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ABSTRACT. In this paper, we introduce two composite iterative methods (one implicit
method and one explicit method) for finding a common element of the solution set of
a general system of variationaı inequalities for continuous monotone mappings and the
fixed point set of a continuous pseudocontractive mapping in a Hilbert space. First, this
system of variational inequalities is proven to be equivaıent to a fixed point problem of
nonexpansive mapping. Then we establish strong convergence of the sequence generated
by the proposed iterative methods to a common element of the solution set and the fixed
point set, which is the unique solution of a certain variational inequality.

1. INTRODUCTION

Let H be a real Hilbert space with inner product  \{\cdot,  \cdot\rangle and induced norm  \Vert .  \Vert . Let  C

be a nonempty closed convex subset of  H and let  S :  Carrow C be a self‐mapping on  C . We
denote by Fix(S) the set of fixed points of  S.

A mapping  F:Carrow H is called monotone if

 \{x-y , Fx—Fy )  \geq 0,  \forall x,  y\in C.

and  F is called  \alpha ‐inverse‐strongly monotone (see [5, 11]) if there exists a positive real
number  \alpha such that

{ x-y , Fx—Fy}  \geq\alpha\Vert Fx-Fy\Vert^{2},  \forall x,  y\in C.

The class of monotone mappings includes the class of  \alpha‐inverse‐strongly monotone map‐
pings.

A mapping  T:Carrow H is said to be pseudocontractive if

 \Vert Tx-Ty\Vert^{2}\leq\Vert x-y\Vert^{2}+\Vert(I-T)x-(I-T)y\Vert^{2}, \forall
x, y\in C.
and  T is said to be  k ‐strictly pseudocontractive if there exists a constant  k\in[0,1 ) such that

 \Vert Tx-Ty\Vert^{2}\leq\Vert x-y\Vert^{2}+k\Vert(I-T)x-(I-T)y\Vert^{2}, 
\forall x, y\in C,
where  I is the identity mapping. Note that the class of  k‐strictly pseudocontractive map‐
pings includes the class of nonexpansive mappings as a subclass. That is,  T is nonexpansive
 (i.e., \Vert Tx-Ty\Vert\leq\Vert x-y\Vert, \forall x, y\in C) if and only if  T is  0‐strictly pseudocontractive.
Clearly, the class of pseudocontractive mappings includes the class of strictly pseudocon‐
tractive mappings as a subclass.

Let  F be a nonlinear mapping of  C into  H . The variational inequality problem (VIP) is
to find a  x^{*}\in C such that

(1.1) { Fx* ,  x-x^{*}\rangle\geq 0,  \forall x\in C.
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The results presented in this lecture are collected mainly from the work [8] by the author of this report.
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We denote the set of solutions of VIP(I. I) by  VI(C, F) . The variational inequality problem
has been extensively studied in the literature; see [3, 5, 7, 10, 11, 14, 15, 17, 19] and the
references therein.

In 2008, Ceng et al. [2] considered the following general system of variational inequalities:

(1.2)  \{\begin{array}{ll}
\{\lambda F_{1}y^{*}+x^{*}-y^{*}, x-x^{*}\rangle\geq 0,   \forall x\in C
\{\nu F_{2}x^{*}+y^{*}-x^{*}, x-y^{*}\}\geq 0,   \forall x\in C,
\end{array}
where  F_{1} and  F_{2} are an  \alpha‐inverse‐strongly monotone mapping and a  \beta‐inverse‐strongly
monotone mapping, respectively; and  \lambda\in(0,2\alpha) and  \nu\in(0,2\beta) are two constants. For
finding an element Fix  (S)\cap\Gamma , where  S:Carrow C is a nonexpansive mapping and  \Gamma is the
solution set of the problem (1.2), they introduced a relaxed extragradient method ([9]) and
proved strong convergence to a common element of Fix  (S)\cap\Gamma.

In 2016, Alofi et al. [1] also considered the problem (1.2) coupled with the fixed point
problem, and introduced two composite iterative algorithms (one implicit algorithm and
one explicit algorithm) based on Jung’s composite iterative method [6] to find an element
Fix  (T)\cap\Gamma , where  T :  Carrow C is a  k‐strictly pseudocontractive mapping and  \Gamma is the
solution set of the problem (1.2), and showed strong convergence to a common element of
Fix  (T)\cap\Gamma . The following problems arise:

Question 1. Can we extend the class of inverse‐strongly monotone mappings in [1, 2] to
the more general class of continuous monotone mappings?

Question 2. Can we extend the class of nonexpansive mappings in [2] or the class of
strictly pseudocontractive mappings in [1] to the more general class of pseudocontractive
mappings?

In this paper, in order to give the affirmative answers to the above two questions, we
consider a general system of variational inequalities slightly different from the problem
(1.2). More precisely, we introduce the following general system of variational inequalities
(GSVI) for two continuous monotone mappings  F_{1} and  F_{2} of finding  (x^{*}, y^{*})\in C\cross C such
that

(1.3)  \{\begin{array}{l}
\{\lambda F_{1}x^{*}+x^{*}-y^{*}, x-x^{*}\}\geq 0, \forall x\in C
\{\nu F_{2}y^{*}+y^{*}-x^{*}, x-y^{*}\rangle\geq 0, \forall x\in C,
\end{array}
where  \lambda>0 and  v are two constants. The solution set of GSVI(1.3) is denoted by  \Omega . First,
we prove that the problem (1.3) is equivalent to a fixed point problem of nonexpansive
mapping. Second, by using Jung’s composite iterative algorithms [6], we introduce a com‐
posite implicit iterative algorithm and a composite explicit iterative algorithm for finding a
common element of  \Omega\cap Fix(T) , where  T is a continuous pseudocontractive mapping. Then
we establish strong convergence of these two composite iterative algorithms to a common
element of  \Omega\cap Fix(T) , which is the unique solution of a certain variational inequality re‐
lated to a minimization problem. As a direct consequence, we obtain strong convergence
to a common element of  VI(C, F)\cap Fix(T) , where  F is a continuous monotone mapping.

2. PRELIMINARIES AND LEMMAS

Let  H be a real Hilbert space and let  C be a nonempty closed convex subset of  H . We
write  x_{n}harpoonup x to indicate that the sequence  \{x_{n}\} converges weakly to  x.  x_{n}arrow x implies
that  \{x_{n}\} converges strongly to  x.

For every point  x\in H , there exists a unique nearest point in  C , denoted by  P_{C}(x) , such
that

 \Vert x-P_{C}(x)\Vert\leq\Vert x-y\Vert, \forall y\in C.
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 P_{C} is called the metric projection of  H onto  C . It is well known that  P_{C}(x) is characterized
by the property:

(2.1)  u=P_{C}(x)\Leftrightarrow\{x-u, u-y\}\geq 0, \forall x\in H, y\in C.

In a Hilbert space  H , we have

(2.2)  \Vert x-y\Vert^{2}=\Vert x\Vert^{2}+\Vert y\Vert^{2}-2\{x, y\rangle, \forall x,
y\in H.
We recall that

(1) an operator  A is said to be strongly positive on  H if there exists a constant  \overline{\gamma}>0
such that

{Ax,  x\rangle\geq\overline{\gamma}\Vert x\Vert^{2},  \forall x\in H ;
(ii) a mapping  V :  Carrow H is said to be  l‐Lipschitzian if there exists a constant  l\geq 0

such that

 \Vert Vx-Vy\Vert\leq l\Vert x-y\Vert, \forall x, y\in C ;

(iii) a mapping  G:Carrow H is said to be pstrongly monotone if there exists a constant
 \rho>0 such that

 \{Gx-Gy, x-y\}\geq\rho\Vert x-y\Vert^{2}, \forall x, y\in C.
The following lemma is an immediate consequence of an inner product.

Lemma 2.1. In a real Hilbert space  H , there holds the following inequality

 \Vert x+y\Vert^{2}\leq\Vert x\Vert^{2}+2\langle y, x+y\}, \forall x, y\in H.

We need the following lemmas for the proof of our main results.

Lemma 2.2 ([16]). Let  \{s_{n}\} be a sequence of non‐negative real numbers satisfying

 s_{n+1}\leq(1-\omega_{n})s_{n}+\omega_{n}\delta_{n}+\nu_{n}, \forall n\geq 1,

where  \{\omega_{n}\},  \{\delta_{n}\} , and  \{\nu_{n}\} satisfy the following conditions:

(i)  \{\omega_{n}\}\subset[0,1] and   \sum_{n=1}^{\infty}\omega_{n}=\infty or, equivalently,   \prod_{n=1}^{\infty}({\imath}-\omega_{n})=0 ;
(ii)   \lim\sup_{narrow\infty}\delta_{n}\leq 0 or   \sum_{n=1}^{\infty}\omega_{n}|\delta_{n}|<\infty ;

(iii)  \nu_{n}\geq 0(n\geq 1),   \sum_{n=1}^{\infty}\nu_{n}<\infty.
Then   \lim_{narrow\infty}s_{n}=0.

Lemma 2.3 ([4]). (Demiclosedness principle) Let  C be a nonempty closed convex subset
of a real Hilbert space  H , and let  S :  Carrow C be a nonexpansive mapping. Then, the
mapping  I-S is demiclosed. That is, if  \{x_{n}\} is a sequence in  C such that  x_{n}harpoonup x^{*} and
 (I-S)x_{n}arrow y , then  (I-S)x^{*}=y.

Lemma 2.4 ([12]). Let  H be a real Habert space. Let  A :  Harrow H be a strongly positive
bounded linear operator with a constant  \overline{\gamma}>1 . Then

 \{(A-I)x-(A-I)y, x-y\rangle\geq(\overline{\gamma}-1)\Vert x-y\Vert^{2}, \forall
x, y\in C.
That is,  A-I is strongly monotone with a constant  \overline{\gamma}-1.

Lemma 2.5 ([12]). Assume that  A is a strongly positive bounded linear operator on  H with
a coefficient  \overline{\gamma}>0 and  0<\zeta\leq\Vert A\Vert^{-1} . Then  \Vert I-\zeta A\Vert\leq 1-\zeta\overline{\gamma}.

Lemma 2.6 ([17]). Let  H be a real Hilbert space. Let  G:Harrow H be a  \rho ‐Lipschitzian and
 \eta ‐strongly monotone mapping with constants  \rho,  \eta>0 . Let   0<\mu<\Gamma 2\eta and  0<t<\sigma\leq 1.

Then  S:=\sigma I-t\mu G :  Harrow H is a contractive mapping with constant  \sigma-t\tau , where
 \tau=1-\sqrt{1-\mu(2\eta-\mu\rho^{2})}.

The following lemmas are Lemma 2.3 and Lemma 2.4 of Zegeye [18], respectively.
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Lemma 2.7 ([18]). Let  C be a closed convex subset of a real Hilbert space H. Let   F:Carrow

 H be a continuous monotone mapping. Then, for  r>0 and  x\in H , there exists  z\in C such
that

  \{y-z, Fz\rangle+\frac{1}{r}\{y-z, z-x\rangle\geq 0, \forall y\in C.
For  r>0 and  x\in H , define  F_{r} :  Harrow C by

 F_{r}x= \{z\in C : \{y-z, Fz\}+\frac{1}{r}\{y-z, z-x\}\geq 0, \forall y\in C\}.
Then the following hold:

(i)  F_{r} is single‐valued;
(ii)  F_{r} is firmly nonexpansive, that is,

 \Vert F_{r}x-F_{r}y\Vert^{2}\leq\langle x-y, F_{r}x-F_{r}y\}, \forall x, y\in H ;

(iii) Fix  (F_{r})=VI(C, F) ;
(iv) VI  (C, F) is a closed convex subset of  C.

Lemma 2.8 ([18]). Let  C be a closed convex subset of a real Hilbert space H. Let  T:Carrow H

be a continuous pseudocontractive mapping. Then, for  r>0 and  x\in H , there exists  z\in C

such that

  \{y-z, Tz\}-\frac{1}{r}\{y-z , (ı  +r )  z —  x)  \leq 0,  \forall y\in C.

For  r>0 and  x\in H , define  T_{r} :  Harrow C by

 T_{r}x=\{z\in C :   \{y-z, Tz\rangle-\frac{1}{r}\{y-z, (1+r)z-x\}\leq 0, \forall y\in C\}.
Then the following hold:

(i)  T_{r} is single‐valud’;
(ii)  T_{r} is firmly nonexpansive, that is,

 \Vert T_{r}x-T_{r}y\Vert^{2}\leq\langle x-y, T_{r}x-T_{r}y\}, \forall x, y\in H ;

(iii) Fix  (T_{r})=Fix(T) ;
(iv) Fix (T) is a closed convex subset of  C.

3. MAIN RESULTS

Throughout the rest of this paper, we always assume the following:
 \bullet  H is a real Hilbert space;
 \bullet  C is a nonempty closed subspace subset of  H ;
 \bullet  A :  Carrow C is a strongly positive linear bounded self‐adjoint operator with a constant

 \overline{\gamma}\in(1,2) ;
 \bullet  V :  Carrow C is  l‐Lipschitzian with constant   l\in[0, \infty );
 \bullet  G :  Carrow C is a  p‐Lipschitzian and  \eta‐strongly monotone mapping with constants

 \rho>0 and  \eta>0 ;
 e Constants  \mu,  l,  \tau , and  \gamma satisfy  0< \mu<\frac{2\eta}{\rho^{2}} and   0\leq\gamma l<\tau , where  \tau=1-

 \sqrt{1-\mu(2\eta-\mu\rho^{2})} ;
 \bullet  F_{1} and  F_{2}:Carrow H are continuous monotone mapping;
 \bullet  \Omega is the solution set of GSVI (1.3) for  F_{1} and  F_{2} ;
 \bullet  F_{1\lambda} :  Harrow C is a mapping defined by

 F_{1\lambda}x=\{z\in C :  \{y-z,  F_{1}z \rangle+\frac{1}{\lambda}\{y-z, z-x\rangle\geq 0, \forall y\in C\}
for  \lambda>0 ;
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 \bullet  F_{2\nu} :  Harrow C is a mapping defined by

 F_{2\nu}x= \{z\in C : \{y-z, F_{2}z\}+\frac{1}{\nu}\{y-z, z-x\}\geq 0, \forall 
y\in C\}
for  \nu>0 ;

 \bullet  R:Harrow C is a mapping defined by  Rx=F_{1\lambda}F_{2\nu}x for each  x\in H ;
 \bullet  T:Carrow C is a continuous pseudocontractive mapping such that Fix  (T)\neq\emptyset ;
 \bullet  T_{r_{t}} :  Harrow C is a mapping defined by

 T_{r_{t}}x= \{z\in C : \langle y-z, Tz\}-\frac{1}{r_{t}}\langle y-z, (1+r_{t})z
-x\rangle\leq 0, \forall y\in C\}
for  r_{t}\in(0, \infty),  t\in(0,1) , and   \lim\inf_{tarrow 0}r_{t}>0 ;

 \bullet  T_{r_{n}} :  Harrow C is a mapping defined by

 T_{r_{n}}x=\{z\in C :  \{y-z,  Tz \rangle-\frac{1}{r_{n}}\{y-z, (1+r_{n})z-x)\leq 0, \forall y\in C\}
for  r_{n}\in(0, \infty) and   \lim\inf_{narrow\infty}r_{n}>0 ;

 \bullet  \Omega\cap Fix(T)\neq\emptyset.
By Lemma 2.7 and Lemma 2.8, we note that  F_{1\lambda},  F_{2\nu},  T_{r_{t}} , and  T_{r_{n}} are nonexpansive, and
Fix  (T_{r}.)=Fix(T)=Fix(T_{r_{t}}) .

First, we prove that the problem (1.3) is equivalent to a fixed point problem of nonex‐
pansive mapping.

Proposition 3.1. Let  C be a closed convex subset of a real Hilbert space H. For given
 x^{*},  y^{*}\in C,  (x^{*}, y^{*}) is a solution of GSVI(1.3) for continuous monotone mappings  F_{1} and
 F_{2} if and only if  x^{*}iS a fixed point of the mapping  R:Harrow C defined by

 Rx=F_{1\lambda}F_{2\nu}x, \forall x\in H,

where  y^{*}=F_{2\nu}x^{*}.

First, we introduce the following composite algorithm that generates a net  \{x_{t}\} in an
implicit way:

(3.1)  x_{t}=(I-\theta_{t}A)T_{r_{t}}Rx_{t}+\theta_{t}[t\gamma Vx_{t}+(I-t\mu G)
T_{r_{t}}Rx_{t}],

where t  \in(0,m\dot{{\imath}}n\{1,\frac{2-\overline{\gamma}}{ba-\gamma i}\})and\theta_
{t}\in(0,\Vert A||^{-1}]Wesummarize t hesicproperties o f\{x_{t}\},which can be proved by the same method as
in [6].

Proposition 3.2. Let  \{x_{t}\} be defined via (3.ı). Then

 ( \dot{{\imath}}i)(\dot{{\imath}})\lim_{tarrow 0}\Vert x_{t}-T_{r_{t}}Rx_{t}||=
0provided_{tarrow 0}\theta_{t}=0;\{x_{t}\}isbounded f ort \in(0,m\dot{{\imath}}n\{1,\frac{2-\overline{\gamma}}{\tau-\gamma,\lim\iota}
\}) ;
(iii)   \lim_{tarrow 0}\Vert x_{t}-y_{t}\Vert=0 , where  y_{t}=t\gamma Vx_{t}+(I-t\mu G)T_{r_{t}}Rx_{t} ;
(iv)   \lim_{tarrow 0}\Vert x_{t}-Rx_{t}\Vert=0 ;
(v)  x_{t} defines a continuous path from  (0,  \min\{1, \frac{2-\overline{\gamma}}{\tau-\gamma l}\}) into  H provided  \theta_{t} :

 (0,  \min\{1, \frac{2-\overline{\gamma}}{\tau-\gamma l}\})arrow(0, \Vert 
A\Vert^{-1}] is continuous, and  r_{t} :  (0,  \min\{1, \frac{2-\overline{\gamma}}{\tau-\gamma l}\})arrow(0, \infty)
is continuous.

We obtain the following theorem for strong convergence of the net  \{x_{t}\} as  tarrow 0 , which
guarantees the existence of solutions of the variational inequality (3.2) below.
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Theorem 3.3. Let the net  \{x_{t}\} be defined via (3.1). If   \lim_{tarrow 0}\theta_{t}=0 , then  x_{t} converges
strongly to  \overline{x} in  \Omega\cap Fix(T) as  tarrow 0 , which solves the variational inequality

(3.2)  \{(A-I)\overline{x},\overline{x}-p\rangle\leq 0, \forall p\in\Omega\cap Fix(T) ,

Equivalently, we have

 P_{\Omega\cap Fix(T)}(2I-A)\overline{x}=\overline{x}.
Now, we propose the following composite algorithm which generates a sequence in an

explicit way:

(3.3)  \{\begin{array}{l}
y_{n}=\alpha_{n}\gamma Vx_{n}+(I-\alpha_{n}\mu G)T_{r_{n}}Rx_{n},
x_{n+1}=(I-\beta_{n}A)T_{r_{n}}Rx_{n}+\beta_{n}y_{n}, \forall n\geq 0,
\end{array}
where  \{\alpha_{n}\}\in[0,1];\{\beta_{n}\}\subset(0,1] ;\{r_{n}\}\subset(0, \infty) ; and  x_{0}\in C is an arbitrary initial guess,
and establish strong convergence of this sequence to  \overline{x}\in\Omega\cap Fix(T) , which is the unique
solution of the variational inequality (3.2).

Theorem 3.4. Let  \{x_{n}\} be the sequence generated by the explicit algorithm (3.3). Let
 \{\alpha_{n}\},  \{\beta_{n}\} , and  \{r_{n}\} satisfy the following conditions:

(C1)  \{\alpha_{n}\}\subset[0,1] and  \{\beta_{n}\}\subset(0,1],  \alpha_{n}arrow 0 and  \beta_{n}arrow 0 as   narrow\infty ;
(C2)   \sum_{n=0}^{\infty}\beta_{n}=\infty ;
(C3)   \sum_{n=0}^{\infty}|\alpha_{n+1}-\alpha_{n}|<\infty , and  |\beta_{n+1}-\beta_{n}|\leq o(\beta_{n+1})+\sigma_{n},   \sum_{n=0}^{\infty}\sigma_{n}<\infty (the

perturbed control condition);
(C4)  \{r_{n}\}\subset(0, \infty),   \lim\inf_{narrow\infty}r_{n}>0 , and   \sum_{n=0}^{\infty}|r_{n+1}-r_{n}|<\infty.

Then  \{x_{n}\} converges strongly to  \overline{x}\in\Omega\cap Fix(T) , which is the unique solution of the
variational inequality (3.2).

Taking  G\equiv I,  \mu=1 , and  \gamma=1 in Theorem 3.5, we obtain the following corollary.

Corollary 3.5. Let  \{x_{n}\} be generated by the following iterative algorithm:

 \{\begin{array}{ll}
y_{n}=\alpha_{n}Vx_{n}+(1-\alpha_{n})T_{r_{n}}Rx_{n},   
x_{n+1}=(I-\beta_{n}A)T_{r_{n}}Rx_{n}+\beta_{n}y_{n},   \forall n\geq 0.
\end{array}
Assume that the sequences  \{\alpha_{n}\},  \{\beta_{n}\} , and  \{r_{n}\} satisfy the conditions (C1) — (C4) in
Theorem 3.5. Then  \{x_{n}\} converges strongly to  \overline{x}\in\Omega\cap Fix(T) , which is the unique solution
of the variational inequality (3.2).

Remark 3.6. 1) The  \overline{x}\in\Omega\cap Fix(T) in our results is the unique solution of minimization
problem

(3.4)   m\dot{{\imath}}n\frac{1}{2}x\in D\{(A-I)x, x\},
where the constraint set  D is  \Omega\cap Fix(T) . In fact, the variational inequality (3.2) is the
optimality condition for the minimization problem (3.4). Thus, for finding an element
of  \Omega\cap Fix(T) , where  T is a continuous pseudocontractive mapping, and  F_{1} and  F_{2} are
continuous monotone mappings, Theorem 3.4, Theorem 3.5 and Corollary 3.6 are new ones
different from previous those introduced by some authors (for example, see [1, 2]).

2) Taking  F_{1}=F_{2}=F,  \lambda=\nu and  x^{*}=y^{*} in GSVI(1.3) and replacing  F_{\lambda} by  F_{r_{n}} along
with the condition (C4) on  \{r_{n}\} , we can obtain a new result, which improves, supplements
and develops the corresponding results of [3, 5, 7, 14, 15, 19].
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