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A new existence proof for gravity-capillary solitary water waves

Mark D. Groves
FR Mathematik, Universitat des Saarlandes

1 Introduction

The classical water-wave problem concerns the two-dimensional, irrotational flow of a perfect
fluid of unit density subject to the forces of gravity and surface tension. In dimensionless
coordinates the fluid occupies the domain D,, = {(z,y) : z € R, y € (0,1 + n(z,t))}, where
(z,y) are the usual Cartesian coordinates and 7 > —1 is a function of the spatial coordinate x
and time ¢. In terms of an Eulerian velocity potential ¢(z, y, t), the mathematical problem is to
solve Laplace’s equation

Prz + oy =0, 0<y <14, (1)

with boundary conditions
oy =0, y=0, ()
N = Py — NzPu y=1+mn, (3

Nz

in which § > 0 is a dimensionless constant called the Bond number. Equation (2) is the

; y=1+mn, 4

x

or=—302— 302 —n+8

condition that water cannot permeate the rigid horizontal boundary at y = 0, while (3), (4) are
respectively the kinematic and dynamic conditions at the free surface. Travelling waves are
solutions of the form #(z,t) = n(x — ct), p(z,y, z) = o(x — ct,y), while solitary waves are
non-trivial travelling waves which satisfy the asymptotic conditions n(z) — 0 as x — +o0;
they correspond to localised disturbances of permanent form which move from left to right with
constant speed c.

Let us focus on strong surface tension (8 > 1/3). In the classical weakly nonlinear approach
one makes the Ansatz

A =1-¢% n(x) = *p(ex)
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for travelling water waves and finds that to leading order p satisfies the Korteweg-de Vries
equation
p—(8— %)+ 30> =0; (5)

this equation admits an explicit solitary wave of depression given by the formula

() = —sech? (W>

(see Benjamin [1]). The use of (5) to predict the existence of solitary waves of depression was
rigorously justified by Kirchgissner [5]. Kirchgédssner’s method is based upon sophisticated
spatial dynamics and centre-manifold reduction techniques (and has subsequently been refined
by several authors). This note presents an alternative proof which is elementary in the sense
that its main ingredients are the contraction-mapping principle and implicit-function theorem.

It is possible to formulate the water-wave problem (1)—(4) in terms of the variables 1 and
¢ = ¢|,—, (see Zakharov [6] and Craig & Sulem [3]). The Zakharov-Craig-Sulem formulation
of the water-wave problem is

e — G(U)‘D =0,

- 1 G(n)® + n,D,)?
|| gy ler C@2ET)
Tr), 2 21+ )
where G(n)® = ¢, — nm¢x|y:" and ¢ is the (unique) solution of the boundary-value problem
@zz+@yy:07 O0<y<1l+n,
o =2, y=1+n,
oy =0, y =0.

Travelling waves are solutions of the form r/(z, t) = n(x—ct), ®(z,t) = ®(x — ct); they satisfy

—cne — G(n)® =0, (6)
Na L (G(T/)(I) + "]mq):c)Q

D, — B | | gy pnp2 o ST 7

B V3i+tng] I 2(1+n2) ™

Using (6), one finds that ® = —cG(n)'n,, and inserting this formula into (7) yields the equa-

tion

K(n) = L(n) =0, (8)
where
KO =8 || £ = S+ B BRI ey g o)




and K (n)¢ = —(G(n)'&,:).- Note the equivalent definition K (1) = —(¢|y=1.44)z» Where ¢ is
the solution of the boundary-value problem

Puz + Py =0, 0<y<l+n, (10)
wy =0, y=0 (12)

(which is unique up to an additive constant); the operator K is carefully studied in Section 2
below.

The key to the existence theory in the present paper is a splitting of 7 into two parts. The
dominant part 7, has spectrum near the origin, and thus corresponds to a long wave; it satisfies
a perturbation of the Korteweg-de Vries equation. The spectrum of the secondary part 7, is on
the other hand bounded away from the origin, and it can be determined as a function of 7;. To
this end, denote the Fourier transform F(n) of 7 by 7, let x be the characteristic function of the
set Bs(0) and define

m=xD)n,  n2=1-x(D)n,
where m(D) is the Fourier-multiplier operator induced by the bounded function m (so that
F(m(D)n) = mn). It follows that the support of 7 is contained in the neighbourhood B;(0)
of the origin, while the support of 7, lies outside this set. Writing ¢ = 1 — ¢? and decomposing
(8) into

X(D)K (i +112) = (L=e*) L{m+m2) =0, (L=x(D)(K(m+m) — (1 —&*)L(m+n2) =0,
one finds that the second equation can be solved for 7, as a function of 1, for sufficiently small
values of ¢; substituting 72 = 72(n);) into the first yields the reduced equation

X(D)(K (i + ma(m)) — (L= €*)L{m +n2(m)) =0
for 1,. Finally, the scaling
m(x) = eplex)
transforms the reduced equation into a perturbation of (5) (see Sections 4-6).
The existence theory is completed in Section 6, where it is demonstrated that the reduced
equation for p indeed has a solution which is a perturbation of the Korteweg-de Vries solitary

wave of depression. The key step is a nondegeneracy result for the solitary-wave solution of (5)
which allows one to apply a suitable version of the implicit-function theorem.

2 The operator K

The boundary-value problem (10)—(12) is handled using the change of variable

Y
yl = —777 U(I7yl) = (p(xvy)v
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which maps ¥, = {(z,y): 2 € R,0 < y < 1+ n(x)} to the strip ¥ = R x (0, 1). Dropping
the primes, one finds that (10)—(12) are transformed into

uzx+uyy:axFl(nsu)+ayF3(nvu)a 0 <y< 17 (13)
uy =0, y =0, (14)
'LLy :FB(TI’U)+517 y= 17 (15)

where

2
My Y

and K(n)§ = —ug|y—1. We study this boundary-value problem in the spaces

F (77: “) = —NUg + YNz ly, F3(777 u) =

Z={neSR):lnllz:= lIMnllwe + [l < oo}

and
HX(Y) = {u € Lo (D) : lullZs = luall? + [Juyll} < oo}

loc

for n and u.

Lemma 1 For each ¢ € H?(R) and sufficiently small n € Z the boundary-value problem
(13)—(15) admits a solution uw which is unique up to an additive constant and satisfies u €
H2(X). Furthermore, the mapping Z — L(H>*(R), H*(X)) given by n + (£ + u) is

analytic at the origin.

Proof. For each F, F; € H'(X) and ¢ € H3/?(R) the equations

Uz + Uyy = O F1 + Oy L5, 0<y<l, (16)
uy = F‘3(”}1 U)., y= 07 (17)
uy :F3(/’}7u)+£z7 y= 17 (18)

admit a unique solution v = U(F}, F3, §) given by the explicit formula

U F) = 7 [ (86008~ Gty 0)83) 1]

in which k| h k(1 — §)
cosh |k|y cosh - _
— 0<y<y<li
[ siny %] ’ =V=v=a
Gy, ) =
_ cosh |k|g cosh [k[(1 —y) 0<g<y<l:

|k|sinh |k ’
it follows from this formula that

NU(F, 3, ) los S I F I+ 1 E3]1 + (€112
(cf. Buffoni, Groves, Wahlén & Sun [2, Appendix Al]).



Define
T:HX(X) x Z x H*R) — HX(X)
by
T(“’lf) =u-— U(Fl(nv u)a F3(nau)7£)a

and note that the solutions of (13)—(15) are precisely the zeros of T'(-, 17, £). Using the estimates

7wl a ) S I0llY collwll )

S mllee + lm2ll2) 1wl s,

lynewllgs) S (mellisollwllm ) + [m2wllz2m) + 12wl z2m) + 1n2ew || 22(s))

(Imallico + Iz lloo) 1wl ) + 1022 llollw] 1 (s

I ZANRIANRYAN

(||771z\|1,oo + ||‘772||2)||w||H1(2)a

ly*n" 2wl g =) S Hn”?,oo(”nlﬂ?”iooHwHHl(E) + I wll 2y + 103 well L2s) + 1M2aTeaw]| 2

S 0l o (Nmallvoe + m2slloe)*1wll ) + N2 oo 20 ol 0] 211s2)

< (Imllzso + lImall2)™ 2wl s

and

[mllz.eo + llllz S Nl + [l = Il =
(uniformly in n), one finds that the mappings H2(%) x Z — HY(X) given by (1, u) — Fi (1, )
and (1, u) — Fi(n,u) are analytic at the origin; it follows that T is also analytic at the origin.
Furthermore 7°(0,0,0) = 0 and d;,77[0,0,0] = I is an isomorphism. By the analytic implicit-
function theorem there exist open neighbourhoods N; and N, of the origin in Z and H>/%(R)
and an analytic function v : Ny X Ny — H2(X) such that

T(v(n,€),n,6) =0.

Since v is linear in & one can take N, to be the whole space H*/?(R). O

Corollary 2 The mapping K (-): Z — L(H*?*(R), H'/?(R)) is analytic at the origin.

Corollary 3 The formulae (9) define functions K, L : Z — L*(R) which are analytic at the
origin and satisfy K(0) = L(0) = 0.
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3 Taylor expansions

In the obvious notation, write
K(n) = ZK2j+1(77)> Ki(n) = ZK2j+1(77)7
§=0 j=1

and note that
Kl(n) =n—- fgnwnw
Similarly, write

K =3 K50, Kuln) =3 K, Ken) =D K;(n).

Proposition 4 One has the explicit representations

Kof = |D| coth | DIE, Ki(m)€ = —(n€a)e — Ko(nkKof).

Proof. Note that Ko = —u?|,—1, K1& = —ul|,—1, where

Wy +ug, =0, up, +uy, = (—nu) + yneu))e + (quy + yneug)y, 0 <y <1,

u2=0, u;:O, y=0,
Uy = &, Uy = Ny + Nay, y=1,
so that
S cosh(|k|y) »
|k| sinh | k|

and u' = ynu) + v', where

v;z—l—vyy:(h O<y<l,
v; =0, y =0,
’U; = (7]U2>x7 Yy = 1a

sothat h(jkly) h((k]y)
-~ COS _— COS —_
= Yl Y NKoE.

= Tklsimh &[T T k[ sinh [k]
Finally, write

Lo =Y Lam), L) =D Lalm),

and note that

Li(n) = Kon.  La(n) = *%(Ko'n)2+—ni+K1(n)n == *—(nQ)zzf%(Kon)LKo(nKon);
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clearly
Ly(n) =m({n}?), dLafy](v) = 2m(n, ),
where
(uapvr — (Kou) (Kov) — (uv) 4 — Ko(uKov + UKOU)).

l\DI»—l

m(u,v) =

Proposition 5 The estimate |m(u,v)|lo < ||ul|z||v||2 holds for each u, v € H*(R).

Proof. Estimate

[uevallo < ([urelloo + [[uaslloo) [[vallo S (Na1llzr®y + lluzll2)llvlle = |lullzllv]l2,
[ KouKovllo S ([[Kour oo + [[EKouzlloo) [ EKovllo S (1] rr) + | Kouzll1)[[ofli < llullzl[v]l2,
[(u0)zsllo S lluvlle S (luillzee + [[uzll2)[vlls S fullzllv]l2,
[Ko(uKov)[lo < l[ukovlli S (lutllieo + lluzll)lloll < llullzllv]l2,
[ Ko(vEou)flo < [[vKoully < (

Dlvll S llullzllvll,

where the inequality
|k| coth |k| <1+ |k

has been used. O
The next lemma gives estimates for I, (n) and £,(n) for n € U, where
U={neHR):|nllz <M}

and M is a sufficiently small positive constant (note that U is an open neighbourhood of the
origin in H2(R) since H?(R) is continuously embedded in Z).

Lemma 6 The estimates

1K (o 1£: (o < nlZ ol
[ ] () llo 1AL ()0 S NnllZ vl + [lnllzlnll2llv]l 2
hold for each n) € U and v, w € H*(R?).

Proof. Note that

Li(n) = *KonKnl(n)n*%(Knl(n)n)2+Kr('n)77*2(12“_”% o (K =2K ()

and examine this formula and its derivatives as above, using the further estimates
1Kl S lallsz: IEKamnllye S lnllzlnllse, 1Kl S InllZlnllse,

1Kl (@)nll1j2; |[ABmn)()nlly2 S Nollzlnlls2,  IABmI)nlle S lnllzllvlizlnlls/-
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The corresponding estimates for /C, are obtained by examining the explicit formula

Kt = (1= s ) e 0

4 The reduction procedure

Write ¢ = 1 — &2, decompose X = H?(R?) into the direct sum of X; = (D)X and
Xy = (1 — x(D))X and observe that ) € U satisfies (8) if and only if

g(D)m + 2 Kom + x(D)N (1 + 12) = 0, (19)
g(D)ny + Koy + (1 — x(D))N (1 + ) =0, (20)

where g(k) = 1 + 3|k|? — |k| coth |k| and
N(n) = Ki(n) — (1 = e)(L2() + Lu(n)).

Equation (20) may be written in the form

= (1= x(D))g(D) Al m2) @n
with

A, m2) = e2Kong + N (m + mo)- (22)
Proposition 7 The mapping (1 — x(D))g(D) ! defines a bounded linear operator L*(R?*) —
H*(R?).
Proof. Note that g(k) > |k|* for |k| > 6. O

We proceed by solving (21) for 7, as a function of 7); using the following following fixed-point
theorem, which is proved by a straightforward application of the contraction mapping principle.

Theorem 8 Ler )V, V> be Banach spaces, Y1, Y be closed sets in, respectively, Yy, Vs con-
taining the origin and G: Y, X Yo — Ys be a smooth function. Suppose that there exists a

continuous functionr: 'Yy — [0, 00) such that

Gy, 0l < 57 N dGlyn ]l < 5

for each y, € B,(0) C Y, and each y, € V).

Under these hypotheses there exists for each y, € Y1 a unique solution y, = ys(y1) of the
fixed-point equation y, = G(y1,ys) satisfying ya(y1) € B,(0). Moreover y(y,) is a smooth
function of y, € Y1 and in particular satisfies the estimate

ldy2 [y ]l < 2[|diGlya, ya(ya)]ll-



We apply Theorem 8 to equation (21) with V; = X3, Vo = A%, equipping A with the scaled
norm

1/2
= ([ (<25 = D) Lo ae)
R
and X, with the usual norm for H?(R), and taking Y; = X, Y = Xy, where
Xy ={m € Xi: |Imll < R}, Xy ={nm € X1 [Imall2 < R}

the function G is given by the right-hand side of (21). Using the following proposition one can
guarantee that ||7); || 1r2) < M/2 for all n; € X for an arbitrarily large value of R;; the value
of Ry is then constrained by the requirement that |7 || < M/2 for all n, € Xo.

Proposition 9 The estimate ||9: |11 r2) < €'/%||m | holds for each 1y € X;.

Proof. Observe that

_ /2
. [ (I+e 222 < 1/2
[ iinarak = [ e LR AL

where

1 o q ©
I = = 4k =2 _~ _ds<?2 —~ _ds=27=. n
1 / 11 o252 5/0 11 52 s < 5/0 11 52 s TE

supp x

The next step is estimate each term appearing in the formula for A; note in particular that
Iz S 2 llmll+ lnallzs— Nnlls S Ml + el
for each ) € H*(R).

Lemma 10 The estimates

(i) | AGH ) llo < 2 llml* + Ml 2l + Wenllinal13 + 23 + €2 [1nmal2,

(it) | dv Al mo)ll e 2y S €2l + 2 nall2 + (215,
(it) | doA[n1, m2] | 2o 2y S €2l + Wom izl + el + €2,
hold for each m, € X1 and ns € Xs.

Theorem 11 Equation (21) has a unique solution 1y € X5 which depends smoothly upon n, €
Xy and satisfies the estimates

2 ()l S €2l lidnafm]llece .2 < €2l
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Proof. Choosing R, and ¢ sufficiently small, one finds r > 0 such that ||G(1;,0)||2 < r/2 and
| doG 11, 2]\l (20s,200) < 1/3 for my € Xy, 1y € X,, and Theorem 8 asserts that equation (21)
has a unique solution 72 € X, which depends smoothly upon 7; € X;. More precise estimates
are obtained by choosing C' > 0 so that ||G(11,0)|]s < Ce'/?|||n||? for n, € X, and writing
r(n) = 2CeY?||n |2 so that

G el ey S €2 lmlls 1d2Glny, melll o S 1

for n € Xy and m; € B,;)(0) C Xo, and the stated estimates for 7(1;) follow from
Theorem 8. O

5 The reduced equation for 7,
The next step is to show that the reduced equation for 7, is given by
g(D)m +&*m +x(D) [507 + Q2 ImI?) + Oellm|I*)] = o,

where the symbol O(7|||m||”) (withy > 0, r > 1) denotes a smooth function R : X; — L*(R)
which satisfies the estimates

IRem)lo S € llmll™s ARl 2@y < € llml™
for each n € Xj.
Proposition 12 The estimates
lmzllo = Oellmll), — 1Komllo = m + Oellmll)
hold for each n; € X;.

Proof. Note that
Imallg = Ikl < llndl?
and

~ 112 ~
1(Ko = Dymllg = l[ (%] coth k] — 1)l < K5 < e llm I o

Lemma 13 The estimate
Lo(m +n2(m)) = =307 + O Im*) + OCellm|®)

holds for each m, € Xj.



Proof. Using Proposition 5 and Theorem 11, one finds that

Lo(m +ma(m)) = m({m}?*) + 2mOp,ma(m)) + m{ma(m)}?) = m({m}*) + OellmI*);

furthermore

[73:ll0 < 1mallocllmallo = OE2ImlI?),

[mnizllo < [mllsclinllo = OE**|InI?),

[mmizello < [[n1lloc ez llo = OE*2ImI?),

[(Kom)? = millo < [[Kom + mllell (Ko = Dimllo = O [[mll*),

llm Kom — m¢llo = [lm (Kom — m)llo < ||Th||oo||(Ko771 —m)llo = OE*|Imll),

1(Ko = D) (mKom)llo < elllm Komlll = O |lmI?),
so that
m({m}?) = —5ni + O(¥?|[lm]|?)-
The estimate for the derivative is obtained in a similar fashion. O

Lemma 14 The estimates IC.(n; + n2(m1)), L.(m + n2) = O(e||ml||?) hold for each n; € X;.

Proof. This result follows from Lemma 6 and Theorem 11. O

Finally, note that

e Lo(m +11(m)) = =570 + O |lmI1?) + Q(ellmI*).-
—~~

= O([llm I

6 The reduced equation for p

Write
m(z) = e’plex),
so that p € Bgr(0) C x(¢D)H'(R) solves the equation
9(eD)p+e*p+x(eD) [§°0* + Oo(e™?IpIID)] = (23)
(note that [|n| = ¥2||p|l.). Here R > 0 is chosen so that R, < £*2R and the symbol
O.(e|pll7) (with v > 0, r > 1) denotes a smooth function R : Bz(0) C x(¢D)H'(R) —

—S

H#(R) which satisfies the estimates

IR(0)s < 7lpllf, ”dR[p]HC(Hl(]R),HS(R)) N ﬁj"”ﬁ”?1

for each p € Br(0).
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Proposition 15 One has that
e? 1
e24g(es) 1+ (8-

forall|s| < d/e.
Proof. Obviously

g2 1

e2+g(es) 14 (8- 35)s?

~ gles) = (B - §)s%e?

T @1y + (B-D)s)

furthermore
gk) = (B =K SK, k[ <6

3

and

It follows that

g2 1 g2st
— < g? s|<d/e
e2tgles) 1+(B—3)s2|~ (14522~ sl <o/

(because s*/(1 + s%)? < 1 for all s). O
Using this proposition, one can write equation (23) as

p+G:(p) =0, (24)

where
Ge(p) =3 (1= (B=52) " x(eD)p* + x(eD)Oy (* [ p]}).
Finally, note that the solutions p € Bz(0) C x(eD)H'(R) of (24) coincide with the solutions
p € Bp(0) C H'(R) of
p+H(p) =0, (25)
where

He(p) = G=(x(eD)p);

furthermore the entire reduction can be carried out in spaces of functions which are even in x
(denoted by the subscript ‘e’).
Equation (25) is solved using the following version of the implicit-function theorem.
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Theorem 16 Let ) be a Banach space, Yy and Ay be open neighbourhoods of respectively y* in
Y and the originin R" and F' : Yy X Ag — Y be a function which is differentiable with respect
toy € Yy for each A € Ao. Furthermore, suppose that F(y*,0) =0, &1 F[y*,0] : Y — Visan
isomorphism, d, F[-, 0] is continuous at the point y* and

lim F(y,\) = F(y,0), limd;Fly,\| =d;F[y,0]
A—=0 A—=0

uniformly over y € Y,
There exist open neighbourhoods Y of y* in Y and A of 0 in R™ (with Y C Yy, A C Ag) and
a uniquely determined mapping h : A — Y with the properties that

(i) h is continuous at the origin (with h(0) = y*),

(i) F(h(\),\) = 0 forall » € A,
(iii) y = h(\) whenever (y,\) € Y x A satisfies F(y, \) = 0.

Define Y = H!(R) and F : Bg(0) x [0,9) — H!(R) by

F(p,e) == p+H(p).
Note that
F(p.e) = F(p,0)
—3(1— (- 1) D) ((ED)P — ]+ x(ED)Os el (ED)lR)
(because x(¢D)O,(-) = e 'x(eD)Oy(+)), so that
F(p,e)— F(p,0) =0, & F[p,e] —diF[p,0] =0

uniformly over p € Br(0). The equation

F(p,0)=p+ 31— (8-1d) 'p*=0

(@) = —scch’ (W>

QFlpr, 0l =T+3(1—(8-59)7" (o).
The existence proof is thus completed by the familiar result that the operator
I+3(1— (8- %)aﬁ)_l (p*+) is an isomorphism H!(R) — H](R) (see Kirchgissner [5, Propo-
sition 5.1] or Friesecke & Pego [4, §4]).

has the (unique) solution

in H}(R) and

Theorem 17 For each sufficiently small value of ¢ > 0 equation (25) has a unique small-
amplitude solution p = p(e) in H!(R) which satisfies p — p* as e — 0.
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