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On the phase shift of line solitary waves for the KP‐II equation

Tetsu Mizumachi (Hiroshima University)

1 Introduction

The KP‐II equation

(1.1) \partial_{x}(\partial_{t}u+\partial_{x}^{3}u+3\partial_{x}(u^{2}))+3\partial_{y}
^{2}u=0 for  t>0 and  (x, y)\in \mathbb{R}^{2},

is a generalization to two spatial dimensions of the  KdV equation

(1.2)  \partial_{t}u+\partial_{x}^{3}u+3\partial_{x}(u^{2})=0,

and has been derived as a model in the study of the transverse stability of solitary wave solutions
to the  KdV equation with respect to two dimensional perturbation when the surface tension is

weak or absent (see [13]).
The global well‐posedness of (1.1) in  H^{s}(\mathbb{R}^{2})(s\geq 0) on the background of line solitons

has been studied by Molinet, Saut and Tzvetkov [22] whose proof is based on the work of
Bourgain [4]. For the other contributions on the Cauchy problem of the KP‐II equation, see e.g.
[9, 10, 11, 12, 28, 29, 30, 31] and the references therein.

Let

 \varphi_{c}(x)\equiv c\cosh^{-2}(\sqrt{\frac{c}{2}}x) , c>0.
Then  \varphi_{c} is a solution of

(1.3)  \varphi_{c}"-2c\varphi_{c}+3\varphi_{c}^{2}=0,

and  \varphi_{c}(x-2ct) is a solitary wave solution of the  KdV equation (1.2) and a line soliton solution
of (1.1) as well. In this article, we report my recent result on the phase shift of modulating line
solitons.

Let us briefly explain known results on stability of 1‐solitons for the  KdV equation first.

Stability of the 1‐soliton  \varphi_{c}(x-2ct) of (1.2) was proved by [2, 3, 32] using the fact that  \varphi_{c} is a
minimizer of the Hamiltonian on the manifold  \{u\in H^{1}(\mathbb{R})|\Vert u\Vert_{L^{2}(\mathbb{R})}=\Vert\varphi_{c}
\Vert_{L^{2}(\mathbb{R})}\}.

Solitary waves of the  KdV equation travel at speeds faster than the maximum group velocity
of linear waves and the larger solitary wave moves faster to the right. Using this property,

Pego and Weinstein [24] prove asymptotic stability of solitary wave solutions of (1.2) in an
exponentially weighted space. Later, Martel and Merle established the Liouville theorem for the
generalized  KdV equations by using a virial type identity and prove the asymptotic stability of

solitary waves in  H_{loc}^{1}(\mathbb{R}) (see e.g. [16]).
For the KP‐II equation, its Hamiltonian is infinitely indefinite and the variational character‐

ization of line soliton is not useful. So it is natural to study stability of line solitons using strong

linear stability of line solitons as in [24]. Spectral transverse stability of line solitons of (1.1) has

171



172

been studied by [1, 5]. Alexander et al. [1] proved that the spectrum of the linearized operator
in  L^{2}(\mathbb{R}^{2}) consists of the entire imaginary axis. On the other hand, in an exponentially weighted

space where the size of perturbations are biased in the direction of motion, the spectrum of the

linearized operator consists of a curve of resonant continuous eigenvalues which goes through  0

and the set of continuous spectrum which locates in the stable half plane and is away from the

imaginary axis (see [5, 17]). The former one appears because line solitons are not localized in
the transversal direction and  0 , which is related to the symmetry of line solitons, cannot be an

isolated eigenvalue of the linearized operator. Such a situation is common with planer traveling

wave solutions for the heat equation. See e.g. [14, 15, 33].
Transverse stabiliity of line solitons for the KP‐II equation has been proved for localized

perturbations as well as for perturbations which have  0‐mean along all the lines parallel to the
 x‐axis ([17, 18]).

Theorem 1.1. ([18, Theorem 1.1]) Let  c_{0}>0 and  u(t, x, y) be a solution of (1.1) satisfying
 u(0, x, y)=\varphi_{c_{0}}(x)+v_{0}(x, y) . There exist positive constants  \varepsilon_{0} and  C satisfying the following:

if  v_{0}\in\partial_{x}L^{2}(\mathbb{R}^{2}) and  \Vert v_{0}\Vert_{L^{2}(\mathbb{R}^{2})}+\Vert|D_{x}|^{1/2}v_{0}\Vert_{L^{2}
(\mathbb{R}^{2})}+\Vert|D_{x}|^{-1/2}|D_{y}|^{1/2}v_{0}\Vert_{L^{2}(\mathbb{R}
^{2})}<\varepsilon_{0} then there

exist  C^{1} ‐functions  c(t, y) and  x(t, y) such that for every  t\geq 0 and  k\geq 0,

(1.4)  \Vert u(t, x, y)-\varphi_{c(t,y)}(x-x(t, y))\Vert_{L^{2}(\mathbb{R}^{2})}\leq C
\Vert v_{0}\Vert_{L^{2}},
(1.5)  \Vert c(t, \cdot)-c_{0}\Vert_{H^{k}(\mathbb{R})}+\Vert\partial_{y}x(t, \cdot)
\Vert_{H^{k}(\mathbb{R})}+\Vert x_{t}(t, \cdot)-2c(t, \cdot)\Vert_{H^{k}(\mathbb
{R})}\leq C\Vert v_{0}\Vert_{L^{2}},
(1.6)   \lim_{tarrow\infty}(\Vert\partial_{y}c(t, \cdot)\Vert_{H^{k}(\mathbb{R})}+
\Vert\partial_{y}^{2}x(t, \cdot)\Vert_{H^{k}(\mathbb{R})})=0,
and for any  R>0,

(1.7)  tarrow\infty 1\dot{{\imath}}m\Vert u(t, x+x(t, y), y)-\varphi_{c(t,y)}(x)\Vert_
{L^{2}((x>-R)\cross \mathbb{R}_{y})}=0.
Let  \langle x\rangle=\sqrt{1+x^{2}} for  x\in \mathbb{R}.

Theorem 1.2. ([18, Theorem 1.2]) Let  c_{0}>0 and  s>1 . Suppose that  u is a solutions of (1.1)
satisfying  u(0, x, y)=\varphi_{c_{0}}(x)+v_{0}(x, y) . Then there exist positive constants  \varepsilon_{0} and  C such that

if  \Vert\{x\}^{s}v_{0}\Vert_{H^{1}(\mathbb{R}^{2})}<\varepsilon_{0} , there exist  c(t, y) and  x(t, y) satisfying (1.6), (1.7) and

(1.8)  \Vert u(t, x, y)-\varphi_{c(t,y)}(x-x(t, y))\Vert_{L^{2}(\mathbb{R}^{2})}\leq C
\Vert\{x\rangle^{s}v_{0}\Vert_{H^{1}(\mathbb{R}^{2})},
(1.9)  \Vert c(t, \cdot)-c_{0}\Vert_{H^{k}(\mathbb{R})}+1\partial_{y}x(t, \cdot)\Vert_
{H^{k}(\mathbb{R})}+\Vert x_{t}(t, \cdot)-2c(t, \cdot)\Vert_{H^{k}(\mathbb{R})}
\leq C\Vert\{x\rangle^{s}v_{0}\Vert_{H^{1}(R^{2})}

for every  t\geq 0 and  k\geq 0.

Remark 1.1. The parameters  c(t_{0}, y_{0}) and  x(t_{0}, y_{0}) represent the local amplitude and the local

phase shift of the modulating line soliton  \varphi_{c(t,y)}(x-x(t, y)) at time  t_{0} along the line  y=y_{0} and
that  x_{y}(t, y) represents the local orientation of the crest of the line soliton.

Remark 1.2. In view of Theorem 1.1,

 t arrow\infty 1\dot{{\imath}}m\sup_{y\in \mathbb{R}}(|c(t, y)-c_{0}|+|x_{y}(t, 
y)|)=0,
and as   tarrow\infty , the modulating line soliton  \varphi_{c(t,y)}(x-x(t, y)) converges to a  y‐independent

modulating line soliton  \varphi_{c_{0}}(x-x(t, 0)) in  L^{2}(\mathbb{R}_{x}\cross(|y|\leq R)) for any  R>0.
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For the  KdV equation as well as for the KP‐II equation posed on  L^{2}(\mathbb{R}_{x}\cross \mathbb{T}_{y}) , the dynamics

of a modulating soliton  \varphi_{c(t)}(x-x(t)) is described by a system of ODEs

 \dot{c}\simeq 0, \dot{x}\simeq 2c.

See [24] for the  KdV equation and [20] for the KP‐II equation with the  y‐periodic boundary
condition. However, to analyze transverse stability of line solitons for localized perturbation in
 \mathbb{R}^{2} , we need to study a system of PDEs for  c(t, y) and  x(t, y) in [17, 18] as is the case with
the planar traveling waves for the heat equations (e.g. [14, 15, 33]) and planar kinks for the
 \phi^{4}‐model ([6]).

In [17, Theorems 1.4 and 1.5], we find that the phase shift  x(t, y) in (1.4) and (1.7) is not
uniform in  y because of the diffraction of modulating line solitons around  y=\pm 2\sqrt{2c_{0}}t+O(\sqrt{t})
and that the set of exact 1‐line solitons

 \mathcal{K}=\{\varphi_{c}(x+ky-(2c+3k^{2})t+\gamma)|c>0 , k , \gamma\in \mathbb
{R}\}

is not stable in  L^{2}(\mathbb{R}^{2}) .

Theorem 1.3. Let  c_{0}>0 . Then for any  \varepsilon>0 , there exists a solution of (1.1) such that

 \Vert\{x\rangle(\{x\rangle+\langle y\rangle)\{u(0, x, y)-\varphi_{c_{0}}(x)\}
\Vert_{H^{1}(\mathbb{R}^{2})}<\varepsilon and   \lim\inf_{tarrow\infty}t^{-1/2}\inf_{v\in A}\Vert u(t, \cdot)-v\Vert_{L^{2}
(\mathbb{R}^{2})}>
 0.

Theorem 1.4. Let  c_{0}=2 and  u(t) be as in Theorem 1.2. There exist positive constants  \varepsilon_{0}

and  C such that if  \varepsilon  :=\Vert\langle x\rangle(\langle x\rangle+\langle y\})v_{0}\Vert_{H^{1}
(\mathbb{R}^{2})}<\varepsilon_{0} , then there exist  c^{1} ‐functions  c(t, y) and

 x(t, y) satisfying (1.4)  -(1.7) and

(1.10)  \Vert  (\begin{array}{lll}
c(t   )-   2
x_{y}(t,\cdot)      
\end{array})  -  (\begin{array}{ll}
2   2
1   -1
\end{array})(\begin{array}{ll}
u_{B}^{+}(t,y   +4t)
u_{B}^{-}(t,y   -4t)
\end{array})  \Vert_{L^{2}(\mathbb{R})}=o(\varepsilon t^{-1/4})
as   tarrow\infty , where  u_{B}^{\pm} are self similar solutions of the Burgers equation

 \partial_{t}u=2\partial_{y}^{2}u\pm 4\partial_{y}(u^{2})

such that

 u_{B}^{\pm}(t, y)= \frac{\pm m\pm H_{2t}(y)}{2(1+m\pm\int_{0}^{y}H_{2t}(y_{1})
dy_{1})}, H_{t}(y)=(4\pi t)^{-1/2}e^{-y^{2}/4t}
and that   m\pm are constants satisfying

  \int_{\mathbb{R}}u_{B}^{\pm}(t, y)dy=\frac{1}{4}\int_{\mathbb{R}}(c(0, y)-2)dy
+O(\varepsilon^{2}) .

Remark 1.3. Since (1.1) is invariant under the scaling  u\mapsto\lambda^{2}u(\lambda^{3}t, \lambda x, \lambda^{2}y) , we may assume
that  c_{0}=2 without loss of generality.

Remark 1.4. The linearized operator around the line soliton solution has resonant continuous

eigenvalues near  \lambda=0 whose corresponding eigenmodes grow exponentially as   xarrow-\infty . See

 (??)-(??) . The diffraction of the line soliton around  y=\pm 4t can be thought as a mechanism

to emit energy from those resonant continuous eigenmodes.
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Theorems 1.3 and 1.4 are improvement of [17, Theorems 1.4 and 1.5].
If we disregard damping effect and nonlinearity of waves propagating along the crest of line

solitons, then time evolution of the phase shift is expected to be described by the 1‐dimensional

wave equation

 x_{tt}=8c_{0}x_{yy}.

So it seems natural to expect that   \sup.,y\in \mathbb{R}|x(t, y)-2c_{0}t| remains small for localized perturba‐

tions even if the  L^{2}(\mathbb{R}_{y}) norm of  x(t, y)-2c_{0}t grows as   tarrow\infty . We have the following result for

the phase shift of modulating 1‐line solitons.

Theorem 1.5. Let  u(t, x, y) and  x(t, y) be as in Theorem 1.2. There exist positive constants  \varepsilon_{0}

and  C such that if  \varepsilon  :=\Vert\{x\}(\{x\}+\langle y\})v_{0}\Vert_{H^{1}(\mathbb{R}^{2})}
<\varepsilon_{0} , then sup.  \geq 0,y\in \mathbb{R}|x(t, y)-2c_{0}t|\leq C\varepsilon.
Moreover, there exists an  h\in \mathbb{R} such that for any  \delta>0,

(1.11)  \{\begin{array}{l}
\lim_{tarrow\infty}\Vert x(t, \cdot)-2c_{0}t-h\Vert_{L^{\infty}
(|y|\leq(\sqrt{8c_{0}}-\delta)t}=0,
\lim_{tarrow\infty}\Vert x(t, \cdot)-2c_{0}t\Vert_{L^{\infty}
(|y|\geq(\sqrt{8c_{0}}+\delta)t)}=0.
\end{array}
In the case where the surface tension is weak, we find in [19] that time evolution of resonant

continuous eigenmondes for the linearized Benney‐Luke equation around line solitary waves is

similar to (1.11). We except that (1.11) is true for modulating line solitary waves of the  2D

Benney‐Luke equation.
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