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ON OPTIMALITY THEOREMS FOR ROBUST
SEMI-INFINITE MULTIOBJECTIVE OPTIMIZATION
PROBLEMS

JAE HYOUNG LEE AND GUE MYUNG LEE

ABSTRACT. We consider a semi-infinite multiobjective optimization prob-
lem with more than two differentiable objective functions and uncertain
constraint functions, which is called a robust semi-infinite multiobjective
optimization problem and give its robust counterpart (RSIMP) of the
problem, which is regarded as the worst case of the uncertain semi-infinite
multiobjective optimization problem. In this paper, we review necessary
optimality theorems for weakly robust efficient solutions of (RSIMP),
which were in the paper [16].

1. INTRODUCTION

Mathematical optimization problems in the face of data uncertainty have been
treated by the worst case approach or the stochastic approach. The worst
case approach for optimization problems, which has emerged as a powerful
deterministic approach for studying optimization problems with data uncer-
tainty, associates an uncertain optimization problem with its robust counter-
part. Many researchers have investigated optimality and duality theories for
linear or convex programming problems under uncertainty with the worst-case
approach(the robust approach) ([1, 4, 5, 6, 7, 8, 9, 13, 15]). Moreover, many
authors have studied optimality and duality theories for robust multiobjec-
tive optimization problems under different suitable constrained qualifications
([3, 10, 11, 12, 14, 16]). We consider a semi-infinite multiobjective optimization
problem with more than two differentiable objective functions and uncertain
constraint functions, which is called a robust semi-infinite multiobjective op-
timization problem and give its robust counterpart (RSIMP) of the problem,
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which is regarded as the worst case of the uncertain semi-infinite multiobjective
optimization problem.

Consider the following semi-infinite multiobjective optimization problem in
the absence of data uncertainty

(SIMP) min (fl(m)a’fl(m))
st. gi(x) <0, VtET,
where f;: R™ - R, 2 = 1,...,l and g;: R® — R, t € T, are continuously
differentiable and T is an index set with coordinately possible infinite.

The semi-infinite multiobjective optimization problem (SIMP) in the face of

data uncertainty in the constraints can be captured by the problem
(USIMP) min (f1(=),..., fi(z))
s.t. gt(wavt) S O, vt € Ta
where f;: R® — R, 2 = 1,...,0 and g¢: R™ X R? — R are continuously
differentiable and v; € RY is an uncertain parameter which belongs to the
convex compact set Vy C R, t € T.

The uncertainty set-valued mapping V: T = R is defined as V(t) := WV,
for all t € T. So, gphV := {(t,v¢) : v € Vi, t € T} and v € V means
that v is a selection of V,ie., v: T — R? and vy € V; for all t € T.

The robust counterpart of (USIMP):

(RSIMP) min  (fi(x),..., fi(z))
st gi(z,ve) <0, Vv €V, Yt €T

The robust feasible set F' of (RSIMP) is defined by
F:={x €R":g(x,v,) <0, "t €T, “v, € V;}.

Then & € F is called a weakly robust efficient solution of (RSIMP) if there
does not exist a robust feasible solution & of (RSIMP) such that

fil@) < fil@), i =1,.00L

In this paper, we review necessary optimality theorems for weakly robust
efficient solutions of (RSIMP), which were in the paper [16].

2. NECESSARY OPTIMALITY THEOREMS

Let V: T = RY be an uncertainty set-valued mapping defined as V(t) :=
Vi for allt € T and g¢: R™ X R? — R be a given continuously differentiable
function. Now, we will assume that the following assumptions hold:

(A1) T is a compact metric space.

(A2) V is compact-valued and upper semi-continuous on T'
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(A3) g¢, (Tn,ve,) — gi(T,yve), whenever t,, € T —t € T, vy, € Vi, —
v € Vg, and x,, € R — x € R™ as n — oo.

(Ad) Vgt (xn,ve,) = Vgi(x,vs), whenever t, € T -t € T, v, €
Vi, =+ V¢ € Vg, and ¢, ER® — x € R as n — oo.

Let & € F. Let us decompose T into two index sets T = T3 (Z) U T2 (&),
where Th(Z) := {t € T : vy € V; s.t. g¢(&F,v:) = 0} and T2(F) :=
T\T1(Z). Let V¢(Z) := {vs € Vy : ge(Z, v¢) = 0}

We define an extended nonsmooth Mangasarian-Fromovitz constraint quali-
fication (ENMFCQ) at & € F as follows:

3d € R™ s.t. Vog:(Z,v)Td < 0, Vt € T1(Z), Yvr € Vi(Z).

Now we give a robust necessary optimality theorem for a weakly robust
efficient solution of (RSIMP), which was in [16].

Theorem 2.1. [16] Assume that the conditions (Al)-(A4) hold. Let & be a
weakly robust efficient solution of (RSIMP). Suppose that g¢(x,-) is concave
on Vg, for each * € R™ and for each t € T. Then there exist fi; > 0,
i =100 (Ar),op € R, and B, € Vi, t € T such that Y \_, fi; +
ZtGT Ae =1,
l
Z ﬁzvfz(‘i) + Z S\tvmgt(iaﬁt) =0
i=1 teT
and j\tgt(ii, 'l_)t) = 0, t e T.

Moreover, if we further assume that the extended Mangasarian-Fromovitz con-
straint qualification (EMFCQ) holds, then there exist f1; > 0,1 = 1,...,1,
not all zero, (j\t)teT € Rf), and Uy € Vi, t € T such that Zizl =1,

l
Y aVEE) + > AVage(E,7) =0
=1 teT
and j\tgt(i, ’l_)t) = O, t e T.

We may apply Theorem 2.1 to robust linear semi-infinite multiobjective
programming problems under uncertainty, which was studied by Goberna et
al. [2, 3, 4].

Consider the following linear semi-infinite multiobjective optimization prob-
lem in the absence of data uncertainty:

(LSIMP) min (cf=z,...,clz)
s.t. afa: > b, teT,
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where ¢;, 1 = 1,...,l, a; € R™, and by € R, t € T. The semi-infinite
optimization problem in the face of data uncertainty in the linear constraints
can be captured by the problem

(ULSIMP) min (cfz,...,cfx)
s.t. a;“rw > b, "t €T,

where a; and by are uncertain parameters, and (a¢, by) belongs to the set
V. CR*! forallt € T.

Let (at, by) € Vg, for t € T. The set-valued mapping V: T = R"*1, is
defined as V(t) := V; for all t € T.

The robust counterpart of (ULSIMP) is

(RLSIMP) min (cT=z,...,cfx)
st.  aXz > by, Y(at,by) € Vi, "t €T

Clearly, FX := {z € R" : aTx > by, "(at,b:) € Vi, "t € T} is the feasible
set of (RLSIP).

We define an extended linear Mangasarian-Fromouvitz constraint qualification
(ELMFCQ) at & € FL as follows:

3d € R™ such that V¢t € Ty (%), V(as, b)) € Vi(Z), ald > 0.

Remark 2.2. [16] Goberna et al. [3] have established characterizations of ro-
bust solutions of (ULSIMP) under the local Farkas-Minkowski constraint qual-
ification (LFMCQ) at & € FL, that is, D(FL;z)*T = A(Z), where

A(Z) := cone{a : (a,b) € U V; and aTZ = b} C R™,
teT
D(FL;E) :={d€eR":3In >0s.t. T +nd € FL},

and D(F¥; &)t is the positive polar cone of D(F¥;Z). In the linear program-
ming with finite uncertain linear constraints, generally, even if the extended lin-
ear Mangasarian-Fromovitz constraint qualification (ELMFCQ) does not hold,
(LFMCQ) always holds.

We can get the following necessary optimality theorem for (ULSIP) from
Theorem 2.1, which was in [16].

Theorem 2.3. [16] Assume that the conditions (A1) and (A2) hold. Let T
be a weakly robust efficient solution of (ULSIP). Then there exist fi; > 0,
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i=1,...,0, (A),ep € R, and 3, = (@, bs) € Vi, t € T such that

teT

l

Z[]iCi — Z S\t&t =0 and Xt(dg‘i — Bt) = 0, teT.
i=1 teT

Moreover, if we further assume that (ELMFCQ) holds, then there exist f1; > 0,

1 =1,...,1, not all zero, (j\t)teT e Rf) and By = (@4, bs) € Vi, t € T

such that 351 i = 1, S0y i + Yper Ae > 1,

l
ZﬂiCi - Z S\t(_lt =0 and S\t((_lz—'i — Bt) = 0, t e T.
=1 teT
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