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ABSTRACT. We shall establish complete asymptotic expansions for a class of generalized
holomorphic Eisenstein series, when the associated parameter z tends to both 0 and
oo through the complex upper half-plane §*. These expansions are further applied to
deduce several variants of classical Euler’'s and Ramanujan’s formula for specific values of
the Riemann zeta-function, as well as to show various functional relations for the classical
Eisenstein series, and Weierstraf}’ elliptic and allied functions in terms of generalized
Lambert series.

1. INTRODUCTION

Throughout the paper, s denotes a complex variable, z a complex parameter, and a,
b, i and v real parameters. Let H* denote the complex upper and lower half-planes,
respectively, where the argument of each branch is chosen as

At={zeC*|0<argz<n} and §H ={z€C*|-m<argz<0}.
It is frequently used in the sequel the notation e(s) = €2™**, and the parameter 7 = e¥7/22
for z € H*, where 7 varies within the sector |arg 7| < /2.
We now define the generalized Eisenstein series F;(s; a, by p,v; z) by
((a+ m)p+ (b+mn)w)
{a+m+ (b+n)z}e

(1.1) Foilsia, By, v 8) = Z/ :

m,n=—o00

(Res > 2),

where the primed summation symbols hereafter indicate that the possibly emerging sin-
gular terms such as 1/0° are to be omitted, and the branch of each summand is chosen
such that arg{(a+m)+ (b+n)z} falls within the range ] — 7, 7] in F};, and within [—, 7|
in F,,. The main object of this paper is the arithmetical mean of inz defined by

1
(1.2) Fy2(s;a,b p,v;2) = i{FZ“Z(S;a.,b; 1y v; 2) + Fpa(s; a,b; p,v; 2)},

for which we shall show that complete asymptotic expansions exist when both 7 — oo
(Theorem 1) and 7 — 0 (Theorems 2 and 3) through the sector | arg 7| < 7/2; the combi-
nation of Theorems 1-3 can further be applied to obtain several variants of the celebrated
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formulae of Euler and of Ramanujan for specific values of the Riemann zeta-function, as
well as to deduce various functional relations for the classical Eisenstein series and for
Weierstrafi’ elliptic and allied functions. One can see that a hidden (but crucial) réle is
played by the connection formula (2.23) below for Kummer’s confluent hypergeometric
functions in producing various functional relations for zeta-functions, Eisenstein series
and elliptic functions mentioned above.

We give here a brief overview of the research related to holomorphic and non-holomorphic
Eisenstein series of complex variables.

Lewittes [17] first obtained a transformation formula for

(1:3) F(s;z) = Fp2(s;0,0;0,0; 2)

(with the notation in (1.0)), which was applied to show a modular relation connecting
F(2; z) with F(2; —1/z); this transformation formula can be viewed as a prototype of our
Theorem 1 below. He further established in [18] a transformation formula for a more
general F72(s;a,b;0,0;z), which was extensively applied to study its modular relations
when the modular group SLy(Z) acts on the associated parameter z € H*. A subse-
quent research was made by Berndt [1], who especially treated in this respect a class of
generalized Dedekind eta-functions and Dedekind sums. Let ((s) denote the Riemann
zeta-function. Berndt [2] then made a further research into this direction in connection
with Euler’s and Ramanujan’s formulae for specific values of ((s).

On the other hand, Matsumoto [22] more recently derived complete asymptotic expan-
sions for F(s; z) when both z — 0 and z — oo through H7; the latter can be viewed as a
prototype of our Theorem 2 below. A transformation formula for a two variable analogue
of (1.1) was obtained by Lim [21], while the first author [10] derived complete asymptotic
expansions for a generalized non-holomorphic Eisenstein series of the form

o e e —~ el(at+m)u+(b+n)
Yz2(s;a,b; v 2) = Z la +m + (b + n)z|2=

(Res > 1)

m,n=—o00

both as z — 0 and as z — oo through the sector . It has very recently been shown by
the authors [15] that complete asymptotic expansions exist for a two variable analogue
of F(s;z), when the associated parameters z = (21, z3) vary within the sectors H* so as
that the distance |z — 21| tends to both 0 and oo.

2. MAIN RESULTS

Prior to state our main results, we prepare several necessary notations.
Let x € R be a parameter. We then introduce the Lerch zeta-function ¢(s,c, k),
together with its companion (s, ¢, k), defined by

o e(kr)
(2:1) (s, ¢, k) = ,?:0 [CFWAD (Res > 1),
o :Zw'_e«c_wm:m e o
(2'2) w(s’ -] ) k:() (c+k)s ( )¢( § 3 )’

which can be continued to entire functions if k € R\ Z, while for x € Z the former (or
for k = 0 the latter) reduces to the Hurwitz zeta-function ((s,c), also for x € R and
¢ = 1 to the exponential zeta-function (.(s) = e(k)¥(s,1,k) = (s, 1, k), and hence to
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the Riemann zeta-function ((s) = ((s,1) = (.(s) if K € Z. Note that
(23) ¢(s.0,k) = e(k)d(s,1,k)  and  1(s,0,K) = 9P(s, 1, k)

hold by the convention of primed summation symbols; this implies that (. (s) = ¢(s,0, k) =
(5,0, k). The functional equation for ¢(s,c, k) (see, for e.g., [19][20]) with a slight ex-
tension asserts as follows.

Proposition 1 ([16, Lemma 3]). For any ¢, x € [0,1], we have the functional equation

(24)  ¢(s,c,0) = g;—)ﬁ{eWi(l_s)/Qd)(l — 5.k, —c)+e T 2Y(1 — 51— k,0)},
which reduces if k € {0,1} to

(25) 0(5:0) = Tarr eI (1= 5) 4+ €TI0 - ),
while if ¢ € {0,1} to
(2.6) Cu(s) = IgQ(jTT{ mi(1—s /2((1 —5,K)+ e—wi(l—s)/2<(1 —s51— Ii)}

with the convention in (2.3).

Let (z) = 2 — |z] for any 2 € R denote the fractional part of z. Then the functional
equation (2.4) can be extended to the following form with a satisfactory extension of the
domain of parameters.

Proposition 2 ([16, Lemma 4]). For any ¢, s € R, we have the functional equation
I'(1-—
27) (5,6, 4) = elem) Ty {251 = 5, kb =0
+ e~ ™=/ 21 — 5, (—k), o}
Let r be a complex variable, and g a complex (base) parameter with |¢| < 1. We further

introduce the generalized Lambert series S,(c, d; k, A; q), defined for any real ¢, d, k and
A with ¢,d > 0 by

(d+l)/\) <’ (d+1)
{1 = e(r)g™}

2.5) Sl xg) =) ' At

upon the convention (used hereafter) for any ¢ € [0, +oo[ that

L if ¢ > 0,

|1 ife=0.
Further let §(z) for 2 € R denote the symbol which equals 1 or 0 according to x € Z or
otherwise, and I'(s) the gamma function and (s), = I'(s +n)/I'(s) for any n € Z the

shifted factorial.
We proceed to state our first main result.

Theorem 1 ([16, Theorem 1]). Set
(2.9)  Als,a,u) = (s, (=a), —p) cos(ms) + ¥(s, (a), )

= clap) e =5, () ) + €1 = s )~}
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where the second equality holds by (2.7). Then for any real a, b, p and v, and any z € HT,
we have the formula

(2.10) Fpa(s;a,b; p,v;z) = 0(b)A(s, a, i)
+ elan) e S () (i i)
+ eﬂs/Qsl—s«_b)a </~‘>; —V,—a; Q)},

which is valid in the whole s-plane.

Remark. The formula (2.10) can be viewed as a transformation formula, and at the same
time as a convergent asymptotic expansion when 7 — oo through the sector | arg T| < /2
where the asymptotic series are given by S;_ ((b), (Fu); £v, £a;¢) on the right side,
since each term of S,(c, d; k, \; q) in (2.8) is of order O{e27'( @'+ /(d’—i—l) '} when 7 — oo
(l=0,1;:5:)

Let C* denote the universal covering of the punctured complex plane C* = C \ {0},
where the mapping C* 2 Y + logY =log|Y |+ iargY € C is bijective (with the range
of arg Y being extended over R). We define for any X € C and Y € C* the operation

(2.11) C*>3Y+—¥Y¥= exp(XlogY) = exp{X(log|Y| +iargY)}
= |V [¥exp(iX argY) € C.

Let g(h‘;) € Cx for any £ € R denote the point defined by logeée(x) = 2wik, and write
€(0) = 1. Then é(k)® = e(ck) holds for all ¢ € R by (2.11).
It is convenient for descubmg specific values of ¥(s, ¢, k) to introduce the sequence of

functions Cy : C x C* 3 > (X, Y) — Cu(X,Y) € C (k= 0,1,...), defined by the Taylor
series expansion (with the variable Z in C)

Zyx XZ ick

(2.12) S

k=0
near Z = 0 (notice that Y = |Y| exp(log Y)); this in particular implies that

- YX  ifyl=1
2:13 Co(X,Y) = ’
( ) of ) {O otherwise.

Note that Cx(X,Y) reduces if Y =1 (and so YX = 1) to the usual Bernoulli polynomial
Bi(X), and also to the rational function A.(Y") if X = 0, defined by the Taylor series
expansion

>\ Ap(Y
=Zn

k=0

centered at Z = 0. Professor Andrzej Schinzel kindly informed me (in a private commu-
nication [27]) about the explicit form of Ax(Y") involving Eulerian (not Euler’s) numbers
(cf. [26, p.215]) in its coefficients. We have further shown in [10] the following properties
of Cr(X,Y).
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Proposition 3 ([10, Lemma 3]). For any integer k > 0 and any (X,Y) € C x C*, the
relations

(2.14) Ci(1 = X, 1/Y) = (-1)}Cu(X,Y),
~ o JEDRC(0Y) k£
2.15 Cr(0,1/Y) = ~
315 K(0,1/Y) {—Cl(O,Y)—l ifk =1
hold, where 1)Y € C* is the point defined by 11/Y| =1/|Y]| and by arg(1/Y) = —argY.
We proceed to state our second main result.

Theorem 2 ([16, Theorem 2]). Let a, b, ju and v be arbitrary real parameter, and z € H*,
write ¢ = e(z) = ¥ and § = e(—1/z) = e7>™/* for any z € H*, and set

(247) Bi(s,a,p) = sin(ms)(s, (—a), —p)
— el A1 = 5, 1)
== /211)( — 5, {p), —a)},
(2.18) By(s,b,v) = €™/ %i)(s, (—b), —v) + e~/ 24)(s, (b), V)

= el (1 = 5,0, b,

where the second equalities in (2.17) and (2.18) hold by (2.7). Then for any integer J > 0,
in the region Res > 1 — J, we have the formula
(2.19) Fpa(s;a,b; p,v;2)

=16(b)By(s ,a,,u) 0(a)By(s,b,v)T*

x|
+ 2sin(7s Z

z]“

Jd (s + 3, (—a), =n)Cira ({b), €))7

+R‘](5,a,b,ﬂ, vy )a
where Rj(s;a,b; u,v;z) is the remainder term satisfying the estimate
(2.20) Ry(s;a,b;p,v;2) = O(|7|”)

as T — 0 through the sector |arg | < 7/2 —n with any small n > 0. Here the constant
implied in the O-symbol depends at most on s a, b, u, v, J and 7.

We use the symbol €(Z) = sgn(arg Z) for |arg Z| > 0, and let 1 F1(5; Z) and U(a;v; Z)
denote Kummer’s confluent hypergeometric functions of the first and second kind, respec-
tively, defined for any complex a and 7 by

_5 (o)
(2.21) 1F1< )_; G
with v # —k (k= 0,—1,...) and for |Z| < +o0 (cf. [5, 6.1 (1)]), and

1 —waa—l w y—a-1 w
r(a){e(a)—l}/oo ‘ (L+w)™d

(2:22) Ula;v; Z) =
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for | arg Z| < 7/2, where the latter can be continued to the whole sector | arg Z| < 37/2 by
rotating appropriately the path of integration. An application of the connection formula

(2.23) Fy (‘;‘ Z) - %

Tk : )
o FEZ/; es(Z)m(a~~,)eZU(,y — 7, efe(Z)mz)
valid in the sectors 0 < |arg Z| < 3w /2 (cf. [5, 6.7 (7)]), allows us to extract the exponen-
tially small order terms of the form S;_,(c, d; k, A\;q) with § = ¢ >™/7 as 7 — 0 from the
remainder in (2.19).

By (o y; Z)

Theorem 3 ([16, Theorem 3]). In the region o > 1—J with any J > 1 and in the sectors
0 < |arg7| < /2, we have the formula

(224)  Ry(s;a.bippviz) = e(bv) (2}3{ ;)S {S1-s((@), () 1, —b: )

S, (=), ()i 5D}
(sin(7s)

+ (—1)’e(bw)(27/T) (8)4573(s; a, b5 1, v 2),

where the expression

(225)  Sisaburin= Y e<-<<—a>(; fiﬂn; () +mt)
X fo,0(2m({~=a) + m)({v) +n)/7)

_ slriste i e(=((=a) +m)u + ((~v) + n)b)

m,n=0

X fou(2me ™ ((—a) + m)((=v) +n)/7T)
holds with
(2.26) fs0(Z2)=U(s+ J;s+ J; Z).

Furthermore, for any integers J and K with J > 1 and K > 0, in the region Res >
1—J — K, we have the formula

(—1)7e(—bv) "= i/+6+1 (s + J),
@ryT & (J+k+1D)

X (s + J +k, (—a), —1)Cirs1((b), 8())roT/+k
X R (sia,b; v 2),

(2.27) S5(s;a, by u,v;z) =

valid in the sectors 0 < |arg 7| < m/2, where R} (s;a,b;p,v;2) is the remainder term
satisfying the estimate

(2.28) RS e (s5a,by p,v; 2) = O(|r|Res+T+K)

as 7 — 0 through n < |arg 7| < 7/2 —n with any small n > 0. Here the constant implied
in the O-symbol depends at most on s, a, b, u, v, J, K andn.
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3. VARIANTS OF EULER’S AND RAMANUJAN’S FORMULA FOR ((s)

It is in fact possible to deduce from the combination of Theorems 1-3 the celebrated
formulae of Euler and Ramanujan for specific values of the Riemann zeta-function as well
as their several variants. One can observe that the connection formula (2.23) works as
a key ingredient in the background to generate various Ramanujan’s type formulae for
specific values of zeta-functions.

Theorem 4 ([16, Theorem 4]). Let g = e(it) = ¢ > and § = e(i/7) = e *™/™ for any

complex T in the sector |arg | < 7/2. Then for any real a, b, p and v, and any integer
k # 0, we have the formula

(3.1) e(ap){8(b)v(k, (—p), a)
+ Si((b). (—p)s v a; q) + (= 1)K Sp((=b), (u); —v, —as q) }
(=0 Chi i ((8), €))Ci({a), B(p)) 4
B (k+1=3)Y! "

= e(bv)(—ir) " {d(a)y(k, (v}, —b)
+ Sk({a), (v); 1, —b; Q) + (=1 'Sk ((—a), (—v); —u, b;9) },

whose variant asserts upon replacing (7,q) — (1/7,q) that

(3.2) e(bw){0(a)v(k, (v), —b)
+ Sk({a), (W) 1, —b3 @) + (1)1 Sp((—a), (—v); —p, by ) }
SR Ch1 (), &) C (D), E0)) i
- (=27 ]ZO (k+1—j)lj! ’
= e(ap)(ir)*{5(0)0(k, (—p), )
+ Sk((B), (—1); v, 0; q) + (—1)* 18 ({0, {pa); —, —a; D) ).

The particular case (u,v) = (0,0) of Theorem 4 reduces to the following formula for
the pairing of (,(k) and ¢_,(k).

Corollary 4.1 ([16, Corollary 4.1]). For any real a and b, and any integer k # 0, we have
(3:3)  8(b)Ca(k) + Sk((b), 050, a;.9) + (=1)*'Sk({~b), 0;0, —a; q)

k+1

B (_zﬂ)k;}: (—i)j%i—ljg?))@j(@)Tk_j
—ir)*"{8(a)¢-s(k) + Sk((a), 0,0, =b;§) + (—1)¥ ' Sk((—a), 0;0,5;9) },
whose variant asserts that
B4 Sa)-o(k) +Eella > —b; q) + (=1)*7'Sk((—a), 0; 0, b;q)
(i) {8(b)Ca(k) + Sk((B), 050, ;) + (—1)* 1Sk ((=5), 0;0, —a; D) }.

The particular case (a, b) = (0,0) of Theorem 4 reduces to the following formula for
the pairing of ((k, (—p)) and ((k, (v)).
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Corollary 4.2 ([16, Corollary 4.2]). For any real p and v, and any integer k # 1, we
have

(3:5)  C(k, (=) + Sk(0, (—p); v, 0;.¢) + (=1)* 'Sk (0, (u); =1, 0;.9) }

k+1

(=) A1 (e(v))A;(e(w)) -j
- (—QW)k; 1= 4
= (=) (R, () + Sk(0, () 1. 0:0) + (1)1 S(0, (=)~ 0: D)},

whose variant asserts that

(3.6)  C(k, (1)) + Sk(0, (W); 1,05 ) + (—1)* '8k (0, (=v); — 11, 059) }

k+1

rx P Arn—jle(p)Aj(e(v) 4 j
~(=2m) 2; R+1-7450
= () H{C(k, (=) + Sk(0, (—p); v, 0;9) + (—=1)* '8, (0, (w); —»,0; ) }.

The particular case (b,v) = (0,0) of Theorem 4 reduces to the following formula for
the paring of ¥ (k, (—u),a) and (k).

Corollary 4.3 ([16, Corollary 4.3]). For any real a and p, and any integer k # 1, we
have

B7)  elap){p(k, (—p),a) + S0, (—p); 0,a;¢) + (=1)*8,(0, (1); 0, —a; ¢) }
il 7 _
kN~ (51 Biri-iCi((a), €p) 4
i ; (e

= (—ir)* " {8(a)C(k) + Sk({a), 05 11, 0; ) + (=1)* ' Sk((—a), 0; 1, 0; ) },
whose variant asserts that
(3.8) 8(a)¢(k) + Sk((a), 0; 110, a;q) + (—=1)*'S({—a), 0, —u; 0;¢) }

k+1

Cri1-4({a), €(1)Bj _y—;
_(—Qﬂ)ka:; (k+1_])|]' Tk
= e(ap)(ir)* " {¥(k, (—p), a)
+ S0, (=), 0;.a,0;9) + (=1)F1S,(0, (1), 0;0, —; ) }.

The particular case (a,v) = (0,0) of Theorem 4 reduces to the following formula for
the pairing of ((k, (—p)) and (_(k).

Corollary 4.4 ([16, Corollary 4.4]). For any real b and p, and any integers k # 1, we
have

(3.9)  S(b)C(K, (=) + Sk(b, (—p);0,0;9) + (—1)* ' Sk((=b), (1); 0,0; q)
k

= (=) B () Aje(w) ioj
~ {2 — k+1— 7! *

= e(bv)( IT)k l{g_ ) + Sk (0, 0; 1, —b; @) + (—1)*715,(0, 0; —u,b;f}\))}
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whose variant asserts that

(3.10) Cou(K) + Sk(0,0; 1, —b; q) + (=1)* '8k (0, 0; —p1, b; q)
7 i ijAk+1—j(e(U))Bj(<b>) k—j
=1{~2g) JZ:; k+1-)t

= (im)* " {8(b)¢ (K, (—p))
+ Sk((b), (=1); 0,0;7) + (—1)* ' Sk({(=b), (1); 0,0;7) }.

The simplest case (a, b, u, ) = (0,0,0,0) of Theorem 4 reduces to the celebrated for-
mulae of Euler and Ramanujan, respectively, for specific values of ((s).

Corollary 4.5 ([16, Corollary 4.5]). We have the the following formulae:
i) for any integer k > 1,
(_1)k+1(27r)2k
A1 2k) = —————"—Boy;
ii) for any integer k # 0,

k+1

; —1) Bokt2-2jB2j opi1-9;
19 2% + 1 3G 0:0.0: ) 2k+1 ( +2-25225 _2k+1-2j
(3.12) C(2k 4 1) + 2855+1(0,0;0,0; q) + (27) j_;_:() (2k+2—2j)!(2j)!7

= (i7)**{C(2k + 1) + 282+1(0,0;0,0;3)}.

4. CLASSICAL EISENSTEIN SERIES

We present in this section several applications of Theorems 1-3 to the classical Eisen-
stein series. Let Foy(z) denote the classical holomorphic Eisenstein series defined for £ > 1
by

4k L l2k—1ql
4.1 E. =1-—=
( ) Qk(z) B — 1— ql
with ¢ = e(z) (cf. [4, Chap.4, 4.5 (4.5.1)]). Theorem 1 in fact shows that
(=1)*'(2k)! 0. 0:0.0:
(42) EQ]C(Z) = W—kB%Fzg(zl\,,O,O,O,O, Z)

for any integer £ > 1. We shall treat in what follows the cases & = 1 and k > 2 separately.
Consider first the case k = 1. The combination of Theorems 2 and 3 reduces in this
case to

2 21

82 .
Fy2(2:0,0;0,0; 2) = % + 22— =-5.4(0,0;0,0;9),

while Theorem 1 applied with —1/z instead of z implies that

1 2
Fy (2;0,0;0,0; —;> =T 8x%5.,(0,0;0,0;9),

3
and hence the relation between Fy2(2;0,0;0,0; z) and Fz2(2;0,0;0,0; —1/z) asserts
271 1 1
(4.3) Fz2(2:0,050,0;2) = = + = Fp (2;0,0; 0,0; M),
z z Z

which gives the following transformation formula (cf. [30, Chap.2, 2.4 (2.58)]):
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Corollary 4.6 ([16, Corollary 4.6]). For any z € H*, we have

(4.4) EQ(—E) " % + 2E().

One can see that the procedure of derivation above gives a zeta-function theoretic or
asymptotic methodological proof of the modular relation for Fy(z).

We next treat the case k > 2. The combination of Theorems 2 and 3 in this case
reduces to

a0 _ CDF2(2m/2)% [ By .
For(2k:0,0,0,0:2) = ~— 500 2+ S ak(0,0,0,0;9) |,

while Theorem 1 applied with —1/z instead of z implies that

a0 aon o 1Y _ (Z1D*2@m)* [ By PP
FZ?(QA-,O:O-,O:O:“;) B R T + S1-21(0,0;0,0; 9) ¢,

and hence the relation between Fy2(2;0,0;0,0; 2) and Fz2(2;0,0;0,0; —1/2) asserts
1 1
(4.5) Fy2(2k;0,0;0,0; 2) = — Fpe (2k;0,0;0,0; ——),
2 z

which gives the transformation formula:

Corollary 4.7 ([16, Corollary 4.7]). For any z € 1, we have

1
(4.6) Egk(—;) = 2By (z) (k>2).
It is known for k£ > 2 that the double series expression
1 & 1
E = = - -
2(2) = 5 ; (cz + d)%
(e.d)=1

is valid (cf. [4, Chap.4, 4.5 (4.5.1)]). One can therefore see that the procedure of derivation
above successfully(?) gives a stupidly lengthy proof(!) of the modular relation for Eo(2)
with k > 2.

5. WEIERSTRASS' ELLIPTIC AND ALLIED FUNCTIONS

We present in this section several applications of Theorems 1-3 to Weierstrafl® ellip-
tic and allied functions. Let w = (w;,w;) € C? be a fundamental parallelogram with
Im(wy/wy) > 0. Set we/w; = z, and choose the branch with argz €]0, 7[. Weierstraf’
elliptic function with the periods w = (w;,ws) is defined by

1 = 1 1
5.1 = _
(5.1) p(w | w) > + i ;_m {(w —mwr — nwa)?  (mw; + an)z}
(m,n)#(0,0)

(cf. [6, 13.12 (4)]), while (allied) Weierstraf}’ zeta and sigma functions by

1 = 1 1 w
B2 = — .
(52) Clw]w) w * Z {w — MW — NWa + mwi + Nws + (mw + nwg)Q}

m,n=—oo

(m.n)#(0,0)
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o© w w 1 w 2
5.3 = l o smmns ———— T ‘(4) :
( ) 0'(’U.) l w) w H ( mwy + an) eXp{’nu,_)l 4 nws * 2 mwi + nwso }

m,n=—0o0

(m.n)#(0.0)
respectively (cf. [6, 13.12 (6) and (11)]). It suffices in fact to study the elliptic and allied
functions defined with the normalized periods z = (1, z), in view of the relations
plcw | cw) = ¢ 2p(w | w), Clew | ew) = ¢ (w | w), o(cw | cw) = co(w | w)
for any ¢ € C*. One can then see that the limiting relation
(5.4) pw| z) = lgli]% {Fzz(s;a, b;0,0; 2) — Fzz(s;0,0;0,0;z)}
Res>2

is valid for any w = a + bz € C with (a,b) € R?, since the limiting point s = 2 is located
in the boundary of the region where the defining series in (1.1) converges absolutely.
Theorem 1 can therefore be applied on the right side of (5.4) to show the following
expression of p(w | z).

Corollary 4.8 ([16, Corollary 4.8]). For any w = a + bz € C with (a,b) € R?* \ Z?, we
have

s
(5.5) pw|z)= —?Eg(z) =
sin? ra

— 4m*{8_1((b), 0;0,a; q) + S_1({—b),0;0, —a;q)}.

Combining Theorems 2, 3 and Corollary 4.8, we obtain the period change formula for
p(w | z) in the form

1 w A
(5.6) plw]2) = S0(2 | 2),
where z = (1, —1/z) are the dual periods (cf. [30, Chap.2, 2.4]). We next write the (base)
parameter corresponding to the half period as p = e(z/2) = e (i.e. ¢ = p?), and then
define the Weierstrassian invariants by
1 z 1+2
67 a@=9(5]2), a@=0(;|2), e@=0(5]2)

Then Corollary 4.8 in fact implies the following Lambert series expressions for Weier-
strassian invariants (cf. [30, Chap.4, 4.2 (4. 46)—(4 48)])

(21 = 1)p*?
el(z)=47r2{ +4Z 412 },

= 20—2

=1

5 21 _ 1 2(—1
es(z) =4m { 12+ Z 1+p21 = },
which further yield a significant relation (cf. [30, Chap.4, 4.2 (4.49)]):

(5.9) e1(z) + ex(z) +e3(z) =0.

Furthermore, combining Theorems 2, 3 and Corollary 4.8, we obtain the period change
formulae for Weierstrassian invariants:

(5.10) ei(z) =¢;(2) (j=1,23).
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We next consider Weierstrafl’ zeta function. It is misleading to validate that {(w | z)
is defined to be the limit

lin} {Fzz(s; a,b;0,0;2) — Fz2(s;0,0;0,0; 2) + swFy(s + 1;0,0;0,0; z)}

Res>1

since the limiting point s = 1 is located in the exterior of the region where the defining
series in (1.1) converges absolutely. We rather take another route for defining Weierstraf}’
zeta function in terms of p(w | z), which asserts

(511) cwl2) = - [ otz -5 fau

(cf. [6,13.12 (7)]). The expression in (5.5) can therefore be integrated to show the following
formula for ¢(w | z).

Corollary 4.9 ([16, Corollary 4.9]). For any w = a + bz € C with (a,b) € | — 1,1[> \
{(0,0)}, we have

(5.12) ((w|z)= %EQ(Z)'LU + 0(b)mw cot ma — (sgn b)mi
— 2mi{So((b), 0;0, a; q) — So({—b),0;0, —a;q)}.

Weierstrafl’ eta invariants are defined by

(5.13) m(z) = C(% | z)’ m(2) = C(%

SEEEEE TP

Corollary 4.9 therefore gives the evaluations

m(z) = 5 Ba(2)
(5.14) m(z) = %—QEQ(Z)Z — T,
m(2) = — 5 Ba()(1+2) + 7,

which imply the classical Legendre relations (cf. [6, 13.12 (10)])

m(z)E-mlz) 5=,
(515) m(z) (- 35) - m(a) 5= T
m(z) 5 -m) (-32) =%

We finally consider Weierstraf3’ sigma function. It is misleading again to validate that
logo(w | z) is defined to be the limit

s—0 Js
Res>0

lim {—%Fzz(s; a,b;0,0; z) + 2Fzz(s; 0,0;0,0; z) — wFz2(s + 1;0,0;0,0; 2)

il
+ awzFZz(s +2:0,0;0,0; z)}
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since the limiting point s = 0 is again located in the exterior of the region where the
defining series in (1.1) converges absolutely. We rather take another route for defining
Weierstraf’ sigma function in terms of {(w | z), which asserts

(5.16) loga(w|z):10gw+/0w{C(ulz)—%}du

(cf. [6, 13.12 (12)]). We use the customary notation (z;q) = [[;2o(1—z¢') for any z € Cin
the sequel. Then the expression in (5.12) can therefore be integrated to show the following
formula for logo(w | z).

Corollary 4.10 ([16, Corollary 4.10]). For any w = a + bz € C with (a,b) € | — 1,1[* \
{(0,0)}, we have

2

(5.17) logo(w | z) = 7%Eg(z)wQ + (sgn b)m’(% - w) + 6(b) log(2sin wa)
- 81((). 00, a; q) — S1({~b),0;0, —a: q)
+25:(0,0;0,0; q) — log 2,

whose exponential form asserts
2 2 (1 : 5(b)
(5.18) o(w | 2) = exp] T Ba(2)u? + (sgn b)m(5 - w) (2sin 7a)

o (e@)g"; 9)oo(e(=a)g ™" 9)oo
27(q; 9)%

where (only) the many valued term log(2sinma) on the right side of (5.17) becomes one
valued after its exponentiation on the right side of (5.18).

b
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