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Abstract

Separable polynomials in skew poıynomial rings were studied extensively
by Y. Miyashita, T. Nagahara, S. Ikehata, and G.  S eto. In particular, Ikehata
gave the characteri ation of  (\overline{\rho},\overline{D}) ‐separable polynomials in skew polynomial
rings. In this article, we shall introduce the notion of weakly  (\overline{\rho},\tilde{D}) ‐separable
polynomials in skew polynomial rings, and we shall give a characteri ation of
the  (\overline{p},\overline{D}) ‐separability and that of the weak  (\overline{\rho},\overline{D}) ‐separability.

1 Introduction and Preliminaries

Throughout this paper,  A/B will represent a ring extension with common identity
1. Let  M be an A‐A‐bimodule, and  x,  y arbitrary elements in  A . An additive map

 \delta :  Aarrow M is called a  B ‐derivation of  A to  M if  \delta(xy)=\delta(x)y+x\delta(y) and  \delta(\alpha)=0
for any  \alpha\in B . Moreover,  \delta is called inner if  \delta(x)=mx-xm for some fixed element
 m\in M . We say that a ring extension  A/B is separable if the  A-A‐homomorphism of
 A\otimes_{B}  A onto  A defined by  a\otimes b\mapsto ab splits. It is well known that  A/B is separable if
and only if for any A‐A‐bimodule  M , every  B‐derivation of  A to  M is inner (cf. [1,
Satz 4.2]). A ring extension  A/B is said to be weakly separable if every  B‐derivation
of  A to  A is inner. The notion of a weakly separable extension was introduced by N.
Hamaguchi and A. Nakajima (cf. [2]) Obviously, a separable extension is weakly
separable.

Let  B be a ring,  \rho an automorphism of  B,  D a  \rho‐derivation of B.  B[X;\rho, D]
will mean the skew polynomial ring in which the multiplication is given by  \alpha X=

 X\rho(\alpha)+D(\alpha) for any  \alpha\in B . We set  B[X;\rho]  :=B[X;\rho, 0] and  B[X;D]  :=

 B[X;1_{A}, D] . By  B[X;\rho, D]_{(0)} we denote the set of all monic polynomials  g in
 B[X;\rho, D] such that  gB[X;\rho, D]=B[X;\rho, D]g . For a polynomial  f\in B[X;\rho, D]_{(0)},
the residue ring  B[X;\rho, D]/fB[X;\rho, D] is a free ring extension of  B . We say that
a polynomial  f\in B[X;\rho, D]_{(0)} is separable (resp. weakly separable) in  B[X;\rho, D] if
 B[X;\rho, D]/fB[X;\rho, D] is separable (resp. weakly separable) over  B.
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Throughout this article, we assume that  \rho D=D\rho , and let  f=X^{m}+X^{m-1}a_{m-1}+
. . .  +Xa_{1}+a_{0}\in B[X;\rho, D]_{(0)}\cap B^{\rho}[X] and

 f'  :=mX^{m-1}+(m-1)X^{m-2}a_{m-1}\cdots+Xa_{2}+a_{1} (the derivative of  f ),
 Y_{0}:=X^{m-1}+X^{m-2}a_{m-1}+\cdots+Xa_{2}+a_{1},

 Y_{j}:=X^{m-j-{\imath}}+X^{m-j-2}a_{m-1}+\cdots+Xa_{j+2}+a_{j+1},

 Y_{m-2}:=X+a_{m-1},

 Y_{\tau r\iota-1}:=1.

We shall use the following conventions:

 B^{\rho}:=\{\alpha\in B|\rho(\alpha)=\alpha\}

 B^{D}:=\{\alpha\in B|D(\alpha)=0\}
 B^{\rho,D}:=B^{\rho}\cap B^{D}

 C(B^{\rho,D})  :=\{\beta\in B^{\rho,D}|b\beta=\beta b(\forall b\in B^{\rho,D})\} (the ccntcr of  B^{\rho,D} )
 A :=B[X;\rho, D]/fB[X;\rho, D]
 x :=X+fB[X;\rho, D]\in A

 f':=f'+fB[X;\rho, D]\in A
 y_{j} :=Y_{j}+fB[X;\rho, D]\in A(0\leq j\leq m-1)

 \rho : an automorphism of  A defined by   \rho(\sum_{j=0}^{m-1}x^{j}c_{j})=\sum_{j=0}^{m-1}x^{j}\rho(c_{j})(c_{j}\in B)
 D : a  \rho ‐derivation of  A defined by  D( \sum_{j=0}^{m-1}x^{j}c_{j})=\sum_{j=0}^{m-1}x^{j}D(c_{j})(c_{j}\in B)

For any subsets  T\subset B and  S\subset A , we set

 J_{m-1}(T):=\{z\in A|\rho^{m-1}(\alpha)z=z\alpha(\forall\alpha\in T)\},
 V(T) :=\{z\in A|\alpha z=z\alpha(\forall\alpha\in T)\},

 W(S):= \{\sum_{j=0}^{m-1}y_{j}\omega\otimes x^{j}\omega\in S\},
 (A\otimes_{B}A)^{S} :=\{\varepsilon\in A\otimes_{B}A|\varepsilon w=w\varepsilon
(\forall w\in S)\},

 S^{\overline{\rho}}:=\{z\in S|\rho(z)=z\},

 S^{D} :=\{z\in S|D(z)=0\},
 S^{\overline{\rho},\overline{D}}:=S^{\overline{\rho}}\cap S^{\overline{D}}

Note that  J_{m-1}(B')=V(B') for any subset  B' of  B^{\rho}.
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We shall state some basic results which were already known.

Lemma 1.1 ([7, Lemma 1.6]).  f\uparrow s in  B[X;\rho, D]_{(0)} if and only if

(1)  a_{i} \rho^{m}(\alpha)=\sum_{j=i}^{m}  (\begin{array}{l}
J
\dot{i}
\end{array})  \rho^{g}D^{j-i}(\alpha)a_{j}  (\alpha\in B, 0\leq i\leq m-1, a_{m}=1)

(2)  D(a_{i})=a_{?}1-\rho(a_{i-1})-a_{i}(\rho(a_{rn-1})-a_{771-1})  (1\leq i\leq m-1)

(3)  D(a_{0})=a_{0}(\rho(a_{m-1})-a_{m-1})

Lemma 1.2 ([7, Corollary 1.7]). If  f is in  B[X;\rho, D]_{(0)}\cap B^{\rho}[X] then  f is in
 C(B^{\rho,D})[X].  Moreo?)er,

  \alpha a_{i}=\sum_{j=i}^{m}(-1)^{j-i}  (\begin{array}{l}
j
i
\end{array})  a_{\mathcal{J}}\rho^{m-j}D^{j-i}(\alpha)  (\alpha\in B, 0\leq j\leq m, a_{m}=1) .

Lemma 1.3 ([6, Theorem 2.2]). Let  B be a commutative ring, and  f(X) a monic
polynomial in  B[X] . The following are equivalent.

(1)  f(X) is weakly separablp in  B[X].

(2)  f'(X) is a non‐zero‐divisor in  B[X] modulo  (f(X)) , where  f'(X) is a deriva‐
tive of  f(X) .

(3)  \delta(f(X)) is a non‐zero‐divisor in  B , where  \delta(f(X)) is a discriminant of  f(X) .

Now we consider the following  A-A‐homomorphisms:

 \mu :  AA\otimes_{B}A_{A}arrow AA_{A},  \mu(z\otimes w)=zw

 \xi :  AA\otimes_{B}A_{A}arrow AA\otimes_{B}A_{A} ,  \xi(z\otimes w)=D(z)\otimes\rho(w)+z\otimes D(w)
 \eta :  AA\otimes_{B}A_{A}arrow AA\otimes_{B}A_{A} ,  \eta(z\otimes w)=\rho(z)\otimes\rho(w)-z\otimes w

By making of the above mappings, S. Ikehata gave the following definition.

Definiton 1.4 ([4, pp.119]).  f is called  (\rho, D) ‐separable in  B[X;\rho, D] if there
exists an A‐A‐homomorphism  \nu :  Aarrow A\otimes_{B}  A such that

 \mu v=1_{A}, \xi\nu=\nu D, \eta\nu=\nu(\rho-1_{A}) .

Obviously,  a(\rho, D) ‐beparable polyno1nial in  B[X;\rho, D] is separable. In [4], S.
Ikehata studied  (\rho, D) ‐separable polynomials in  B[X;\rho, D] and he gave the follow‐
ing.
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Lemma 1.5 ([4, Theorem 2.1]). The following are equivalent.

(1)  f is  (\rho, D) ‐separable in  B[X;\rho, D].

(2)  The7e exists  h\in J_{rn-1}(B)^{\overline{\rho},\overline{D}} such that  f'h=hf'=1.

(3)  f is separable in  C(B^{\rho,D})[X].

Noting that Lcmma 1.5 (3), we shall give thc following dcfinition as a general‐
ization of  (\rho, D) ‐separable polynomials in  B[X;\rho, D].

Definiton 1.6.  f is called weakly  (\rho,D) ‐separable in  B[X;\rho, D] if  f is weakly
separable in  C(B^{\rho,D})[X].

The purpose of this article is to give characterizations of weaklv  (\rho,D) ‐separable
in  B[X;\rho, D] . Moreover, we shall characterize the difference between the  (\rho,D) ‐
separability and the weak  (\rho,D)-{}_{c}Separability in  B[X;\rho, D].

2 Main results

The conventions and notations employed in the preceding section will be used in
this section. In particular, recall that  \rho D=D\rho and let  f=X^{m}+X^{m-1}a_{m-1}+
. . .  +Xa_{1}+a_{0}\in B[X;\rho, D]_{(0)}\cap B^{\rho}[X] . Note that  f is in  C(B^{\rho,D})[X] by Corollary
1.2. First we shall state the following.

Lemma 2.1. The following are equivalent.

(1)  f is weakly  (\rho, D) ‐separable in  B[X;\rho, D].

(2)  f' is a non‐zero‐divisor in  C(B^{\rho,D})[X]/fC(B^{\rho,D})[X](\cong V(B^{\rho,D})^{\overline{\rho},
\overline{D}}) .

(3)  \delta(f) is a non‐zero‐divisor in  C(B^{\rho,D}) , where  \delta(f) is a discriminant of  f.

Proof. It is obvious by Lemma 1.3.  \square 

We recall that  A-A‐homomorphism  \mu :  A\otimes_{B}Aarrow A defined by  z\otimes w\mapsto zw.

Noting that  \alpha f'=f'\rho^{m-1}(\alpha) for any  \alpha\in B , we can see that  \mu(W(J_{m-1}(B)^{\overline{\rho},D^{-}}))\subset
 V(B)^{\overline{\rho}_{\rangle}\overline{D}} In addition, it is easy to see that  \mu(W(V(B^{\rho,D})^{\overline{\rho},D^{-}}))\subset V(B^{\rho,D})
^{\overline{\rho}\overline{D}} Then

we shall state the following.

Theorem 2.2. (1)  f is  (\rho, D) ‐separable in  B[X;\rho, D] if and only if the follow‐
ing A‐A‐homomorphism is onto:

 \mu|_{W(J_{m-1}(B)^{\overline{\rho},D^{-}})}:W(J_{m-1}(B)^{\overline{\rho},
\overline{D}})arrow V(B)^{\overline{\rho},\overline{D}}
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(2)  f is weakly  (\rho, D) ‐separable in  B[X;\rho, D] if and only if the following  A ‐A‐
homomorphism is one‐to‐one:

 \mu|_{W(V(B\rho D})^{\overline{\rho},D}):W(V(B^{\rho,D})^{\overline{\rho},
\overline{D}})arrow V(B^{\rho,D})^{\overline{\rho},\overline{D}}

Proof. Note that   \mu(\sum_{j=0^{1}}^{7YL-}y_{j}h\otimes x^{j})=f'h=hf' for any  h\in A^{\overline{\rho},\overline{D}}.

(1) Assume that  f is  (\rho, D) ‐separable in  B[X;\rho, D] . Then there exists   h\in

 J_{m-1}(B)^{\overline{\rho},\overline{D}} such that  f'h=hf'  =1 by Lemma 1.5 (2). For any  g\in V(B)^{\overline{\rho},\overline{D}},
we see that  hg=gh  \in J_{m-1}(B)^{\overline{\rho},\overline{D}} and   \mu(\sum_{j=0}^{m-1}y_{j}hg\otimes x^{j})=f' hg  =g . Thus

 \mu|_{W(J_{m}}{\imath}(B)^{\rho\overline{D}}) is onto.

Conversely, assume that  \mu|_{W(J_{m-1}(B)^{\overline{\rho},\overline{D}})} is onto. Since  1\in V(B)^{\overline{\rho},\overline{D}} , there exists

 h\in J_{m-1}(B)^{\overline{\rho},\overline{D}} such that  1= \mu(\sum_{j=0}^{m-1}y_{j}h\otimes x^{j})=f'h=hf' . Therefore  f is

 (\rho, D) ‐separable by Lemma 1.5 (2).
(2) Assume that  f is weakly  (\rho, D) ‐separable in  B[X;\rho, D] . Then  f' is a non‐zero‐

divisor in  V(B^{\rho,D})^{\overline{\rho},\overline{D}} by Lemma 2.1 (2). Let   \sum_{j=0}^{m-1}y_{J}h\otimes x^{j} be in  Ker(\mu|_{W(V(B)^{\rho,D^{-}})}\rho D)
with  h\in V(B^{\rho,D})^{\overline{\rho},\overline{D}} . Then we have  0=f'h=hf'. Since  f' is a non‐zero‐divisor

in  V(B^{\rho,D})^{\overline{\rho},\overline{D}} , we obtain  h=0 and hence  Ker(\mu|_{W(V(B)^{\overline{\rho}D})}\rho,D)=\{0\} . Thus

 l^{L}|_{W(V(B)^{\overline{\rho},D})}\rho D is one‐to‐one.

Conversely, assume that  \mu|_{W(V(B)^{\rho\overline{D}})}\rho,D is one‐to‐one. Let  hf'=0 for some

 h\in V(B^{\rho,D})^{\overline{\rho},\overline{D}} This implies that   \mu(\sum_{j=0}^{m-1}y_{j}h\otimes x^{j})=0 . Since  \mu|_{W(V(B)^{\overline{\rho},D})}\rho,D
is one‐to‐one, we have   \sum_{J^{=0}}^{m-1}y_{j}h\otimes\tau^{j}=0 , namley,  h=0 . Therefore  f' is a non‐

zero‐divisor in  V(B^{\rho,D})^{\overline{\rho},\overline{D}} , and hence  f is weakly  (\rho, D) ‐separable by Lemma 2.1
(2).  \square 

Corollary 2.3.  f is  (\rho, D) ‐separable in  B[X;\rho, D] if and only if   W(J_{m-1}(B)^{\overline{\rho},\overline{D}})\cong
 V(B)^{\overline{\rho},\overline{D}} as an A‐A‐bimodule.

Proof.  \backslash _{\wedge}T_{ote} that  W(J_{m-1}(B)^{\overline{\rho},\overline{D}})\subset W(V(B^{\rho,D})^{\overline{
\rho},\overline{D}}) and  V(B)^{\overline{\rho},\overline{D}}\subset V(B^{\rho,D})^{\overline{\rho},
\overline{D}} If
 f is  (\rho, D) ‐separable in  B[X;\rho, D] then  f is also weakly  (\rho, D)‐separable, and so

 \mu|_{W(J_{m-1}(B)^{\rho D})} is one‐to‐one. Therefore  \mu|_{W(J_{m-1}(B)^{\overline{\rho},D})} is an isomorphism if and

only if  f is  (\rho,D) ‐separable in  B[X;\rho, D].  \square 
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