2-local isometies on spaces of continuous functions

Osamu Hatori

Niigata University

This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University. This work was supported by JSPS KAKENHI Grant Numbers JP16K05172, JP15K04921.

Abstract

We investigate the isometry groups of Banach algebras from the point of view of how they are determined by their local actions.

1 Introduction

Let \mathcal{X} be a non-empty set. Let $\mathcal{M}(\mathcal{X})$ be the set of all maps from \mathcal{X} into itself. Suppose that $\emptyset \neq \mathcal{S} \subset \mathcal{M}(\mathcal{X})$.

Definition 1. We say that $T \in \mathcal{M}(\mathcal{X})$ is 2-local in \mathcal{S} if for every pair $x, y \in \mathcal{X}$ there exists $T_{x,y} \in \mathcal{S}$ such that

$$T(x) = T_{x,y}(x), \quad T(y) = T_{x,y}(y).$$

Definition 2. If every 2-local map in S is in fact an element of S, we say that S is 2-local reflexive in $\mathcal{M}(\mathcal{X})$.

Problem 3. When is S 2-local reflexive in $\mathcal{M}(\mathcal{X})$?

Motivated by an interesting extension by Kowalski and Słodkowski of the Gleason-Kahane-Żelazko theorem, Šemrl [15] initiated to study 2-local automorphisms and derivations. Probably besides the groups of the automorphisms and the derivations, most important class of transformations on a Banach algebra is the isometry group which reflects the geometrical properties of the underlying algebra. This motivates us to study the local properties of this group. Molnár [12] studied 2-local complex-linear surjective isometries of some operator algebras. After Molnár 2-local complex-linear surjective isometries on several spaces of continuous functions are studied by many authors [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12].

Molnár [13] mentioned the problem whether the group of all surjective isometires is 2-local reflexive or not. Although Molnár [14] has already proved among several interesting results that the group of all surjective isometries on B(H) for a separable

Hilbert space is 2-local reflexive, the problem for C(X) for a first countable compact Hausdorff space X, in particular C([0,1]), seems to be difficult. This problem of Molnár is much harder than that for the group of all surjective complex-linear isometries because of the fact that the number of the parameters is relatively large. In fact, If $U: C[0,1] \to C[0,1]$ is a surjective isometry, then

$$U(f) = U(0) + \alpha f \circ \varphi, \quad f \in C[0, 1],$$

$$U(f) = U(0) + \alpha \overline{f \circ \varphi}, \quad f \in C[0, 1].$$

Hence the number of the parameters describing a surjective isometry on C[0,1] is four, while the number of parameters for a surjective complex-linear isometry is two.

2-local reflexivity of $\operatorname{Iso}(C^1([0,1]))$ 2

We study 2-local sujective isometries on the Banach algebra of complex-valued continuously differentiable functions $C^{1}[0,1]$ on the closed interval [0,1] with the norm $||f|| = ||f||_{\infty} + ||f'||_{\infty}$ for $f \in C^1[0,1]$. The group of all surjective isometries on $C^1[0,1]$ is denoted by $\operatorname{Iso}(C^1[0,1])$. The representation theorem for $\operatorname{Iso}(C^1([0,1])$ is proved by Miura and Takagi [10].

Theorem 4 (Miura and Takagi). Let $U: C^1[0,1] \to C^1[0,1]$ be a surjective isometry. Then there exists a constant α of modulus 1 such that one of the following holds.

- $\begin{array}{ll} (1) \ \ U(f)(t) = U(0)(t) + \alpha f(t), & \forall f \in C^1[0,1], \ \forall t \in [0,1], \\ (2) \ \ U(f)(t) = U(0)(t) + \alpha f(1-t), & \forall f \in C^1[0,1], \ \forall t \in [0,1], \end{array}$
- (3) $U(f)(t) = U(0)(t) + \alpha \overline{f(t)}, \quad \forall f \in C^1[0,1], \quad \forall t \in [0,1],$ (4) $U(f)(t) = U(0)(t) + \alpha \overline{f(1-t)}, \quad \forall f \in C^1[0,1], \quad \forall t \in [0,1].$

Theorem 5 ([5]). The group $Iso(C^1[0,1])$ is 2-local reflexive in $M(C^1[0,1])$.

The above theorem states the following. Suppose that $T: C^1[0,1] \to C^1[0,1]$ is 2-local in $Iso(C^1[0,1])$: i.e.,

 $\forall f, g \in C^1[0,1], \exists T_{f,g} \in \text{Iso}(C^1[0,1]) \text{ such that}$

$$T(f) = T_{f,g}(f), T(g) = T_{f,g}(g).$$

Then $T \in \text{Iso}(C^1[0,1])$. Since $T_0 = T - T(0)$ is 2-local in $\text{Iso}(C^1[0,1])$, we have by Lemma that

 $\forall f,g \in C^1[0,1], \exists \lambda_{f,g} \in C^1[0,1] \text{ and } \alpha_{f,g} \in \mathbb{C} \text{ of modulus } 1 \text{ such that}$

$$T_0(f) = \lambda_{f,g} + \alpha_{f,g} (f \circ \varphi)^{\varepsilon_{f,g}}$$
 and $T_0(g) = \lambda_{f,g} + \alpha_{f,g} (g \circ \varphi)^{\varepsilon_{f,g}}$,

where $\varphi:[0,1]\to[0,1]$ is $\varphi=\mathrm{Id}$ or $1-\mathrm{Id}$, and $(F)^{\varepsilon_{f,g}}=F$ or \bar{F} depending on f and g. Note that the number of the parameters for T_0 is four. We show that T_0 is a real-linear surjective isometry on $C^1[0,1]$. For every $c \in \mathbb{C}$, there exists $T_{c,0} \in \mathrm{Iso}(C^1[0,1])$ such that

$$T_0(c) = T_{c,0}(c) = \lambda_{c,0} + \alpha_{c,0}[c]^{\varepsilon_{c,0}}$$

$$0 = T_0(0) = T_{c,0}(0) = \lambda_{c,0} + \alpha_{c,0}0 = \lambda_{c,0}.$$

Thus $T_0(\mathbb{C}) \subset \mathbb{C}$:

Lemma 6. $T_0(\mathbb{C}) \subset \mathbb{C}$, and $T_0|_{\mathbb{C}}$ is a real-linear isometry on \mathbb{C} .

Hence there exists a complex number α of modulus 1 such that

$$T_0(z) = \alpha z \ (z \in \mathbb{C}) \text{ or } T_0(z) = \alpha \bar{z} \ (z \in \mathbb{C}).$$

The point is to consider the set

 $W = \{ f \in C^1[0,1] : \text{If } U(f([0,1])) = f([0,1]) \text{ for an isometry on } \mathbb{C}, \text{then } U \text{ is the identity} \}.$

Note that : $U(z) = \lambda + \alpha z$ ($z \in \mathbb{C}$) or $U(z) = \lambda + \alpha \overline{z}$ ($z \in \mathbb{C}$). Let P be the set of all polynomials. Many polynomials are in W:

- \bullet $t + it^2$
- ...
- ...

But it is not always the case:

•
$$(t-1/2)^3 + i(t-1/2)^2$$

Lemma 7. $P \subset \overline{W}$, the uniform closure of W. Hence W is uniformly dense in $C^1[0,1]$.

Let

$$w(t) = \begin{cases} 0, & t = 0\\ t^3 \sin \frac{1}{t}, & 0 < t \le 1 \end{cases}$$

For $f = p + iq \in P$ and $m \in \mathbb{N}$, put

$$f_m = \begin{cases} iw(\frac{1}{m} - t) + \left(p'\left(\frac{1}{m}\right) + iq'\left(\frac{1}{m}\right)\right)\left(t - \frac{1}{m}\right) + p\left(\frac{1}{m}\right) + iq\left(\frac{1}{m}\right), & 0 \le t \le \frac{1}{m} \\ p(t) + iq(t), & \frac{1}{m} \le t \le 1 \end{cases}$$

Then

 $\{f_m: f=p+iq\in W, p \text{ is not constant and } p, q, 1 \text{ is linearly independent}\}\subset W.$

Lemma 8. Suppose that $T_0(z) = \alpha z$ $(z \in \mathbb{C})$. Then

$$T_0(f)(t) = \alpha f(t)$$
 or $T_0(f)(t) = \alpha f(1-t)$ for $f \in W$.

Suppose that $T_0(z) = \alpha \bar{z}$ $(z \in \mathbb{C})$. Then

$$T_0(f)(t) = \alpha \overline{f(t)} \text{ or } T_0(f)(t) = \alpha \overline{f(1-t)} \text{ for } f \in W.$$

We show how to use W to reduce the number of the parameters for the case where $T_0(z) = z \ (z \in \mathbb{C})$.

Let $f \in W$. By the property of 2-localness for f and 0 we have

$$T_0(f) = \lambda_{f,0} + \alpha_{f,0} (f \circ \varphi_{f,0})^{\varepsilon_{f,0}}, \qquad 0 = T_0(0) = \lambda_{f,0} + \alpha_{f,0}0.$$

Then $\lambda_{f,0} = 0$ follows and we have

$$T_0(f) = \alpha_{f,0} (f \circ \varphi_{f,0})^{\varepsilon_{f,0}}.$$

Let $0 \neq c \in \mathbb{C}$ be arbitrary and fix it. We also have that

$$T_0(f) = \lambda_{f,c} + \alpha_{f,c} (f \circ \varphi_{f,c})^{\varepsilon_{f,c}}, \quad c = T_0(c) = \lambda_{f,c} + \alpha_{f,c} (c)^{\varepsilon_{f,c}}.$$

By the second equation, $\lambda_{f,c}$ is a constant. Then

$$\alpha_{f,0}(f \circ \varphi_{f,0})^{\varepsilon_{f,0}} = \lambda_{f,c} + \alpha_{f,c}(f \circ \varphi_{f,c})^{\varepsilon_{f,c}}.$$

From

$$\alpha_{f,0}(f \circ \varphi_{f,0})^{\varepsilon_{f,0}} = \lambda_{f,c} + \alpha_{f,c}(f \circ \varphi_{f,c})^{\varepsilon_{f,c}}$$

we have four possibility depending on $\varepsilon_{f,0}$ and $\varepsilon_{f,c}$.

- (1) $f \circ \varphi_{f,0} = \overline{\alpha_{f,0}} \lambda_{f,c} + \overline{\alpha_{f,0}} \alpha_{f,c} f \circ \varphi_{f,c}$
- (2) $f \circ \varphi_{f,0} = \overline{\alpha_{f,0}} \lambda_{f,c} + \overline{\alpha_{f,0}} \alpha_{f,c} \overline{f \circ \varphi_{f,c}},$
- (3) $f \circ \varphi_{f,0} = \alpha_{f,c} \overline{\lambda_{f,c}} + \alpha_{f,0} \overline{\alpha_{f,c}} f \circ \varphi_{f,c}$
- (4) $f \circ \varphi_{f,0} = \alpha_{f,c} \overline{\lambda_{f,c}} + \alpha_{f,0} \overline{\alpha_{f,c}} \overline{f} \circ \varphi_{f,c}$.

Considering the range of these equations we have

- $(1) f([0,1]) = \overline{\alpha_{f,0}} \lambda_{f,c} + \overline{\alpha_{f,0}} \alpha_{f,c} f([0,1]),$
- (2) $f([0,1]) = \overline{\alpha_{f,0}} \underline{\lambda_{f,c}} + \overline{\alpha_{f,0}} \alpha_{f,c} \overline{f([0,1])},$
- (3) $f([0,1]) = \alpha_{f,c} \overline{\lambda_{f,c}} + \alpha_{f,0} \overline{\alpha_{f,c}} f([0,1]),$
- $(4) f([0,1]) = \alpha_{f,c} \overline{\lambda_{f,c}} + \alpha_{f,0} \overline{\alpha_{f,c}} \overline{f([0,1])}.$

Since $f \in W$, (2) and (4) are impossible. In fact, letting an isometry $S(z) = \overline{\alpha_{f,0}} \lambda_{f,c} + \overline{\alpha_{f,0}} \alpha_{f,c} \bar{z}$ ($z \in \mathbb{C}$), (2) means that

$$f([0,1]) = S(f([0,1])),$$

which is impossible for S being not the identity. Hence (2) is impossible. (4) is impossible in the same way.

We also see that (3) is impossible by some different reason. This is a part of the proof applying the property of W. By a further consideration we see that $T_0(f) = f \circ \varphi_{f,0}$ when $T_0(z) = z$ ($z \in \mathbb{C}$). We need to prove that $\varphi_{f,0}$ does not depend on f. To prove it we first prove that $T_0(Id) = Id$ or $T_0(Id) = 1 - Id$. This can be proved by an approximation argument. If $T_0(z) = \alpha z$ ($z \in \mathbb{C}$) and $T_0(Id) = Id$, then

$$T_0(f)(t) = \alpha f(t), \quad \forall f \in W.$$

If
$$T_0(z) = \alpha z \ (z \in \mathbb{C})$$
 and $T_0(Id) = 1 - Id$, then

$$T_0(f)(t) = \alpha f(1-t), \quad \forall f \in W.$$

If $T_0(z) = \alpha \bar{z}$ $(z \in \mathbb{C})$ and $T_0(Id) = Id$, then

$$T_0(f)(t) = \alpha \overline{f(t)}, \quad \forall f \in W.$$

If $T_0(z) = \alpha \bar{z}$ $(z \in \mathbb{C})$ and $T_0(Id) = 1 - Id$, then

$$T_0(f)(t) = \alpha \overline{f(1-t)}, \quad \forall f \in W.$$

As W is uniformly dense in $C^1[0,1]$ we conclude that: If $T_0(z) = \alpha z$ $(z \in \mathbb{C})$ and $T_0(Id) = Id$, then

$$T_0(f)(t) = \alpha f(t), \quad \forall f \in C^1[0, 1].$$

If $T_0(z) = \alpha z$ $(z \in \mathbb{C})$ and $T_0(Id) = 1 - Id$, then

$$T_0(f)(t) = \alpha f(1-t), \quad \forall f \in C^1[0,1].$$

If $T_0(z) = \alpha \overline{z}$ $(z \in \mathbb{C})$ and $T_0(Id) = Id$, then

$$T_0(f)(t) = \alpha \overline{f(t)}, \quad \forall f \in C^1[0, 1].$$

If $T_0(z) = \alpha \overline{z}$ $(z \in \mathbb{C})$ and $T_0(Id) = 1 - Id$, then

$$T_0(f)(t) = \alpha \overline{f(1-t)}, \quad \forall f \in C^1[0,1].$$

3 2-local reflexivity of $\operatorname{Iso}(\operatorname{Lip}(K))$

For a compact metric space K, let

$$\operatorname{Lip}(K) = \left\{ f \in C(K) : L_f = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)} < \infty \right\}$$

with the norm $||f||_{\Sigma} = ||f||_{\infty} + L_f$ for $f \in \text{lip}_{\alpha}(K)$. We say that L_f is the Lipschitz constant for f. With this norm $\text{lip}_{\alpha}(K)$ is a unital semisimple commutative Banach algebra. We prove the following in [5].

Theorem 9 ([5]). Let K_j be a compact metric space for j=1,2. Suppose that $U: \operatorname{lip}_{\alpha}(K_1) \to \operatorname{lip}_{\alpha}(K_2)$ is a surjective real-linear isometry with respect to the norm $\|f\|_{\Sigma} = \|f\|_{\infty} + L_f$ for $f \in \operatorname{lip}_{\alpha}(K_1)$. Then there exists a surjective isometry $\pi: K_2 \to K_1$ such that

$$U(f) = U(1)f \circ \pi, \qquad f \in \text{lip}_{\alpha}(K_1)$$

or

$$U(f) = U(1)\overline{f \circ \pi}, \qquad f \in \operatorname{lip}_{\alpha}(K_1).$$

Applying Theorem 9, in the similar way as in Section 2 we see the following.

Theorem 10 ([5]). Iso(Lip[0, 1]) is 2-local reflexive in M(Lip[0, 1]).

References

- [1] H. Al-Halees and R. Fleming, On 2-local isometries on continuous vector valued function spaces, J. Math. Anal. Appl. **354** (2009), 70–77 doi:10.1016/j.jmaa.2008.12.023
- [2] F. Botelho, J. Jamison and L. Molnár, Algebraic reflexivity of isometry groups and automorphism groups of some operator structures J. Math. Anal. Appl. 408 (2013), 177–195 doi:10.1016/j.jmaa.2013.06.001
- [3] M. Győry, 2-local isometries of $C_0(X)$, Acta Sci. Math. (Szeged) **67** (2001), 735–746
- [4] O. Hatori, T. Miura, H. Oka and H. Takagi, 2-Local Isometries and 2-Local Automorphisms on Uniform Algebras, Int. Math. Forum 50 (2007), 2491–2502 doi:10.12988/imf.2007.07219
- [5] O. Hatori and S. Oi, 2-local isometries on function spaces, to appear in Contemp. Matah. arXiv:1812.10342
- [6] A. Jiménez-Vargas, L. Li, A. M. Peralta, L. Wang and Y.-S Wang, 2-local standard isometries on vector-valued Lipschitz function spaces, J. Math. Anal. Appl. 461 (2018), 1287–1298 doi:10.1016/j.jmaa.2018.01.029
- [7] A. Jimenez-Vargas and M. Villegas-Vallecillos, 2-local isometries on spaces of Lipschitz functions, Canad. Math. Bull. 54 (2011), 680-692 doi:10.4153/CMB-2011-25-5
- [8] K. Kawamura, H. Koshimizu and T. Miura, 2-local isometries on $C^n([0,1])$, preprint 2018
- [9] L. Li. A.M. Peralta, L. Wang and Y.-S Wang, Weak-2-local isometries on uniform algebras and Lipschitz algebras Publ. Mat. (2018), in press, arXiv:1705.03619v1
- [10] T. Miura and H. Takagi, Surjective isometries on the Banach space of continuously differentiable functions, Contemp. Math. 687 (2017), 181–192 doi:10.1090/conm/687/13787
- [11] L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear operators and on Function Spaces, Springer, Berlin, 2007
- [12] L. Molnár, 2-local isometries of some operator algebras , Proc. Edinb. Math. Soc. (2) $\bf 45$ (2002), $\bf 349-352$ doi:10.1017/S0013091500000043
- [13] L. Molnár, private communication, 2018
- [14] L. Molnár, On 2-local *-automorphisms and 2-local isometries of B(H), preprint.
- [15] P. Semrl, Local automorphisms and derivations on B(H), Proc. Amer. Math. Soc. **125** (1997), 2677–2680 doi:10.1090/S0002-9939-97-04073-2