~ £ -

)] + (w—w*)?] dz. Then, by integrating (3.2) from 1 to ¢, we have [°¢(s)ds < 1<I>(U( )) < oo.
The positivity of ¢(t) indicates that ¢(t) — 0 (¢ — 00). We then have the convergence to the
constant solution U* in Lp-norm. Since the solution U belongs to the functional space (1.2), the

129
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convergence in K and maximum norms is proved from the Gagliardo-Nirenberg inequality, e.g.,

5 1 3 1
luller < Cllull 3 < Cllullgsllullz,: llvle < Cllvll,z < Cllvllgelvlz,, and wle: < Cllwl,z <

z 1
CllwllgallwllZ,- O
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