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On Diophantine m‐tuples and D(n)‐sets

Nikola Adžaga, Andrej Dujella, Dijana Kreso and Petra Tadić

Abstract

For a nonzero integer  n, a set of distinct nonzero integers  \{a_{1} : a_{2} : a_{m}\} such that  a_{i}a_{j}+n
is a perfect square for all  1\leq i<j\leq m_{:} is called a Diophantine  m‐tuple with the property
 D(n) or simply  D(n)‐set. Such sets have been studied bince the ancient times. In this article,
we give an overview of the results from the literature about  D(n) ‐betb and summarize our recent
findings about triples of integers which  aleD(n)‐sets for several  n^{:}s . Furthermore, we include
some new observations and remarks about the ways to construct such triples.
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1 Introduction

For a nonzero integer  n , a set of distinct nonzero integers  \{a_{1}, a_{2}, , a_{m}\} such that  a_{i}a_{j}+n is
a perfect square for all ı  \leq i<j\leq m , is called a Diophantine  m‐tuple with the property  D(n) or
 D(n) ‐set. The  D(1) ‐sets are called simply Diophantine  m‐tuples, and have been studied since the
ancient times. In Section 2. we give an overview of the most significant results from the literature
about  D(n) ‐sets. In [20], A. Kihel and O. Kihel asked if there are Diophantine triples  \{a, b, c\}
which are  D(n)‐sets for several distinct  n' s . They conjectured that there are no Diophantine triples
which are also  D(n) ‐sets for some  n\neq 1 . However, the conjecture does not hold, since, for example,
{8, 21, 55} is a D(ı) and  D(4321) ‐triple (as noted in the MathSciNet review of [20]), while {1, 8, 120}
is a  D(1) and D(72ı)‐trip1e, as observed by Zhang and Grossman [22]. In [1], we presented several
infinite families of Diophantine triples which are also  D(n)‐sets for two additional  n' s . We further
found examples of Diophantine triples which are  D(n) ‐sets for three additional  n' s . In this article,
in particular Section 3. we summarize our findings from [1] and add some new observations and
remarks about the ways to construct such triples.

2 On Diophantine  m‐tuples

The prob1em of constructing D(1)−sets wasfirst studied by Diophantus ofA1exandria who found
a set of four rationals   \{\frac{1}{16},\frac{33}{16},\frac{17}{4},\frac{105}{16}\} with the given property. Fermat found a first Diophantine
quadruple— the set {1, 3, 8, ı20}. Any Diophantine pair  \{a, b\} can be extended toaDiophantine
triple, e.g. by adding  a+b+2r to the set, where  ab+1=r^{2} . Also, any Diophantine triple  \{a, b, c\}
can be extended to a Diophantine quadruple. Namely, let  ab+1=r^{2},  bc+1=s^{2},  ca+1=t^{2},
where  r,  s,  t are positive integers. Then for  d\pm=a+b+c+2abc\pm 2rst , both sets  \{a, b, c_{\dot{0}}d_{+}\}
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and  \{a, b, c, d_{-}\} are Diophantine quadruples provided  d_{-}\neq 0 . Such quadruples are said to be
regular. In 2004, Dujella [9] showed that there are no Diophantine sextuples and that there are at
most finitely many Diophantine quintuples. In 2016, He. Togbé and Ziegler announced a proof of
a couple of decades old conjecture that there are no Diophantine quintuples [17]. (See also [3] for
an analogous result concerning the conjecture of nonexistence of  D(4)‐quintuples.) A stronger and
still open conjecture is that all Diophantine quadruples are regular. In that direction, Fujita and
Miyazaki [15] recently proved that any fixed Diophantine triple can be extended to a Diophantine
quadruple in at most 11 ways by joining a fourth element exceeding the maximal element in the
triple, while Cipu, Fujita and Miyazaki [5] improved that result by replacing 11 by 8. In 1969, Baker
and Davenport [2], using a then new technique of linear forms in logarithms, showed that the set
{1, 3, 8} can be extended to a Diophantine quintuple only by adding 120 to the set, which was the
first result supporting the conjecture.

On the other hand, it was known already to Euler that there are infinitely many rational
Diophantine quintuples. In particular, the Fermat  s set {ı, 3, 8, 120} can be extended to a rational
Diophantine quintuple by adding 777480/828864ı to the set. Recently, Stoll [2ı] proved that the
extension of Fermat’s set to a rational Diophantine quintuple is unique. The first example of a
rational Diophantine sextuple, the set {11/192, 35/192, 155/27, 512/27, 1235/48, 180873/16}, was
found by Gibbs [16]: while Dujella, Kazalicki, Mikič and Szikszai [13] recently proved that there are
infinitely many rational Diophantine sextuples (see also [ı2]). It is not known whether there exists
a rational Diophantine septuple.

There are also some results concerning  D(n) ‐sets with  n\neq 1 . It is easy to show that there are
no  D(n)‐quadruples if  n\equiv 2(mod 4) (see e.g. [4]). On the other hand, it is known that if  n\not\equiv 2
 (mod 4) and  n\not\in\{-4, -3, -1,3,5,8,12,20\} , then there exists at least one  D(n)‐quadruple [6]. It is
widely believed that there do not exist  D(-1) ‐quadruples, and it is known that there do not exist
 D(-1)‐quintuples and that there are only finitely many  D(-1) ‐quadruples [10, ıl]. Finally, let us
mention that the size of a  D(n) ‐set is  \leq 3ı for  |n|\leq 400;<15.476\log|n| for  |n|>400 , and  <3\cdot 2^{168}

for  n prime (see [7, 8, 14]).

3 Triples which are  D(n)‐sets for several  n ’s

Let  \{a, b, c\} be a Diophantine triple. Then there exist integers  r,  s,  t such that  bc+1=r^{2},
 ca+ ı  = s2,  ab+ ı  = t2. This triple is said to induce the elliptic curve

(3.1)  E(\mathbb{Q}) :  y^{2}=(x+ab)(x+ac)(x+bc) .

Note that for the Diophantine triple  \{a, b, c\} there are only finitely many  n ’s such that  \{a, b, c\}
is a  D(n) ‐set; since there are onlv finitely many integer points on the induced elliptic curve (3.1).
Of interest to us are integers  n such that  \{a, b, c\} is a  D(n)‐set, that is integer solutions  x of the
system of equations

(3.2)  x+bc=\square , x+ca=\square , x+ab=\square ,

whereby symbol  \square stands for a perfect square. According to [18, 4.ı, p. 37] (see also [19, 4.2, p. 85]),
for  T\in E(\mathbb{Q}) we have that  x=x(T) is a rational solution of (3.2) if and only if  T\in 2E(\mathbb{Q}) . It
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follows that for any point  T\in 2E(\mathbb{Q})\cap \mathbb{Z}^{2} we have that  \{a, b, c\} is a  D(x(T)) ‐set, provided  x(T) is
nonzero. Note that  E(\mathbb{Q}) has several obvious rational points:

 A=(-bc, 0) ,  B=(-ca, 0) ,  C=(-ab, 0) ,  P= (  0 , abc),  S= (  1 , rst).

One easily sees that  2A=2B=2C=\mathcal{O} . Since we  aJ^{\cdot}e assuming that  \{a, b, c\} is a Diophantine
triple it follows that  S\in 2E(\mathbb{Q})\cap \mathbb{Z}^{2} . In our search for Diophantine triples which are  D(n) ‐sets for
several  n' s , we are thus led to look for triples  \{a, b, c\} for which  2kP+\ell S\in \mathbb{Z}^{2} for some  k,  \ell\in \mathbb{Z}.

An elementary proof of the fact that for a fixed D(ı)‐set  \{a, b, c\} there are only finitely many
 n ’s such that  \{a, b, c\} is a  D(n) ‐set follows from the following proposition. which is similar in flavor
to Theorem 2.7 and Remark 2.8 from [20].

Proposition 1. Let  \{a, b, c\} be a Diophantine triple. For any  n such that  \{a_{:}b_{:}c\} is a  D(n) ‐set,
there exists a divisor  d of  P=b(c-a) such that

(3.3)  n= \frac{1}{4}(d+\frac{P}{d})^{2}-bc.
Proof. Assume that  n+bc=r^{2},  n+ca=s^{2},  n+ab=t^{2} for integers  r,  s,  t . Then  r^{2}-t^{2}=b(c-a) .
Letting  d=r-t , we obtain  2r=d+b(c-a)/d which implies (3.3).  \square 

Note that for  n defined by (3.3) we have that  n+bc and  n+ab are always perfect squares since

 n+bc= \frac{{\imath}}{4}(d+\frac{P}{d})^{2} n+ab=\frac{1}{4}(d-\frac{P}{d})^{2}
It follows that for a given Diophantine triple  \{a, b, c\} we may search for  ns such that  \{a, b, c\}

is a  D(n) ‐set by examining for which divisors  d of  P=b(c-a) we have that  n+ca is a perfect
square.

Through the elliptic curves approach described above and extensive computer search we found
three infinite families of Diophantine triples which are  D(n) ‐sets for two additional  n ’s and the
following examples of Diophantine triples which are  D(n) ‐sets for three additional  n^{:}s . The first six
examples from the table were already presented in [1], while the last example is new.

It remains an open question if there exists an infinite family of Diophantine triples which are
 D(n) ‐sets for three additional  ns , and if there are any Diophantine triples which are  D(n) ‐sets for
four additional  n' s . One should note that the size of a set  N for which there exists a triple  \{a, b, c\}
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of nonzero integers which is a  D(n) ‐set for all  n\in N can be arbitrarily large, see [1, Section 5]. In
what follows we present our findings.

Let  \{a, b, c\} be a Diophantine triple and let  E(\mathbb{Q}),  P alid  S be defined as earlier in the section.
Recall that if  2P\in E(\mathbb{Q})\cap \mathbb{Z}^{2} , then  \{a, b, c\} is a  D(x(2P)) ‐set provided  x(2P) is nonzero. Since

 x_{2p}= \frac{1}{4}(a+b+c)^{2}-ab-ac-bc,
it follows that  2P\in \mathbb{Z}^{2} when  a+b+c is an even number. One easily checks that  x(2P)=0 if and
only if  c=a+b\pm 2\sqrt{ab} , and hence for a Diophantine triple  \{a, b, c\} we have  x(2P)\neq 0 . One easily
checks that  x(2P)=1 if and only if  c=a+b\pm 2\sqrt{ab+1}.

Proposition 2. Let  \{a_{:}b, c\} be a Diophantine triple such that  c\neq a+b\pm 2\sqrt{ab+1} . If  a+b+c is
even, then  \{a, b_{J}.c\} is also a  D(n) ‐set for some n  \neq ı.

A computer search showed that for the Diophantine triple  \{a, b, c\} with  a,  b,  c in the range ı to
10000, the corresponding points  S-2P and  4P never have integer coordinates. On the other hand,
the point  S+2P=2(R+P) has integer coordinates for triples {4, 12, 420}, {12, 24, 2380}, {24, 40,
7812}. These examples led us to the following construction of an infinite family of Diophantine
triples which are  D(n)‐sets for two additional  n' s.

Proposition 3. Let  i be a positive integer and let

 a=2(i+1)i,  b=2(i+2)(i+1) ,  c=4 (  2i^{2}+ 4i  + ı)(2i  + 3)(2i  + l).

Then  \{a, b, c\} is a  D(n) ‐set for  n=n_{1},  n_{2},  n_{3} , where

 n_{1}=1,

 n_{2}=32i^{4}+128i^{3}+{\imath} 72i^{2}+88i+16,
 n_{3}=256i^{8}+2048i^{7}+6720i^{6}+11648i^{\overline{o}}+11456i^{4}+6400i^{3}+
1932i^{2}+280i+16.

In Proposition 3 we have  n_{1}=x(S),  n_{2}=x(2P),  n_{3}=x(S+2P) . The proposition can be also
easily verified through direct computation.

We now explain how we found another infinite famiıy of Diophantine triples which are  D(n) ‐sets
for two additional  n' s . By extending our search, we found several other Diophantine triples  \{a, b, c\}
such that the corresponding point  S+2P has integer coordinates. In particular, {4, 12, 420} and
{4, 420, ı4280} are two such triples, which are moreover  D(n) ‐sets for three additional  n' s . In our
seal.ch for an infinite family of Diophantine triples which a.re  D(n) ‐sets for three additional  n' s , we
looked into these two triples more closely. Using the Onıine Encyclopedia of Integer Sequences we
found that ı2, 420, 14280 are consecutive elements of a recursively defined sequence

(3.4)  b_{0}=0, b_{1}=12, b_{2}=420, b_{i+3}=35b_{i+2}-35b_{i+1}+b_{i}, i\geq 3,

which is a sequence of integers that are simultaneously of shape  2p(p+1) and  q(q+1) for some positive
integers  p and  q . Furthermore, we have that  b_{\dot{i}}b_{i+1}+1 is always a square since  b_{i}b_{i+1}=4t_{i}(t_{i}-1) ,
where  t_{i}s are integers which are at the same time squares and triangular numbers, see [23, 24].
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Let  a=4 and let  b and  c be consecutive elements of the sequence  (b_{i})_{i\geq 1} , so that  \{a, b, c\} is
a Diophantine triple. We now show that this Diophantine triple is such that the corresponding
points  S,  2P,  2P+S have integer coordinates. Indeed, since  a,  b,  c are all even, the sum  a+b+c

is an even integer, and thus  2F has integer coordinates. Also,  x(2P)\neq 1 . See Proposition 2. We
claim that the  x‐coordinate of the point  S+2P=2(R+P) is also an integer, and moreover that
 x:=x(S+2P)=a+b+c. (One easily checks that  x(2P)\neq a+b+c. ) Since

 x_{S+2}p=- \frac{1}{4}(a+b+c)^{2}-1+

 + \frac{1}{4}(\frac{8abc+((a+b+c)^{2}-4ab-4ac-4bc)(a+b+c)+8\sqrt{ab+1}\sqrt{ac+
{\imath}}\sqrt{bc+{\imath}}}{((a+b+c)^{2}-4ab-4ac-4bc-4)^{2}})^{2}
one can show that the latter statement holds if

(3.5)  c=2+a+b+4ab\pm 2 (2a  + ı)  (2b+1)(ab+1) .

Setting  a=4 , we see that (3.5) holds if and only if b2  + c2—ı2b—12c—34bc  =0 . One easily
shows by induction that  b_{n}^{2}+b_{n+1}^{2}-12b_{n}-12b_{n+1}-34b_{n}b_{n+1}=0 for all  n\geq 0 by first showing.
also by induction. that  b_{n+2}=34b_{n+1}-b_{n}  + ı2 for all  n\geq 0 . We get the following proposition.

Proposition 4. Let the sequence  (b_{i})_{i\geq 0} be defined by (3.4). Then for all positive integers  i the
triple  \{4, b_{i}, b_{i+1}\} is a  D(n) ‐set for  n=n_{1},  n_{2},  n_{3} , where

 n_{1}=1, n_{2}= \frac{1}{4}(4+b_{i}+b_{i+1})^{2}-4b_{i}-4b_{i+1}-b_{i}b_{i+1}, 
n_{3}=4+b_{i}+b_{i+1}.

The above proof of Proposition 4 led us to the following general result, which is the main result
of our paper [1].

Theorem 5. Let  \{2, a, b, c\} be a regular Diophantine quadruple. Then the Diophantine triple
 \{a, b, c\} is also a  D(n) ‐set for two distinct  ns with  n\neq 1.

For the sake of brevity we omit a formal proof of Theorem 5. The key observation is that, as a
step in the proof of Proposition 4, we showed that if  \{2, a, b, c\} is a regular Diophantine quadruple,
which is equivalent to (3.5), then  x(S+2P)=a+b+c . The two additional  n ’s in Theorem 5
are thus  n_{2}=x_{2P} and  n_{3}=x_{S+2p} . The technical details (proofs that 1,  n_{2},  n_{3} are all distinct and
that  n_{2} is an integer) can be found in [1]. Note that the triples  \{a, b, c\} from Propositions 3 and
4 are such that  \{2, a, b, c\} is a regular Diophantine quadruple, so that Propositions 3 and 4 follow
from Theorem 5. Another family of Diophantine triples of type  \{2, a, b\} can be obtained by taking
 a= 2(i  + ı)i,  b=4 (  2i^{2}+ 4i  + l)(2i  + 3)(2i  + ı). If we compute  c using the regularity condition
(3.5) we obtain the following corollary.

Corollary 6. Let  i be a positive integer and let

a  = 2(i  + ı)i,  b=4(2i^{2}+4i+1)(2i+3)(2i+1) ,  c=2(4i+1)(4i+3)(4i^{2}+9i+4)(4i^{2}+7i+1) .
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Then  \{a, b, c\} is a  D(n)\prime set for  n=n_{1}.n_{2},  n_{3} , where

 n_{1}=1,

 n_{2}=512i^{6}+2560i^{5}+4832i^{4}+4352i^{3}+1980i^{2}+432i+36,
 n_{3}=65536i^{12}+655360i^{11}  + 2859008il0  + 7l5l6l6i9  + ll346l76i8  + ll932672i7  + 8450ıl2i6

 +4012672i^{5}+1249280i^{4}+243840i^{3}+27612i^{2}+1584i+36.

This summarizes our results from [ı] about Diophantine triples which are  D(n)‐sets for several
 n' s . Since the size of a set  N for which there exists a triple  \{a, b, c\} of nonzero integers which is a
 D(n) ‐set for all  n\in N can be arbitrarily large, we may consider the following modification of the
problem.

Question 1. For a given positive integer  k , what can be said about the smallest in absolute value
nonzero integer  n_{1}(k) for which there exists a triple  \{a_{:}b, c\} of nonzero integers and a set  N of
integers of size  k containing  n_{1}(k) such that  \{a, b, c\} is a  D(n) ‐set for all  n\in N^{\prime p}

Note that if  k\leq 4 , then  n_{1}(k)=1 since there are examples of Diophantine triples  \{a, b, c\} which
are also  D(n) ‐sets for three additional  n' s . We suspect that  |n_{1}(5)|> ı based on our exhaustive
but unsuccessful computer search. In [1], we showed that  |n_{1}(5)|\leq 36 , and gave upper bounds for
 |n_{1}(k)|,  k\leq 20 . These results were obtained by searching for the triples of nonzero integers  \{a, b, c\}
(which are not necessarily  D(1)‐triples) whose induced elliptic curve has relatively large rank  r (say
 r\geq 5) , see [1, Section 4] for details.
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