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Abstract

Separable polynomials in skew polynomial rings were studied extensively
by Y. Miyashita, T. Nagahara, S. Ikehata, and G. S eto. In particular, Ikehata

gave the characteri ation of (p, D)-separable polynomials in skew polynomial
rings. In this article, we shall introduce the notion of weakly (p, D)-separable
polynomials in skew polynomial rings, and we shall give a characteri ation of

the (p, D)-separability and that of the weak (5, D)-separability.

1 Introduction and Preliminaries

Throughout this paper, A/B will represent a ring extension with common identity
1. Let M be an A-A-bimodule, and z, y arbitrary elements in A. An additive map
d: A — M is called a B-derivation of A to M if 6(zy) = §(z)y+26(y) and §(a) =0
for any a € B. Moreover, ¢ is called inner if §(z) = mxz —xzm for some fixed element
m € M. We say that a ring extension A/B is separable if the A-A-homomorphism of
A®p A onto A defined by a®b — ab splits. It is well known that A/B is separable if
and only if for any A-A-bimodule M, every B-derivation of A to M is inner (cf. [1,
Satz 4.2]). A ring extension A/B is said to be weakly separable if every B-derivation
of A to A is inner. The notion of a weakly separable extension was introduced by N.
Hamaguchi and A. Nakajima (cf. [2]) . Obviously, a separable extension is weakly
separable.

Let B be a ring, p an automorphism of B, D a p-derivation of B. B[X;p, D]
will mean the skew polynomial ring in which the multiplication is given by aX =
Xp(a) + D(a) for any o € B. We set B[X;p| := B[X;p,0] and B[X; D] :=
B[X;14,D]. By B[X;p, D] we denote the set of all monic polynomials g in
B[X;p, D] such that gB[X; p, D| = B[X; p, D]g. For a polynomial f € B[X;p, D],
the residue ring B[X;p, D]/ fB[X; p, D] is a free ring extension of B. We say that
a polynomial f € B[X;p, D)) is separable (resp. weakly separable) in B[X;p, D] if
B[X;p, D]/ fB[X;p, D] is separable (resp. weakly separable) over B.
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Throughout this article, we assume that pD = Dp, and let f = X™+X™ g, |+
-+ Xay +ag € B[X—;p7 D}(o) ﬂBp{X] and
fr=mX™ 1 + (m— 1) X™ a1 -+ Xag + a; (the derivative of f),
Yo = X" 4+ X" 2an, g + - 4 Xag + ay,

Ymoi=X+amn_1,
mel =

We shall use the following conventions:

B :={a € B|pla) =a}

BP :={a € B|D(a) =0}

B*Y .= B n BP

C(B*P):={B e B*P|bB = Bb (Vb€ B”P)} (the center of B#P)

A:B[X,p,D]/fB[X,ID,D]
z:=X+ fB[X;p,D] € A
fr:=f"+fB[X;p,D] € A
Y; ;:Yj+fB[X;p,D]€A (OSJSm_l

D : a p—derivation of A defined by D (Z 1’%5) = Z 2 D(¢;) (¢; € B)
j=0 J=0

For any subsets 7' C B and S C A, we set

Jm-1(T) :={z€ A|p™ Ha)z = 2za Va € T)},
V(T):={z€ Alaz=z2a VaeT)},

wES’},

(ARp A)S ={c € A®p Alew = we (Yw € S)},
§Pi={z€8|p(z) = 2},
SP = {ze 8| D(z) =0},
§PP = 57N SP.

m—1

W(S) = { Zij ® 7’

§=0

Note that J,,_1(B’") = V(B') for any subset B’ of B*.



111

We shall state some basic results which were already known.

Lemma 1.1 ([7, Lemma 1.6]). f is in B[X;p, D] if and only if

(1) a;p™(a) = Z (Z)ijj—i(a)aj (x€eB, 0<i<m—1, a, =1)
(2) D(as) = aiy = plaiy) — ai(p(am—) — am-1) (1 <i<m—1)

(3) D(ao) = ao(p(am-1) = am-1)

Lemma 1.2 ([7, Corollary 1.7]). If f is in B[X;p, D]y N BP[X] then f is in
C(BPP)[X]. Morecover,

aa; = Z(_l)jfi (Z) ajpnerj—i(a) ((X €B,0< j<m, am= 1).
j=t

Lemma 1.3 ([6, Theorem 2.2}). Let B be a commutative ring, and f(X) a monic
polynomial in B[X]. The following are equivalent.
(1) f(X) is weakly separable in B[X].
(2) f/(X) is a non-zero-divisor in B[X| modulo (f(X)), where f'(X) is a deriva-
twe of f(X).
(3) 6(f(X)) is a non-zero-divisor in B, where §(f(X)) is a discriminant of f(X).

Now we consider the following A-A-homomorphisms:

p:aA®p Ax — aAa, plz@w) = 2w
§:aA®p As = 4A®p As, €20 w) = D(2)®p(w) + 2 ® D(w)
N:aAQp Ar = 2ARp Aa, n(z@w) =p(2)Rpw) —2Qw

By making of the above mappings, S. Tkehata gave the following definition.

Definiton 1.4 ([4, pp.119]). f is called (p, D)-separable in B[X;p, D] if there
exists an A-A-homomorphism v : A — A ®g A such that

uv =1, Ev=vD, nu=v(p—1u).

Obviously, a (p, D)-separable polynomial in B[X;p, D] is separable. In [4], S.
Tkehata studied (p, D)-separable polynomials in B[X; p, D] and he gave the follow-
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Lemma 1.5 ([4, Theorem 2.1]). The following are equivalent.
(1) f is (p, D)-separable in B[X;p, D).

(2) There exists h € Jy_1(B)PP such that f'h = hf' = 1.

(3) f is separable in C(B*P)[X].

Noting that Lemma 1.5 (3), we shall give the following definition as a general-
ization of (p, D)-separable polynomials in B[X; p, D].

Definiton 1.6. [ is called weakly (p,D )-separable in B[X; p, D] if f is weakly
separable in C(B”P)[X].

The purpose of this article is to give characterizations of weakly (p,D)-separable
in B[X;p, D]. Moreover, we shall characterize the difference between the (p,D)-
separability and the weak (p,D)-separability in B[X; p, D].

2 Main results

The conventions and notations employed in the preceding section will be used in
this section. In particular, recall that pD = Dp and let f = X™ + X™ 1q,, | +
-+ Xay 4 ap € B[X; p, D)oy N B?[X]. Note that f is in C(B”?)[X] by Corollary
1.2. First we shall state the following.

Lemma 2.1. The following are equivalent.

(1) f is weakly (p, D)-separable in B[X; p, D].

(2) f' is a non-zero-divisor in C(BPP)[X]/fC(B»P)[X] (= V(B»P)PD).

(3) 8(f) is a non-zero-divisor in C(BPP), where §(f) is a discriminant of f.
Proof. 1t is obvious by Lemma 1.3. O

We recall that A-A-homomorphism p: A ®p A — A defined by z ® w +— zw.

Noting that af’ = f/p™ *(«) for any o € B, we can see that p (W(Jm_l(B)ﬁ’D)> C

V(B)?P. In addition, it is easy to see that p <W(V(B"’D)5’D)) C V(B?P)AP Then
we shall state the following.

Theorem 2.2. (1) f is (p, D)-separable in B[X; p, D] if and only if the follow-
g A-A-homomorphism is onto:

H |W(Jm_1(B)5v5) W (Ima(B)PP) — V(B)»P



(2) f is weakly (p, D)-separable in B[X;p, D] if and only if the following A-A-
homomorphism is one-to-one:

H |W(V(BP,D)5,E) - W(V(BPP)PP) — v (BPP)AP

Proof. Note that p (Z;”:_Dl yih ® ﬂ) = f'h = hf’ for any h € AP-D,

(1) Assume that f is (p, D)-separable in B[X;p, D]. Then there exists h €
Jm-1(B)?P such that f'h = hf' = 1 by Lemma 1.5 (2). For any g € V(B)?P,
we see that hg = gh € Jyn_1(B)*? and p (Z;’f__}l yjhg®a:j> = f'hg = g. Thus
Hlw (s, (mymp) is onto. ]

Conversely, assume that 1t |y, | pysn0y is onto. Since 1 € V(B)»P | there exists
h € Jyoy(B)PP such that 1 = (2;";01 yjhmf) = f'h = hf’. Therefore f is
(p, D)-separable by Lemma 1.5 (2).

(2) Assume that f is weakly (p, D)-separable in B[X; p, D]. Then f’is a non-zero-
divisor in V(B”‘D)ﬁ‘[) by Lemma 2.1 (2). Let ZT:AOI y;h@7? be in Ker (/1, |W(V(B,,,n),3,f)))
with h € V(B?P)PP. Then we have 0 = f'h = hf’. Since f’ is a non-zero-divisor
in V(B*P)"D we obtain h = 0 and hence Ker <p|W(V(Bp,D)5y,5)> = {0}. Thus
Iz |W(V(B,,,D),;,5) is one-to-one.

Conversely,~assume that ,u|W(V(B,,,D)5,f,) is one-to-one. Let Af’ = 0 for some
h € V(BPP)»P  This implies that u (ZT;OI yih ® :nf> = 0. Since 1t |y (go0ys.0)
is one-to-one, we have Z;.’:Dl yih ® 27 = 0, namley, h = 0. Therefore f’ is a non-

zero-divisor in V(BPP)»P and hence f is weakly (p, D)-separable by Lemma 2.1
(2). 0

1%

Corollary 2.3. f is (p, D)-separable in B[X; p, D] if and only if W (Jp1(B)PP)
V(B)?P as an A-A-bimodule.

Proof. Note that W (J,_1(B)?P) € W(V(B*2)2-D) and V(B)»P c V(BPP)»D. If
f is (p, D)-separable in B[X;p, D] then f is also weakly (p, D)-separable, and so
Iz |W(Jm_1(B)5'D) is one-to-one. Therefore /LIW(Jm_I(B);;,g) is an isomorphism if and

only if f is (p,D)-separable in B[X; p, D]. O
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