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Abstract
We investigate the isometry groups of Banach algebras from the point of
view of how they are determined by their local actions.

1 Introduction

Let X be a non-empty set. Let M(X) be the set of all maps from X into itself.
Suppose that § # S € M(X).

Definition 1. We say that T' € M(X) is 2-local in § if for every pair x,y € X there
exists T, € S such that

T(:U) = Tz,y(m)’ T(y) = Taz,y(y)'

Definition 2. If every 2-local map in S is in fact an element of S, we say that S is
2-local reflexive in M(X).

Problem 3. When is S 2-local reflexive in M(X)?

Motivated by an interesting extension by Kowalski and Stodkowski of the Gleason-
Kahane-Zelazko theorem, Semrl [15] initiated to study 2-local automorphisms and
derivations. Probably besides the groups of the automorphisms and the derivations,
most important class of transformations on a Banach algebra is the isometry group
which reflects the geometrical properties of the underlying algebra. This motivates us
to study the local properties of this group. Molnér [12] studied 2-local complex-linear
surjective isometries of some operator algebras. After Molnar 2-local complez-linear
surjective isometries on several spaces of continuous functions are studied by many
authors [1, 2, 3,4, 5,6, 7, 8,9, 11, 12].

Molnar [13] mentioned the problem whether the group of all surjective isometires
is 2-local reflexive or not. Although Molnér [14] has already proved among several
interesting results that the group of all surjective isometries on B(H) for a separable
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Hilbert space is 2-local reflexive, the problem for C(X) for a first countable compact
Hausdorff space X, in particular C([0,1]), seems to be difficult. This problem of
Molnér is much harder than that for the group of all surjective complex-linear isome-
tries because of the fact that the number of the parameters is relatively large. In fact,
If U : C[0,1] — CI0,1] is a surjective isometry, then

U(f)=U0)+afop, [feC01],
U(f)=U0) +afop, feC01]

Hence the number of the parameters describing a surjective isometry on C[0,1] is
four, while the number of parameters for a surjective complex-linear isometry is two.

2 2-local reflexivity of Iso(C*([0,1]))

We study 2-local sujective isometries on the Banach algebra of complex-valued con-
tinuously differentiable functions C*[0,1] on the closed interval [0, 1] with the norm
IfIl = [[fllee + [ £]loc for f € C0,1]. The group of all surjective isometries on
C1[0,1] is denoted by Iso(C'[0,1]). The representation theorem for Iso(C([0,1]) is
proved by Miura and Takagi [10].

Theorem 4 (Miura and Takagi). Let U : C'[0,1] — C[0,1] be a surjective isometry.
Then there exists a constant o of modulus 1 such that one of the following holds.

(L) U@ =U0)(1t) +af(t), Vfel'01], vtelo,1],
@) U =U0)1t) +afd-t), VfeCo,1], Vte[0,1],
(3) UN)(®) =U0)(t) +af(t), YfeCo,1], vte[0,1],
@) U =U0)1t) +af(l-1t), VfeCo,1], vte[0,1].
Theorem 5 ([5]). The group Iso(C[0,1]) is 2-local reflexive in M(C*[0,1]).
The above theorem states the following. Suppose that T : C*[0,1] — C'[0,1] is
2-local in Iso(C1[0,1]): i.e
Vf,g € C0,1], 3Ty, € Iso(C[0,1]) such that

T(f)=Tsg(f),  T(9) =Trq(9)-

Then T € Iso(C[0,1]). Since Ty = T — T(0) is 2-local in Iso(C'[0,1]), we have by
Lemma that

Vf,g € CY0,1], s, € C10,1] and ay,4 € C of modulus 1 such that

To(f) = Arg +agg(fop)he and To(g) = Apg + agg(go @)™,

where ¢ : [0,1] = [0,1]is ¢ = Id or 1 —Id, and (F)#s = F or F depending
on f and g. Note that the number of the parameters for Ty is four. We show that



Ty is a real-linear surjective isometry on C*[0,1]. For every ¢ € C, there exists
T.0 € Iso(C[0,1]) such that

To(c)
0 =To(0)

Tc,O (C) = >\c,0 + O‘c,O[C]Ec’O
TC,O (0) = Ac,O + O45,00 = )\C,O'

Thus Tp(C) c C -
Lemma 6. Ty(C) C C, and Tylc is a real-linear isometry on C.
Hence there exists a complex number « of modulus 1 such that
To(z) = az (2 € C) or Tp(z) = az (2 € C).

The point is to consider the set

W ={feC0,1] : If U(£([0,1])) = £([0,1]) for an isometry on C,then U is the identity}.

Note that : U(z) = A+ az (z € C) or U(z) = A+ az (z € C). Let P be the set of all
polynomials. Many polynomials are in W:

o {+it?
o ...
o ...

But it is not always the case:
o (t—1/2)3+i(t—1/2)?

Lemma 7. P C W, the uniform closure of W. Hence W is uniformly dense in
o, 1].

Let

w(t):{o, 1 t=0

tising, 0<t<1

For f=p+iqg € P and m € N, put

g = G =0+ (00 () g () (= 5) +p () +ia (), 0<t<5

) +ig(t), Lot<t

Then

{fm : [ =p+ig €W, pis not constant and p, ¢, 1 is linearly independent} C W.
Lemma 8. Suppose that Ty(z) = az (z € C). Then

To(f)(t) = af(t) or To(f)(t) = af (1 —t) for f € W.

Suppose that Ty(z) = az (z € C). Then

To(F)(t) = af(t) or To(f)(t) = af(1 =) for f € W.



We show how to use W to reduce the number of the parameters for the case where
To(z) =z (z € C).
Let f € W. By the property of 2-localness for f and 0 we have
To(f) = Ao +ago(fopro)®  0=Tp(0) = Aso + aye0.

Then Ay = 0 follows and we have

To(f) = ago(f o pr0)™°.
Let 0 # ¢ € C be arbitrary and fix it. We also have that

TO(f) = )\f,c + af,c(f o pr,c)sf’ca c= TO(C) = )‘f,c + af,(:(c)sf’c'

By the second equation, Af . is a constant. Then

aro(foero)™® =Aretagc(fopre) e

From
aro(foero)™ =Aret+apc(fopse)e
we have four possibility depending on €5 and €y ..
(1) fowro=0aroAse+aroaref ©pse,
(2) fowro=0ar0Asc+aroaref ¢y,
(

3) fowro=ascAretapodsefopse,
(4) fopro=afcAretarodscf opy.e.

Considering the range of these equations we have

(1) f([0,1]) =@ 0Ar.c +afoar.cf([0,1]),
(2) f([0,1]) = @roAs.c + @rocs.ef([0,1]),
(3) f([0,1]) = ey, + arotrf((0,1]),
(4> f([oa 1]) = af,c)‘f,c + O‘f,Omf([Oa 1])

Since f € W, (2) and (4) are impossible. In fact, letting an isometry S(z) = @z oAfc+
aroayfcz (z € C), (2) means that

F[0,1]) = S(£([0,1])),

which is impossible for S being not the identity. Hence (2) is impossible. (4) is
impossible in the same way.

We also see that (3) is impossible by some different reason. This is a part of the proof
applying the property of W. By a further consideration we see that To(f) = fo ¢y
when Ty (z) = z (z € C). We need to prove that ¢y does not depend on f. To prove
it we first prove that To(Id) = Id or Ty(Id) = 1 — Id. This can be proved by an
aproximation argument. If Ty(2) = az (z € C) and Ty(Id) = Id, then

To(f)(t) = af(t), VfeW.
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If To(z) = az (2 € C) and Ty(Id) = 1 — Id, then

To(f)t) =af(l—t), VfeW.
It TO(Z) = oz (Z S (C) and To(.[d) = Id, then

To(f)(t) = af(t), VfeW.
If To(z) = az (2 € C) and Tp(Id) =1 — Id, then

To(f)(t) =af(l—t), VfeW.
[

As W is uniformly dense in C'[0, 1] we conclude that:

If To(z) = az (2 € C) and Ty(Id) = Id, then
To(f)(t) = af(t), ¥feCH0,1].
If To(z2) = az (2 € C) and Tp(Id) = 1 — Id, then
To(f)(t) = af(1 1), VfeCHo,1].
If To(2) = az (2 € C) and To(Id) = Id, then
To(f)(t) = af(t), ¥feCo,1].
If To(z) = az (2 € C) and Ty(Id) = 1 — Id, then
To(f)t) =af(l—t), Vfe Cl[o, 1]'

3 2-local reflexivity of Iso(Lip(K))

For a compact metric space K, let

with the norm || f|ls = || f|lcc + Ly for f € lip,(K). We say that Ly is the Lipschitz
constant for f. With this norm lip,, (K) is a unital semisimple commutative Banach
algebra. We prove the following in [5].

Lip(K) = {fEC(K):Lf:supM <oo}

Theorem 9 ([5]). Let K; be a compact metric space for j = 1,2. Suppose that
U :lip, (K1) — lip, (K32) is a surjective real-linear isometry with respect to the norm
| flls = I fllc + L¢ for f € lip,(K1). Then there exists a surjective isometry m :
Ky — Ky such that

Uf)=U1)fom,  felip, (K1)
or
U(f)=UW)fom,  f€lip,(K1).
Applying Theorem 9, in the similar way as in Section 2 we see the following.

Theorem 10 ([5]). Iso(Lip|0, 1]) is 2-local reflexive in M (Lip[0,1]).
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