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On the solvability of some inhomogeneous incompressible flow

with free interface

Hirokazu Saito, Yoshihiro Shibata, Xin Zhang

Abstract

In this note, we review some recent results in [4] on the solvability of some free boundary problem
of the two phase inhomogeneous incompressible Navier-Stokes equations. In [4], we addressed some
general approach to construct short time solutions in L, — L, maximal regularity class where ¢ > N
and p belongs to ]2, co[|J{P €]1,2[: 1/ 5+ N/q > 3/2}. In particular, to handle the less regular initial
data for 1 < p < 2, some new estimates are derived. Moreover, for the case of piecewise constant
density, some long time solutions in the moving bounded droplet are establish within L, — L, maximal
regularity. Furthermore, we can find some global solutions in the fixed bounded pool by applying the

idea in [4] here.

1 Introduction

1.1 Model

Consider the motion of two immisible fluids in the bulks €2, := Q. UQ , CRY with

N > 2, divided by some free sharp interface I'; # ). In general, we suppose that 9Q, ; =

I'y,ul'yand 0Q_, =T, UI'_ for some free surface I'y ; and some fixed hypersurface I'_.

Moreover, n;, and 1. ; are outward unit normals subject to I'; and I'} ; respectively at
time t. With such settings on Q,, we shall study the following Cauchy problem without

taking the surface tension into account,
0:(pv) + Div(pv @ v) — DivT(v,p) = pf
Op + div(pv) =0, diveo =0
[T(v, p)r] =0, [v] =0, V,=v-m,
T(vs,pi)ni; =0, Vi =0, ny,

v=0

(P, v)]t=0 = (po, vo)

in
in
on
on
on

on

(INS.)

In (INSy), our aim is to determine the unknowns (p,w,p,€): the density, the velocity

field, the pressure and the moving domain, whenever the external force f and initial states

(po, vo, ) are given. In addition, the viscous stress tensor T(v, q) is defined by !

T(v,q) := p(p)D(v) — gl with D(v) :=V v+ Vo',

IVEY stands for the Jacobian matrix of Y, i.e. (V;FY);v = 8§ij with 1 < j,k < N, and VgYT = (VEY)T.
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where p is some smooth strictly positive function. In addition, V; and V., stand for the
normal velocity of moving surfaces I'; and I'y ; respectively. The jump of the vector g
across some surface S is given by the following non-tangential limit

[g](xo) := 613& (g(mo + 0v(z0)) — g (o — 5V(x0))) Vo €S,

where v is the unit outwards normal along the surface S. For the history of the free
boundary value problems of the viscous flows, we refer to [4, Sec.1]. In the following, we
mainly focus on the mathematical results.

1.2 Reduction of (INSy) in Lagrangian coordinates

Motivated by the work [7] due to V.A.Solonnikov, we take advantage of the so-called
Lagrangian coordinates to study (INS),

t
X, (61)=¢ +/ u(é,r)dr forall £€Q =0, UQ_. (1.1)
0

In fact, X, stands for the trajectory of v, that is (£, t) := U(Xu(f, t), t). Moreover, we
have (T, Ty, T_) = Xu((F,FJr,F,),t) for the boundaries I, T'y and T'_ of Q. By this
means, (INS.) is reduced to some problem on the fixed domain Q. To write down the

new equations under (1.1), we adopt the following conventions.

e o, stands for the cofactor matrix of VEX «- Moreover V,, := 4/, V¢, div, = Div, =
V.

e Note that p(Xu(£,t),t) = po(€) and set q(&,t) = p(Xu(&,t),t), then the corre-

sponding stress tensor
Tu(w,q) := pu(po)Du(u) — gl with Dy(u) :=Viu- &+, Veu'.

e Suppose that n and n, are the unit normal for I and ' respectively. Define that

gdyn D, My

(7. 73)(6 1) = (e, ) (Xu(6,1)) = <W’W

)1, veeTur,.

Thanks to (INSL), it is not hard to verify that (u, q) satisfies

podiu — Div, Ty (u, q) = pof (X, (&, 1),t), divyu=0 in Qx]0,T],
[Tu(w,q)@] = [u] =0 on TI'x]0,T],
T., (us,qe)my =0 on I'yx]0,T[, (INSE)
u_=0 on I'_x]0,T7,

Ult—o = Vg oOn Q.
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In the rest of this note, we will attack the wellposedness issues concerning (I N.ST) instead
of (INS.), because the solvability of (INS;) can be reduced to the study of (INS) in
our framework via some standard arguments.

2 Main results
2.1 Domains and viscosity coefficient
To reveal the results of (INS%), let us first specify the assumptions on Q and p.

Definition. We say that a connected open subset Q in RN (N > 2) is of class w2
for some 1 < r < o0, if and only if for any point xy € O), one can choose a Cartesian
coordinate system with origin xo (up to some translation and rotation) and coordinates
Y= (,Uy) = (Y1, s Uy_1s Uy ), aS well as positive constants o, 8, K and some w2
function h satisfying ”h”vvf”/" < K such that the neighborhood of xq

Uapn(zo) ={(W yy) - hy) = B <yy <hy)+ 5,y < a}

satisfies

Uy sn(o) =AW uy) - My) = B <yy <), [¥]| < a} = QN Uspn(zo),
and
NN Uspn(xo) ={W,yy) 1 yy = b)), I¥] < a}.

Above «, 8, K, h may vary with respect to the different location on the boundary. Whenever
the choices of o, 8, K are independent of the position of xq, Q is called uniform WA

domain. Note that if the boundary 0X) is compact, then the uniformness is satisfied auto-

matically. Sometimes ) is just called Wi

reqular for simplicity.
Now we admit the following assumptions in this context.
(H1) QO is uniformly W2 for some r > N, ie. Q4 are uniformly Wi domains;

(H2) ,u(po(:zc)) is a strictly positive function on 2 satisfying

ppla, +p-lo < p(po() < fisla, +ji-lq.,

where po and fix are all strictly positive constants. In addition, we assume that
pe CHR;RY).
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2.2 Some weak elliptic problem and the reduced Stokes operator

Set 0 := Q, UQ_UT for Q in (#1), and let us introduce several useful functional spaces
and the Stokes operator for two phase problem. The standard Sobolev space is denoted
by W;(Q) for any m € N and ¢ €]1, oo|, while W () stands for the homogeneous space,
ie.

qu(Q) = {f € Lq,IUC(Q) : Hf”qu(Q) = ||Vf||Lq(Q> < oo}

Next, the linear space qu,l“+(Q) for any 1 < ¢ < oo is defined as below,
eX():f=0 r it T 0,
X;F+(Q) = {f q( ) f on +} 1 + ;é
' X, (Q) if Ty =10,

with the word X € {W, W} and || fllx1 . (@) = I/l x3()- For any vectors w and v defined
q, 'y q

in some domain G C RY, denote that

N
u,V)g:= [ u-vdr = /ujvjdx.
(oo | >,

Now recall the so-called weak elliptic transmission problem.

Definition. Consider some domain  as above. Suppose that 1 < q¢ < oo and the
step function n = nylo, +n-lo_ for some constants ny > 0. Then we say that the
weak elliptic transmission problem is uniquely solvable on /W;m(ﬂ)/for n if the following
assertions hold true: For any f € Ly()N, there is a unique 0 € W, () (up to some
constant) satisfying,

(™'V0,Vo)g = (£, Vo) forall p € Wyr (Q).
Moreover, there ezists a constant C' independent on the choices of 6, ¢ and f such that
VO, < ClFllL,@)-
With the definition above, one more hypothesis for our domain 2 is added as below,

(H3) The weak elliptic transmission problem is uniquely solvable on I//V\q{F+ (Q) and qu,ym Q)
for some 7+ > 0 and some 1 < ¢ < c0.

Remark. Let us make some comments on the assumption (H3).

1. The choice of qu’l% (Q) is more general than the definition in [2] since our approach
is also expected for the domain with some exterior bulk. Moreover, according to (H3),
we may introduce the hydrodynamic Lebesgue space

Jo() = {f € LN : (£, Vp)a =0, Yo e Whp ()}
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2. Now, define the functional space W '() (1 < q < o0) by

W (Q) :={g € Ly() : IR € L(Q)" such that
(9,9)0 = —(R,Vp)a, ¥ v € Wyr (0)}
which will be useful later. Here let us point that the definition of W;I(Q) makes
sense. For instance, we will see W;l(Q) £ (0 if Ty # 0. To this end, let us denote

the dual of any Banach space E by E*, namely, E* := L(E;R). Then we introduce
that

gy W ()" ifLe #0,
! (Wh@)" i =0,
with qu(Q) ={[0],:0¢ /V[ZII(Q)} and [0]; = {0+ c: c € R}. Here (-, -)q stands for
the corresponding pair due to the definition of Wq’l(Q). Moreover, set

Zq(ﬂ) = Lq(Q)N/Jq(Q) ={[G]:: G ¢ Lq(Q)N}
and [Gly == {G+ f : f € J,(Q)}. Then by adapting the arguments in [2], there
exists G(g) = [G]y € Ly(Q) for any g € W, H(Q) such that

(9, [pl)a = —(G, V)a for any o € Wy(Q). (2.1)
[¢] above stands for [p]; if 'y =0 and [¢] = ¢ otherwise. In particular, (2.1) yields
that
(9, )0 = —(8,V)a for any (g,¢) € Glg) x Wy (),
provided that g € Ly()NW, (). Thus we can conclude L,()NW, () C W;I(Q)
for the case T'y. # 0.

3. As another consequence of (H3), if we set for any u € W[IQ(Q)N (1<q<o0),
a, =17 ' Div (uD(u)) — Vdivu,
Bu = [uD(u)n]n — [divu],
Y i = (pD(u)ny)n, — diva,
then there exists a unique mapping K(u) := 60 € qu(Q) + Wq{m(ﬁ) satisfying
('V0, V) = (a, Ve)g, [0]=0., on T and 6=, on I'y.
Next, given 7 :=n,1q, +1n-1g forny >0, Au:=n" Div'JI‘(u, K(u)) is exactly the
(reduced) Stokes operator for two phase problem with its domain
D(A,) = {u € W)Y N Jy(Q) : [u]lr = [Ta (1D(w)n)]Ir = O,
7—"+ (MD<U)"’+)|F+ =0, u|F— = O}'
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Toh := h — (h - v)v above is a projection into the hypersurface orthogonal to v for any
vector v and h defined along some surface S. Then our short time result for (I NST) reads
as below.

Theorem 2.1. Let (p, q) be in the sets (I) U (IT) with
(1) == {(p: q) €]2,00[x|N, 00[} and (1) := {(p,q) €]1,2]x]N,00[: 1/p + N/q > 3/2}.

Additionally, hypotheses (H1)-(H3) are fulfilled and n is given as above. Assume that py €
W\;(Q), vo is in Dy /P (Q) = (Jq(Q%D(-Aq))l,l/p,p and f belongs to L,(0,2; WL (RV)N).
If, in addition,||n — poll; ) < ¢ for some constant ¢ < 1, then there are some constants
T(< 1) and C, only depending on p, q, vo and f, such that (INS%) admits a unique

solution (u,q) satisfying

||U||Lp(o,T;Wg(m)mW,}(o,T;Lq(Q)) + ||Vq||Lp(O,T;L,,(Q)) <C.

In addition, if u is piecewise constant, we can relax the constrain py € W;(Q) to py €
Loo(82).

Inspired by results for the one phase flow in [6], case (I) above in somehow easier as the
embedding D2,*7(2) — W;(Q). However, our discussion of case (II) is based on more

refined interpolation arguments, whose explanation is postponed to the comments after
the global-in-time result.

2.3 Some long time solution in the case of bounded droplet

Now, let  := Q, UQ_ UT be some bounded droplet satisfying (H#1) with I'_ = {.
Moreover, the hypothesis (#3) is fulfilled for any n :=ny1o, +n-1o_ (n+ > 0) due to [5]
by Y.Shibata. Our second result in [4] is about the unique long time solution of (INS¥)
for such domain with piecewise constant density. To this end, let us introduce the rigid

motion space
Ry = {p(z) = Az +b: Ais an N x N anti-symmetric matrix and b € R"}.

Without loss of generality, set M := dim R4 € N and then there exist a basis family

P :={p, € Ra: (NPa:Ps) = 05, forany 1 <a,B < M},

such that Ry = span{p, € PB}. Now some long time solutions in L, — L, maximal
regularity class can be established as follows.

Theorem 2.2. Let (

p.q) € (I)U(II) as in Theorem 2.1 and Q be a bounded Wy~ "/" (r >
q) droplet withT_ = (). A

ssume that po(§) =n =11l +n-1o_ and p= pilg, +p-Tlg_
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are piecewise constants for any n+, pv > 0. If H'UOHDLQ/,J(Q) < 1 such that (nvg,p,)g =0
q,p

for any p, € B, then (INSE) admits a unique global solution (u,q). Moreover, there

exists constant €y and C' such that

ot

e wllyz g0 + ||e£0tqHLp(O,T;qu(Q)) < C””O”Dg;z/p(g) Jor any T > 0.

Let us make some comments on the index set (/1) in Theorem 2.1 and Theorem 2.2.
In fact, the motivation of the set (I7) is due to the following product law.
Lemma 2.3. Let (0, a, 3, q,p) €]0,1[x[q, 00]*X] N, 0o[x[1, 2] satisfy
1 1 1 6 N N 2(1-6 N N
L1 1 0N N 200 NN
¢ a 8 pq «a P ¢ P
Assume that g € Hy)"/*(G x R) and f € Loo(R; WX(G)) fulfilling 0, € Lye(R; Ls(G)).
Then there exists a constant Cp 4 such that

1/2 1/2
19l 2272wy < Coall 1112 (s <||f||Loc(R;wq1<G>>+||3tf||Lp/o<R;La<c>>) 191l 7272172 (G xry:

Thanks to the constrain in Lemma 2.3, we have
N/qg+1/p=3/2+ N/(2«a) > 3/2,
which gives our definition of (I7) in the main results.

Another fundamental tool to obtain Theorem 2.2 is the decay property of two phase
Stokes system. The natural linearized procedure of (INS%) reads,
du—n"'DivT(u,q)=f, divu=g=divR in QxR,,

[T(w,q)n] = [R], [u] =0 on T'xRy,
T,(usy,qe)ny =k on I'y xRy, (2.2)

u_=0 on I'_ xR,

Uli—g =ug in €.
However, only piecewise constant viscosity case is taken into account for simplicity.
Namely,

pi=pilo, +p_lg_ for some constants p4 > 0. (2.3)
Furthermore, we introduce several functional spaces for convenience to shorten our de-

scription.

e Recall the rigid motion space R, and its basis P used in Theorem 2.2. Then we
adopt that

{ueDiP(): (nu.p,)g =0, ¥ p, €F} (T =0),

DE2/P(Q)) = .
w ' D5, () (P #
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Moreover, we would like to take the constant §(I'_) = 1 for I'_ = () and otherwise
set 0(T'~) = 0.

o In addition, we say (f,g,R,h,k) € Z,,., for some 1 < p,q < co and g > 0, if
f,9, R, h and k satisfy the conditions,

O € Lo (R L)Y, eg € HoP(Q x R) N Lo (R W, H(Q)),

4:p,0
O R, R) € Lo (R; Ly()™, ek € HP(Q x R)Y and ek € HYP(Q, x R)Y.

Moreover, the norm || - ||z, , ., is given by

1(f,9, R hE)|z,,., = e(f R, IR, @y in, @) t [ (g, h)HH,};;/‘Z(QxR)

t
ekl 20, my:
With above symbols, we summarize the decay properties of (2.2) proved in [3, 4].

Theorem 2.4. Assume that 1 < p,q < 0o, N < r < oo and r > max{q,q/(q — 1)}.
Suppose that Q = QUT be a bounded W2 domain. Let n:=n4lo, +n-lo_ for any
ne >0, ug € Diy?(Q) and (f.g, R, h, k) € Z,.q.c for some e > 0. Then (2.2) admits a
unique solution (u,q) with

u e WEHQ x Ry) and q € Ly(Ry; WHQ) + Wi, ().

Moreover, there exist constants C' and o (< €) such that

e (D, w, Vau, V2)| .1, ) + ||650tq||Lp(0,T;W(}(Q)) < C(”“OHf)Z;Q/P(Q)

M T 1/p
+U(F. 9 B 12,0, + 00 ) D ( / e (i, p, )l dt) ).
a=1

for any T > 0.

3 Remark on the long time solvability in some fixed pool

In this part, we would like to give some simply application of Lemma 2.3 and Theorem
2.4 to the case of the bounded pool. That is, 2 := QUT is assumed to be some bounded
W2 domain with 'y = 0 hereafter. Assume that (u,q) is a local-in-time solution of
(INS%) thanks to Theorem 2.1. Moreover, suppose that T* is the lifespan of the solution
(u, q). By our discussions of Theorem 2.1, we have the continuity and non-degeneration
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of o, u across I'. Thus we can reformulate the equations of (u,q) as follows,

du —n ' Dive T(u,q) = f,,, diveu=g, =dive R, in Ox]0, T,
[T(w,q)n] = [hu,q], [u]=0 on I'x]0,T7, (3.1)
u_=0 on I_x]0,T", '

ul—o =vo in €,

where (f, 4 Gus Rus g, ) are defined by

upay
Nfuq = —Dive (T(u,q) — Tu(u,q),),
go=Viu: (- ), Rii= (- ),
hyq :=T(u,q)n —T,(u,q)Zn.
Then the main task of this section is the following long time result concerning (3.1).

Theorem 3.1. Let (p,q) € (I)U(II) as in Theorem 2.1 and  be a bounded W™ "' (r >
q) pool with 'y = 0. Assume that po(§) =n=n:lao, +n-lg and p=pile, +p-lg
are piecewise constant for any ni,p+ > 0. If ||U0||D§;2/‘7(Q) < 1, then (3.1) admits a
unique global solution (u,q). Moreover, there exists constant eg and C' such that

||6€0t“”w§;;(s‘sz+) + ||680tquL,,(]R+;Lq(Q)) < C”UOHDZ;W(Q)-

Remark. In fact, the assumption Ty = () in Theorem 3.1 does not matter in our frame-
work. For simplicity, we here only focus on more interesting physical case without the
surface T'y. This problem was also studied in [1] with imposing surface tension on the
interface. The authors in [1] used so called Hanzawa transformation to fix the moving
interface and then they established the solutions in L, — L, mazimal reqularity class for
p > N + 2. Thus Theorem 3.1 here can be regarded as a simple remark of the results in

[1].

In the rest of this part, we will outline the proof of Theorem 3.1 by applying the idea
in [4]. It is convenient to use the notation

Ieyv(a, b) = ||€Et(at'v, v, V'U7 V2'U> HLP(a,b;Lq(Q))7

for any vector v, any time interval Ja,b[C R and any ¢ > 0.
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Step 1. Reduction
As a starting point, we consider the following linear equations,

O, — ' Dive T(u,,q,) =0, diveu, =0 in Q xRy,
HT(’U'L7qL)nH = [[U’LH =0 on I'Xx R+7

(3.2)
u, =0 on I'_ xRy,
’U:L‘t:() = Vg in Q
Then Theorem 2.4 yields that there exists some €3 > 0 such that
IEO,uL (0,00) + ||e£0th||Lp(lR+;qu(Q)) < C””O”Dg;f/p(g) <L (3.3)

Thus (w, P) := (u —u,,q — p,) satisfies the following equations for any 0 < T' < T*,
Ow — ' DivT(w,P) = f,,, divw =g, =divR, in Qx]0,T],
[T(w, P)n] = [, [w] =0 on Tx]o,T),
w_=0 on I'_x]0,T],

W)= =0 in Q.

(3.4)

Step 2. Extension operators

To apply our decay property, we need some extension operators. For any (scalar- or
vector-valued) mapping b defined on |0, 7] and any fixed parameter ¢ €]0, 7], we denote
that

h(-,s) if s€]0,¢,
Ewb(-,s) =< b(-, 2t —s) if s €2t
0 otherwise.
Assume that ¢(s) € C*°(R) is some cut-off function such that ¢(s) = 1 for s < 0 and

©(s) =0 for s > 1. Then denote ¢;(s) := (s — t) for any ¢t €]0,7*[. Now we introduce
that the following operators

1F g = = Dive (1B, +D,) ) + Dive (4Bl - 0, () E,p, (1 - 4,))
+ DiVE (ﬁ Pr (t)E(T) (]I - %))7
Hu = Vgﬁ ' QOT( )E(T) (H - JZ{J) + <:DT(L‘)E(T) (]I - %) : VEﬁT:
(

t
]ﬁ)u = ]D(:ll) “Pr (f)E I- mt)7

(T)



gu = Vga : (pT(t)E(T) (]I - %T)’
R, = ¢, (B, (I~ o )a,
Eu,q = u(ﬁu + ﬁ)u)n — (,uva]Iu . (pT(t)E(T) (I— Jziu))n

— (P or () By, (T - o))m.
§ = o] 2 (FL, + D(@)) o - o)
= 0 (O)(Br (= 1) +1)

It is not hard to observe that

(}u’q,ﬁu, IN%U, ﬁu,q)‘te]O,T] = (Fuq> Gu» By o) for any 0 < T < T*.
As we proved in [4], (}u’q,ﬁu, R,, Eu7q7 0) € 2,4, such that

| Fag e R P, Oz, S (00l + XV (XD 41), (35)
with X(7T) := L (0, T) + 1€ P, 0 mw2 c2))-

Step. 3 Construction of global-in-time solutions

According to (3.4) we consider the following problem,

U — ' Dive T(U,Q) = f,q diveU =G, =dive R, in Q xRy,
[T(U,Q)n] = [huyl, [U]=0 on T'xR.,

(3.6)
U_=0 on I' xRy,
U‘t:O = O n Q
Then apply Theorem 2.4 and (3.5) by noting the uniqueness of (3.1) on 0, T,
X(T) £ (ool + X)X (D) + 1),

which, together with (3.3), gives us that

X(T) £ 0025 g + X (TP + X(T) (37)
q,P

Now recall the lemma below in [4].
Lemma 3.2. Assume that X (t) > 0 is a continuous function on [0,T] C [0, co[ satisfying
X(t) <a+bX(t)*+bX(t)> Vtelo,T),
where a,b > 0 such that
a<ry(2—br)/3, X(0)<r, 1= (—1+v1+3b"1)/3. (3.8)
Then we have X (t) < 2a.
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Thus Lemma 3.2 and (3.7) yield that X (T) is uniformly (with respect to T') bounded
by some small constant C' HvOHQDZ,Q o) Finally, our proof is complete by the standard
bootstrap arguments. v
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