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Abstract. In this paper, we study the optimality conditions and duality in
minimax programming problems in the face of data uncertainty. Following the
robust optimization approach (worst‐case approach), we formulate its robust
counterpart of the minimax programming problems under data uncertainty.
A representation of the normal cone to a convex set is established under the
robust characteristic cone constraint qualification. Then, by using the obtained
result, we propose the necessary condition for optimal solutions of the considered
problem; moreover, a dual problem in term of Wolfe type to the primal one
is stated; and weak and strong duality relations between them are explored.
Finally, some of these results are applied to a robust multiobjective optimization
problem.

1 Introduction and Preliminaries

We use the following notation and terminology. \mathbb{R}^{n} denotes the  n‐dimensional
Euclidean space with the inner product  \{\cdot,  \cdot\rangle and the associated norm  \Vert\cdot\Vert . We
say that a set  \Gamma in  \mathbb{R}^{n} is convex whenever  \muaı  + (l—  \mu )a2  \in\Gamma for all  \mu\in[0,1],
 a_{1},   a_{2}\in\Gamma . We denote the domain of  f by dom  f , that is, dom  f  :=\{x\in
 \mathbb{R}^{n}:f(x)<+\infty\}.  f is said to be convex if for all  \lambda\in[0,1],

 f((1-\lambda)x+Ay)\leq(1-\lambda)f(x)+\lambda f(y)

for all  x,  y\in \mathbb{R}^{n} . The function  f is said to be concave whenever  -f is convex.
The (convex) subdifferential of  f at  x\in \mathbb{R}^{n} is defined by

 \partial f(x)=\begin{array}{l}
\{x^{*}\in \mathbb{R}^{n}|\langle x^{*}, y-x\}\leq f(y)-f(x), \forall y\in 
\mathbb{R}^{n}\}, if x\in domf,
\emptyset, otherwise.
\end{array}
Lemma 1.1 [6] (Moreau‐Rockafellar sum rule) Consider two proper convex
functions  f_{1},  f_{2}:\mathbb{R}^{n}arrow\overline{\mathbb{R}} such that ri dom  f_{1}n ri dom   f_{2}\neq\emptyset . Then

 \partial(f_{1}+f_{2})(x)=\partial f_{1}(x)+\partial f_{2}(x)

for every   x\in dom  (f_{1}+f_{2}) .
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Proposition 1.1 (   \max‐function rule) Consider convex functions  f_{k} :  \mathbb{R}^{n}arrow

 \mathbb{R},  k=1,  l , and let   \varphi(x)=\max\{f_{1}(x), f_{l}(x)\} . then

 \partial\varphi(\overline{x})= conv   \bigcup_{k\in K(\overline{x})}\partial f_{k}(\overline{x}) ,

where  \mathbb{K}(\overline{x})  :=\{k\in \mathbb{K} :=\{1, l\}:\varphi(\overline{x})=f_{k}(\overline{x})\} denotes the active index

set.

2 Main Results

A standard form of minimax programming problem is the problem:

(P)   \min_{x\in \mathbb{R}^{n}}\max_{\mathbb{K}}f_{k}(x)k\in
s.t.  g_{i}(x)\leqq 0,  i=1,  m,

where  f_{k},  g_{i} :  \mathbb{R}^{n}arrow \mathbb{R},  k\in \mathbb{K}  :=\{1, l\},  i=1,  m are convex functions.

The minimax programming problem (P) in the face of data uncertainty in
the constraints can be captured by the problem

(UP)   \min_{x\in R^{n}}\max_{\mathbb{K}}k\in  f_{k}(x)

s.t.  g_{i}(x, v_{i})\leqq 0,  i=1,  m,

where  g_{i} :  \mathbb{R}^{n}\cross \mathbb{R}^{q}arrow \mathbb{R},  g_{i}(\cdot, v_{i}) is convex and  v_{i}\in \mathbb{R}^{q} is an uncertain parameter
which belongs to the set  \mathcal{V}_{i}\subset \mathbb{R}^{q},  i=1,  m . The problem (UP) is to op‐
timize convex optimization problems with data uncertainty (incomplete data),
which means that input parameters of these problems are not known exactly
at the time when solution has to be determined [1]. Actually there are two
main approaches to deal with constrained optimization under data uncertainty,
namely robust programming approach and stochastic programming approach; in
stochastic programming, one works with the probabilistic distribution of uncer‐
tainty and the constraints are required to be satisfied up to prescribed level of
probability [3], while robust programming approach seeks for a solution which
simultaneously satisfies all possible realizations of the constraints. It seems to
be more convenient to use the robust approach to study optimization problems
with data uncertainty, comparing with stochastic programming approach.

In the present paper we explore optimality and duality theorems for the
uncertain minimax programming problem (UP) by examining its robust (worst‐
case) counterpart [1]:

(RP)   x \in R^{n}k\in Km\dot{{\imath}}n\max  f_{k}(x)

s.t.  g_{i}(x, v_{i})\leqq 0,  \forall v_{i}\in \mathcal{V}_{i} ,  i=1 , ,  m.

Denote by  F  :=\{x\in \mathbb{R}^{n}:g_{i}(x, v_{i})\leqq 0, \forall v_{i}\in \mathcal{V}
_{i}, i= {\imath}, m\} as the feasible
set of (RP).
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Definition 2.1 [4] We say the robust characteristic cone constraint qualifica‐
tion (CQ) holds if the cone

  \bigcup_{v_{i}\in \mathcal{V}_{i},\lambda_{i}\geqq 0} epi  ( \sum_{i=1}^{m}\lambda_{i}g_{i}(\cdot, v_{i}))^{*}
is closed and convex.

Remark 2.1 One may see [4] for some properties on the cone

  \bigcup_{v_{i}\in \mathcal{V}_{i},\lambda_{i}\geqq 0} epi  ( \sum_{i=1}^{m}\lambda_{i}g_{i}(\cdot, v_{i}))^{*}
We establish approximate optimality theorem for (RP) under the (CQ) con‐

dition. Moreover, we formulate a Wolfe type dual problem for the primal one;
and propose weak duality between the primal problem and its Wolfe type dual
problem as well as strong duality which holds under the condition (CQ). We
also give an example to illustrate the obtained results.

Definition 2.2 Let  \varphi(x)  := \max f_{k}(x)k\in \mathbb{K}' x\in \mathbb{R}^{n} . A point  \overline{x}\in F is said to be

an optimal solution of (RP) if and only if

 \varphi(\overline{x})\leqq\varphi(x) \forall x\in F.

2.1 Representation of the Normal Cone

In order to obtain Karush−Kuhn−Tucker (KKT) optimality condition in terms
of the constraint functions  g_{i}(x, v_{i})\leqq 0,  \forall v_{i}\in \mathcal{V}_{i},  i=1,  m , the normal
cone must be explicitly expressed in their terms. Below, we present such a
result under the (CQ) condition.

Lemma 2.1 Let  \overline{x}\in C  :=\{x\in \mathbb{R}^{n}:g(\cdot, v)\leqq 0, \forall v\in \mathcal{V}\} , where  \mathcal{V} is a certain

convex compact uncertainty subset in  \mathbb{R}^{q} . Suppose that the (CQ) condition holds.
Then  \xi\in N_{C}(\overline{x}) if and only if there exist  \overline{\lambda}\geqq 0 and  \overline{v}\in \mathcal{V} such that

 \xi\in\overline{\lambda}\partial g(\overline{x},\overline{v}) and  \overline{\lambda}g(\overline{x},\overline{v})=0.

Corollary 2.1 Let  \overline{x}\in C  :=\{x\in \mathbb{R}^{n}:g(\cdot, v)\leqq 0, v\in \mathcal{V}\} , where  \mathcal{V} is a certain
convex compact uncertainty subset in  \mathbb{R}^{q} . Suppose that the Slater constraint
qualification holds, that is, there exists  x_{0}\in \mathbb{R}^{n} such that  g(x_{0}, v)<0 , for all

 v\in \mathcal{V} . Then  \xi\in N_{C}(\overline{x}) if and only if there exist  \overline{\lambda}\geqq 0 and  \overline{v}\in \mathcal{V} such that

 \xi\in\overline{\lambda}\partial g(\overline{x},\overline{v}) and  \overline{A}g(\overline{x},\overline{v})=0.
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2.2 Optimality Conditions

The following theorem gives a KKT necessary condition for optimal solutions
of the problem (RP).

Theorem 2.1 Consider the problem (RP), assume that the (CQ) condition
holds. If  \overline{x} is an optimal solution of the problem (RP), then there exist  \tau  :=

 (\tau_{1}, \ldots, \tau_{l})\in \mathbb{R}_{+}^{l}\backslash \{0\},\overline{v}
_{i}\in \mathcal{V}_{i},  i=1,  m and  \lambda  :=(\lambda_{1}, \ldots, \lambda_{m})\in \mathbb{R}_{+}^{m} , such
that

 0 \in\sum_{k\in K}\tau_{k}\partial f_{k}(\overline{x})+\sum_{i\in M}\lambda_{i}
\partial g_{i}(\cdot,\overline{v}_{i})(\overline{x}) ,

  \tau_{k}(f_{k}(\overline{x})-\max f_{k}(\overline{x}))k\in K=0, k\in 
\mathbb{K},
 \lambda_{i}g_{i}(\overline{x})=0, i=1, m.

Corollary 2.2 Consider the problem (RP), assume that the Slater constraint
qualification holds, that is, there exists  x_{0}\in \mathbb{R}^{n} such that  g_{i}(x_{0}, v_{i})<0 , for all
 v_{i}\in \mathcal{V}_{i},  i=1,  m . If  \overline{x} is an optimal solution of the problem (RP), then there
exist  \tau  :=  (\tau_{1} , \tau_{l})\in \mathbb{R}_{+}^{l}\backslash \{0\},\overline{v}_{i}\in
\mathcal{V}_{i},  i=1,  m and  \lambda  :=(\lambda_{1} , \lambda_{rn})\in

 \mathbb{R}_{+}^{rn} , such that

 0 \in\sum_{k\in K}\tau_{k}\partial f_{k}(\overline{x})+\sum_{i\in M}\lambda_{i}
\partial g_{i}(\cdot,\overline{v}_{i})(\overline{x}) ,

  \tau_{k}(f_{k}(\overline{x})-\max f_{k}(\overline{x}))k\in K=0, k\in 
\mathbb{K},
 \lambda_{i}g_{i}(\overline{x})=0, i=1, m.

2.3 Duality Relations

In this section we formulate a dual problem to the primal one in the sense of
Wolfe [7], and explore weak and strong duality relations between them.

In connection with the robust minimax programming problem (RP), denote
 \varphi(y)  := \max f_{k}(y)k\in K ’ we consider a dual problem in the following form:

 (RD)_{W}  Maximize_{(y,\tau v,\lambda)}   \varphi(y)+\sum_{i\in M}\lambda_{i}g_{i}(y, v_{i})
subject to  0 \in\sum_{k\in K}\tau_{k}\partial f_{k}(y)+\sum_{i\in M}\lambda_{i}\partial g_
{i}(\cdot, v_{i})(y)

 \tau_{k}(f_{k}(y)-\varphi(y))=0, k\in \mathbb{K}

  \tau_{k}\geqq 0,\sum_{k\in K}\tau_{k}=1
 \lambda_{i}\geqq 0, v_{i}\in \mathcal{V}_{i}, i\in M.
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Let  F_{D}= \{(y, \tau, v, \lambda)\in \mathbb{R}^{n}\cross \mathbb{R}_{+}^{l}\cross
\mathcal{V}\cross \mathbb{R}_{+}^{m}:0\in\sum_{k\in K}\tau_{k}\partial f_{k}(y)+
\sum_{i\in M}\lambda_{i}\partial g_{i}(\cdot, v_{i})(y) ,

 \tau_{k}(f_{k}(y)-\varphi(y))=0,  k\in \mathbb{K},   \tau_{k}\geqq 0,\sum_{k\in K}\tau_{k}=1,  \lambda_{i}\geqq 0,  v_{i}\in \mathcal{V}_{i},  i\in M\} be the

feasible set of  (RD)_{W} . We should note that a point  (\overline{y},\overline{\tau},\overline{v},\overline{\lambda})\in F_{D} is called an
optimal solution of problems  (RD)_{W} if for all  (y, \tau, v, \lambda)\in F_{D},

  \varphi(\overline{y})+\sum_{i\in M}\overline{\lambda}_{i}g_{\dot{i}}(\overline
{y},\overline{v}_{i})\geqq\varphi(y)+\sum_{i\in M}\lambda_{i}g_{i}(y, v_{i}) .

The following theorem describes a weak duality relation between the primal
problem (RP) and the dual problem  (RD)_{W}.

Theorem 2.2 (Weak duality) For any feasible solution  x of (RP) and any
feasible solution  (y, \tau, v, \lambda) of  (RD)_{W},

  \varphi(x)\geqq\varphi(y)+\sum_{i\in M}\lambda_{i}g_{i}(y, v_{i}) .

A strong duality relation between the primal problem (RP) and the dual
problem  (RD)w is given as follows.

Theorem 2.3 (Strong duality) Let  \overline{x}\in F be an optimal solution of the robust
problem (RP) such that the (CQ) condition is satisfied at this point. Then there
exists  (\overline{\tau},\overline{v},\overline{\lambda})\in \mathbb{R}_{+}^{l}\cross 
\mathbb{R}^{q}x\mathbb{R}_{+}^{m} such that  (\overline{x},\overline{\tau},\overline{v},\overline{\lambda})\in F_{D} is an optimal solution
of problem  (RD)_{W}.

Here comes an example to illustrate our duality results. Note that this
example is modified by [5, Example 2].

Example 2.1 Consider the following minimax optimization problem with un‐
certainty:

(RP)1   \min_{(x_{1},x_{2})\in R^{2}k}\max_{\in\{1,2\}}\{f_{1}(x_{1}, x_{2}), f_{2}(x_
{1}, x_{2})\}
s.t.  x_{1}^{2}-2v_{1}x_{1}\leqq 0,  v_{1}\in[-1,1].

Let  f_{1}(x_{1}, x_{2})=x_{1}+x_{2}^{2},  f_{2}(x_{1}, x_{2})=-x_{1}+x_{2}^{2} and gı  ((x_{l}, x_{2}), v_{1})=x_{1}^{2}-2v_{1}x_{1}.
Then the feasible set of (RP)l is  F^{1}  :=\{(x_{1}, x_{2})\in \mathbb{R}^{2}:x_{{\imath}}^{2}-2v_{1}x_{1}\leqq 0,   v_{1}\in

 [-1,1]\}=\{(x_{1}, x_{2})\in \mathbb{R}^{2}| x{\imath}=0, x_{2}\in \mathbb{R}\} , and  \{(0,0)\} is the set of optimal
solutions of (RP)1.

Clearly, the rm Slater condition goes awry for (RP)1. However

  \bigcup_{v_{1}\in[-1,1]},  \lambda_{1}\geqq 0

epi  (\lambda_{1}g_{1}(\cdot, v_{1}))^{*}

is closed and convex whereas the Slater condition fails (one may refer to [5]).
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Now, we formulate a robust dual problem  (RD)_{W}^{1} for (RP)l as follows:

 (y, \tau,v,\lambda)\max (RD)_{W}^{1}  \varphi(y_{1}, y_{2})+\lambda_{1} gı  ((y_{1}, y_{2}), v_{1})

s.t.  0\in\tau_{1}\partial f_{i} (  y_{1} , y2)  +\tau2  \partialf2(yı, y2)  +\lambda ı  \partialg1(, vl)(yı,  y_{2} )
 \mathcal{T}ı  (f_{1}(y_{1}, y_{2})-\varphi(y_{1}, y_{2}))=0
 \tau_{2}(f_{2}(y_{1}, y_{2})-\varphi(y_{1}, y_{2}))=0
 \mathcal{T}ı  \geqq 0,  \tau_{2}\geqq 0,  \tau_{1}+\tau_{2}=1,  \lambda_{1}\geqq 0,  v_{1}\in[-1,1],

where   \varphi(y_{1}, y_{2})=\max_{\{1,2\}}\{f_{1}(y_{1}, y_{2}), f_{2}(y_{1}, y_{2})
\}.
By calculation, we have the set of all feasible solutions of  (RD)_{W}^{1} is  F_{D}^{1}  :=

  \{ ((0,0), (\frac{1+2\lambda_{1}v_{1}}{2}, \frac{1-2\lambda_{1}v_{1}}{2}), 
v_{1}, \lambda{\imath}): \lambda_{1}\in[0, \frac{1}{2}], v_{1}\in[-1,1]\} . It is not difficult

to see the validness of Theorem 2.2 (Weak duality) and Theorem 2.3 (Strong
duality).

3 An application to robust multiobjective opti‐
mization problems

Chuong and Kim [2] employed the results of nondifferentiable minimax program‐
ming problems to study a multiobjective optimization problem, In this section,
we apply the results of the robust mimimax programming problem to a robust
multiobjective optimization problem. More precisely, we employ the necessary
optimality conditions obtained for the robust mimimax programming problem
in the previous section to derive the corresponding ones for a multiobjective
optimization problem. (One can deal similarly with duality relations in this
way.)

We consider the following constrained multiobjective robust optimization
problem:

 {\rm Min}_{JR_{+}^{l}}\{f(x)|x\in F\} , (RMP)

where the feasible set  F is same to the feasible set of (RP), and  \mathbb{R}_{+}^{l} denotes the
nonnegative orthant of  \mathbb{R}^{l}.

Note that  {\rm Min}_{R_{+}^{l}} “ in the above problem is understood with respect to the

ordering cone  \mathbb{R}_{+}^{l}.

Definition 3.1 A point  \overline{x}\in F is a weakly Pareto solution of problem (RMP)
if and only if

  f(x)-f(\overline{x})\not\in −int  \mathbb{R}_{+}^{l}  \forall x\in F,

where int  \mathbb{R}_{+}^{l} stands for the topological interior of  \mathbb{R}_{+}^{l}.
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The following result is a Karush−Kuhn−Tucker (KKT) necessary condition
for weakly Pareto solutions of problem (RMP).

Theorem 3.1 Let the (CQ) condition be satisfied at  \overline{x}\in F. If  \overline{x} is a weakly
Pareto solution of the problem (RMP), then there exist  \tau:=(\tau_{1}, \ldots, \tau_{l})\in
 \mathbb{R}_{+}^{l}\backslash \{0\},  \lambda  :=(\lambda_{1}, \ldots, \lambda_{rn})\in \mathbb{R}_{+}^{m} , and  v  :=(v_{1}, \ldots, v_{l})\in \mathbb{R}_{+}^{m} such that

 0 \in\sum_{k\in \mathbb{K}}\tau_{k}\partial f_{k}(\overline{x})+\sum_{i\in M}
\lambda_{i}\partial g_{i}(\overline{x}) and  \lambda_{i}g_{i}(\overline{x})=0,  i\in I.

References

[1] Ben‐Tal, A., Nemirovski, A.: A selected topics in robust convex optimiza‐
tion, Math. Program., Ser B, 112,125−158 (2008)

[2] Chuong, T.D., Kim, D.S.: Nondifferentiable minimax programming prob‐
lems with applications, Ann. Oper.  {\rm Res}., 251,73−87 (2017)

[3] Houda, M.: Comparison of approximations in stochastic and robust opti‐
mization programs, In: Hušková, M., Janžura, M. (eds.) Prague Stochastics
2006, pp. 418‐425. Prague, Matfyzpress (2006)

[4] Jeyakumar V., Li, G.Y.: Strong duality in robust convex programming:
complete characterizations, SIAM J. Optim., 20, 3384‐3407 (2010)

[5] Lee, J.H., Jiao, L.G.: On quasi  c‐solution for robust convex optimization
problems. Optim. Lett., 11, 1609‐1622 (2017)

[6] Rockafellar, R.T.: Convex Analysis, Princeton Univ. Press, Princeton, N.
J. (1970)

[7] Wolfe, P.: A duality theorem for nonlinear programming, Quart. Appl.
Math., 19, 239‐244 (1961)

102


