SUBRIEMANNIAN GEODESIC FLOW ON §7
W. BAUER AND D. TARAMA

ABSTRACT. We consider three non-isometric trivializable subriemannian struc-
tures on the Euclidean 7-sphere S7 of rank 4,5, and 6 which are induced by a
Clifford module structure of R®. In this paper we explain the geometric setting
and start the analysis of the corresponding subriemannian geodesic flow. We de-
rive the geodesic flow equations and present an equivalent but more symmetric
form of ODEs. In some cases we derive normal subriemannian geodesics as the
projections of solutions to either of these systems and we construct some first
integrals of the geodesic flow.

1. INTRODUCTION

One aspect of subriemannian geometry concerns the study on the motions of a
particle under non-holonomic constraints and, in particular, the structure of subrie-
mannian geodesic curves [7, 13, 16]. Although in general abnormal geodesics may
exist on a subriemannian manifold (see [16, Chapter 3]) it often suffices to study the
subriemannian geodesic flow and its projections to the manifold (normal geodesics).
From an analytic point of view one may ask how the solutions to the geodesic flow
are linked to the subelliptic heat kernel or spectrum of the induced hypoelliptic sub-
Laplace operators. Such questions have been studied in the literature for different
examples but are not discussed here.

In the present paper we start the analysis of a subriemannian geodesic flow on the
seven-dimensional Euclidean sphere S7. This example serves as a model case which
is not of Lie group type and to some extend is accessible to explicit calculations.
More precisely, we study three different subriemannian structures on S” which were
previously introduced in [3]. The underlying bracket generating distributions are
trivial as vector bundles of ranks 4,5 and 6 and are induced from a Clifford module
structure on R®. We remark that S” can naturally be treated as a subriemannian
manifold in different ways [14, 15, 16]. Being an odd-dimensional sphere it carries
a contact structure which defines a bracket generating distribution as the kernel of
the contact one-form. Moreover, a lift of a Riemannian structure on the base S* in
the quaternionic Hopf fibration S* — S” — S* induces a subriemannian structure
on S7 of rank four which seems to differ from the rank-4-structure in this paper.
We remark that S' can be equipped with a trivializable subriemannian structure
of rank 8 (see [3]) which may be treated in a similar way. However, due to the
fact that the tangent bundle of S'® is not trivial we cannot choose the same type of
coordinates as in Section 2 in the case of S7.

In Section 2 we recall some basic results in subriemannian geometry and we define
three trivializable subriemannian geometries on S” which are induced from a Clifford
module structure on R®, cf. [3]. According to a theorem of L. Hormander in [10],
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these structures induce three second order subelliptic sub-Laplace operators A§Ub on
S”. Their spectral theory has been studied before in [3].

A choice of anti-commuting skew-symmetric matrices A;,..., A; € R(8) induces
a trivialization of the tangent bundle T'S” = S” x R”, cf. [1, 12]. In Section 3,
via the natural identification of the tangent and cotangent bundles through the
induced Riemannian metric from R® and the above trivialization, we translate the
symplectic structure of T*S7 to the product manifold M = S7 x R7. With respect to
the coordinates of M we express the symplectic form, Hamiltonian vector fields and
the induced Poisson bracket. In Proposition 3.8 we describe the Hamilton system
(geodesic flow equations) induced from the principal symbols of the three different
sub-Laplace operators Aj-“b subordinate to the above subriemannian structures of
rank 4,5, and 6. Finally, for each j € {4,5,6} we introduce a second system of
ODEs (HYS); which is equivalent to the previous one in the sense that it produces
the same normal subriemannian geodesics.

An advantage of the system (H.S); seems its symmetry with respect to the space
and dual variables. Based on the observations in Section 3, we use (H.5); to calculate
some subriemannian geodesic curves (in the case j = 6) and a set of first integrals
of the subriemannian geodesic flow. These geodesic curves have been detected by
different techniques already in [14, 16].

2. TRIVIALIZABLE SUBRIEMANNIAN STRUCTURES ON S’

A subriemannian manifold is a triple (M, H, (-, -)), where M is a smooth connected
oriented manifold (without boundary) and H is a subbundle of the tangent bundle.
Moreover, (-, ) denotes a smoothly varying inner product on the fibers H, C T, M.
Let I'(H) denote the space of all vector fields that take values in H. The subbundle
H is called bracket generating or completely non-holonomic if at any point z € M
the evaluations of vector fields in a finite sum of iterated commutators

D(H) + [D(H), T(H)] + [F(H), [F(H),F(H)” L

span the tangent space T, M. An absolutely continuous curve v : [0,1] — M is
called horizontal or admissible if 4(t) € H,q for a.e. t € [0,1]. A basic result in
subriemannian geometry concerns global connectivity by horizontal curves:

Theorem 2.1 (W.L. Chow [8], P.K. Rashevskii [17]). Let H be bracket generating
and M connected. Then any two points on M can be connected by a piecewise smooth
horizontal curve.

The metric on H induces a length functional defined on horizontal curves v as

above:
fy) = / VED At

In a standard way one defines a distance (see [16]):
d(z,y) :=inf {{(y) : v smooth horizontal with 4(0) = z and (1) = y}.

Then, an absolutely continuous path v which locally realizes the distance is called
a subriemannian geodesic.

In [3] a class of subriemannian structures on S7 := {x € R® : |z| = 1} with
trivial bracket generating distribution has been obtained and we shortly recall the
construction. We choose a set X7, ..., X7 of vector fields on R® whose restriction to
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S” are orthonormal at any point. More precisely, let R(8) denote the algebra of 8 x 8
real matrices and choose Aj, Ay, ..., A7 € R(8) skew-symmetric with the Clifford
anti-commutation relations

These matrices A; will be fixed throughout the paper. With respect to the standard
coordinates © = (11, ..., x5)" of R® we define the linear vector fields
(2.2)
& a - 0
Xj = X(4) :;; ;(A]x)lﬁ_ﬂ“,’ where j=1,...,7.

As is well-known, these vector fields restricted to S” form a global orthonormal frame
of T'S™. The following bracket relations can easily be checked (cf. [3]):

(b) Let 4, j, k be pairwise distinct, then [X;, [X;, X}]] =0,
(C) Let 2 7£ j, then [XZ, [XZ,X]” = —4Xj
As a consequence, all iterated commutators of vector fields X, ..., X; are contained
in
Y= {XZ- = X(A), X(AjA) : 1<i<Tand 1<j<k< 7}.
We also need the following observation:

Lemma 2.2. Let X,Y.Z be vector fields on S*. With the standard Riemannian
metric g on ST we then have

g(X, Y, Z]) = g([Z,X],Y).

7 7 7

Proof. We set X = Z%Xr, Y = Zﬁng and Z = anXj. At z € S7, one
r=1 /=1 J=1

easily verifies that

(2.3) g(XT,X(AgAj))z = (A, AA;z)

RS’

where (-,-)gs denotes the standard Euclidean inner product on R®. Inserting the
above expansions and (a) gives

9(X, Z arﬁemg( v [ X, X })x =2 27: arﬁgnjg(xr,X(AgAj)>x.

rd,j=1 r,j=1
L#]

Using (2.3) together with the skew-symmetry of the matrices Ay, implies

7
(2.4) g(X, [Y, Z})x = -2 Z arﬁgnj<AjAgAr:c,aj>Rs

rt,j=1

Note that (A;AsA,x, x)gs = 0 if j = £. Similarly we have

7
25) s [2X]), = =2 3 aun(AAde )

rl,j=1

From the anti-commutation relations (2.1) one concludes that (2.4) and (2.5) coin-
cide. U
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With these notation we consider the distributions H;:
(H;), = spanR{ (Xe), - £=1,... ,j} C 1,S" at x € S”, where j = 4,5,6.

Let (-, -)sup,; denote the restriction of the standard metric on S™ to H;. In other words
for each j = 4,5,6 the metric is defined in such a way that [X,(z) : £ =1,...,]]
are orthonormal at any point 2 € S”. We obtain three subriemannian structures on
S7 of rank 4, 5, and 6, respectively:

(2.6) <S7,Hj, (-, '>suby]’) where j =4,5,6.
The following result has been shown in [3, Theorem 4.4]:

Theorem 2.3. The distributions H,; are bracket generating if and only if j €
{4,5,6,7}.

To each of the subriemannian structures (2.6) we can associate a sum-of-squares
operator which coincides with the intrinsic sub-Laplacian (see [2]| for a definition):

J
(2.7) AT =-3"X7,  j=4,56.
=1

Based on the bracket generating condition in Theorem 2.3 and Hérmander’s The-
orem in [10], it is known that A?‘b defines a subelliptic second order differential
operator on S”.

3. GEOMETRIC SETTING AND HAMILTON’S EQUATIONS

Recall that the tangent bundle T'S” is trivial and a trivialization can be obtained
via the above choice of vector fields:

7
TxS7:{Zanj(x) a=(ag, - ,a7)tER7} C R®, reS.
j=1
Namely, we have a (bundle) map
7
(3.1) O:TS" - S"xR": (az,Zanj(a:)> = (z,00,..., 7).
=1

Note that the inclusion 7T'S” < S”xR® allows us to pull back the product Riemannian
metric on S7 x R® to induce a Riemannian metric on T'S”. Then ® is an isometric
diffeomorphism, as X;(z),..., X7(z) form an orthonormal basis of T,S” at each
reS.

Let (z,v) € TS = S” x R. We can identify the double tangent space T(, . (T'S")
with

Tl (TST) 2 T,8" x T,RT = R” x R".

Let m : T'ST — S7 denote the canonical projection and let g(-,-) be the standard
Riemannian metric on S7. We identify the tangent and the cotangent bundles via
the natural diffeomorphism ¢ : TS” — T*S” defined by p(v) := g(v,-). Recall that
via this identification the canonical one-form © on T'S” is defined through

o) = g(a,dw(ﬁ)) where  (z,a) € T,S” and ¢ € T(rja)(TS7).

T
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Fix (z,0) € ST x R 2 TS and let 7y : (—¢,e) — TST =2 S x R” with

denote a smooth curve on T'S” such that v(0) = (z(0), (0)) = (z, ) and

d
§= £7(S)

= (#(0),é(0)) € T8 x R” = T, o (TS7).

s=0

If we choose ¢ in the form
7
£ = (Zﬁij(:E),w) ~ (B,w) € T,S" x T,R” where pB; €R, j=1,---,T,
j=1
then we obtain for the differential
7
dr(§) = #(0) = > B X;(x) € TS
j=1

Hence, the canonical one-form is expressed as

7

(32) 0(¢) = g(a, dn(€)), = g(c, #(0)), =Y ;8 = (o, B),

Jj=1

where o« = 27: a; X;(z). In the last equality we have identified o with (cv, ..., a7)" €
]R{: and [ wﬁ (B1,...,B7)" € R". We write (-, -) for the Euclidean inner product on
R*.
Let Y, for £ = 1,2 be vector fields on 7'S”. Then we have

Y, :TST = T(IST) 2T (S"xR") TS x TR' = S" x R” x R” x R".

Moreover, for each (z,a) € S” x R” 2 T'ST we have
Yi(w, @) € Tipo)(TS") 2 T,S" x T,R" 2 R” x R".

With this identification we write Yy(z, o) = (Yy1(z, @), Yio(z,a)) € R x RT.
Remark 3.1. Note that for each a € R” we obtain a vector field on S7 via

YV = Ye(,a): ST — TS

Moreover, at each point x € ST we identify (V%) with a = (ay,...,a7)" € R” where
7
Ye(r) =Y apX(x). ¢
=1

Let (z,a) € TST 2 S7 x R7 and denote by ¢, = (¢, ¢{?)) the local flow of the
vector field Y7 = (Y711, Y12) in some region containing (z,«) for s € (—e, €), where
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e > 0. From (3.2) we obtain

d
le(—)(YVZ) ‘(JJ,O&) - £@<}/2 o SOS(’m? CY))

s=0

d
= (¢ (@,0), Yas 0 p(,0))

d

s=0

= <a,£y1Y271(:c,a)> + <3/1,2(56704),Y2,1(x70‘)>

= (0. YVauh () + (Viae, ). Vi (. 0)),

s=0

where Ly, Ys1(x, o) denotes the Lie derivative of Y5, along the vector field Y;.! By
interchanging the roles of Y; and Y, we also find

0|, = <a, [YQ,YLl]l(x,a)> n <}@,2(x,a>,)q,1<x,a>>.

(z,q)

Next, consider the commutator [Y1,Ys] € T(TS”) with components [Y7, Ys]; and
[Y1, Y5]s according to the above notation. From (3.2) and Remark 3.1 we have

@([YI’}@])(

We obtain a symplectic form on 7'S” 2 S” x R induced by the one on T*S":

o) = <C¥, [Y17Y2h>~

z,

OV, =- d(-)(Yl,Yg>

- _ [YIG)(YQ) —Y,0(Y1) — @([H’YQD]

‘(w,a)

= [<Oz, Y1, Yau]1) + (Yia, Yo ) — (. [Ya, Yia]i) — (Yoo, Y1) — {a, [Yl,YQL>]
(Vo Yar) — Vi) — (o i, Yor])

(z,a) (z,a)

(z,q)

Lemma 3.2. The symplectic form on TS” = S” x R is given as
Q(Y17Y2)|(mm = <Y2,2;Y171> - <Y1,2,Y2,1> - <Ué, [Y1717Y2,1]>-

Recall that the Hamiltonian vector field Xz and the gradient vector field grad F
of a smooth function F : S” x R” — R are defined by the following equations for all
Ve T(%a) (TS7)Z

AP (V) = o (Xp, V) and dF(u(V) = §(grad g, o) F,V)

(,0)

Here g(-,-) denotes the Riemannian metric on 7'S”. In what follows, we calculate
the Hamiltonian vector field in terms of the gradient vector field.

Set grad, ,F' =Y = (Y1,Y2) € T,S” x R". With an arbitrary element

V=(WV,W) eR xR 2T,S" x T,R" 2T, ,(TS")

INote that [Y1,Y2]1 = [Y11,Y21], where the left-hand side is the first component of the Lie
bracket of the vector fields on T'S” and the right-hand side is the Lie bracket of the vector fields
on S7.
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we obtain
(Vi) + (Y2, Vo) = i{grad V)
= Qo) (Xr, V)
= (Va, (Xp)1) = {(Xp)2, Vi) = (e, [(Xp)1, 1] ).

In particular, by choosing Vi = 0 we obtain

(3.3) (Xp)1 = (grad, »F), = Z (grad, o) F), X

(Xp)2, V1) = —(a, [(Xp)1,Vi]) = ((grad o) F) . 1)
- —g(Vh [ou (Xp)l}) - g((grad@,a)F)l, V1>,

where in the second equality Lemma 2.2 has been applied. Hence:

(Xr), = (<[(XF)1704} —(grad(x,a)F)l,X1>, c <[(XF)1,a] —(grad(x’a)F)17X7>)t.

With (3.3) and the above identifications we obtain the following lemma:

Lemma 3.3. Let F : ST x R” = T*S” = TS" be a smooth function. Then the
Hamiltonian vector field has the form

o 5 (] 1)
where grad, ,F = (Y1,Y3).

Recall that the Poisson bracket of two smooth functions F, G : T*S” =2 S x R —
R is defined through

{F, G}(I, a) = Q(m@) (XF, Xg)
With the splitting of the gradient grad, , G = (W1, W) we obtain:

{F,.G}(z,0) = Q(:v,a)((Y% Yo, 0] = Y1), (Wo, [Wa, a] — W1)>
= ([W2,0] =W, Y2) = ([Y2,0] = Y1, W) = (a, [V3,W2])
(3.4) = (Y1, Wa) — (W1, Ya) + (a, [Yo, Wh]).
In the last equation we have used Lemma 2.2 to simplify the expression.

Lemma 3.4. Let I,G : TST =2 S§” x R" — R be smooth functions with gradients
grad, I = (Y1,Y2) and grad(, ,\G = (Wi, Wy). Then the Poisson bracket of F
and G is given as

{F.G}(x.0) = (Yo, W) — (W1, ¥2) + (o [¥2. Wa]).

In the next step we calculate the gradient of F' in coordinates. This will lead to
a coordinate form of the Poisson bracket. Fix a smooth function

F:TST2S"xR" = R: (2,0) — F(r,a),
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and let (z, ) € ST x R7 be fixed. Consider the local flows ¢!, ..., !” of the vector
fields X1, ..., X7 around x € S”. Then we obtain smooth curves

) . d )
YY) (—e,e) ot ) = (o), 0) € STX R, with 9 = (X;(2),0).

dt|,_
Define the translations p\’) := o + tel on R” where [e¥ : j =1,... k] denotes the
standard orthonormal basis of R¥. Then we have
d
dF(XJ(ZE)’ 0) - E t=0 f(¢§j)7 ) Xjf('v a)lx = <grad(x,a)fa 6]1'4>7
0 d : ) 9 . - 14
ar (o, asz) =il T = s = (gradg it

From these relations we find:
oF  ory:
ooy’ Dan

In combination with (3.4) we can express the Poisson bracket on T'S” with respect
to the above identifications.

grad, o F = (XlF, X, F,

€R" x R" = T(, ,,(TS").

Lemma 3.5. Let F,G : TS” 2 S" xR” — R be smooth functions. Then the Poisson
bracket induced from T*ST and expressed in the above coordinates is given by:
7

7
oF oG OF
{F:G}(%Oé Z '0_04]_8_0@' —2 Z JaaTaag

Jj=1

(AjA; Az x>

rjl=1

Proof. We use Lemma 3.4 and calculate the last term (W5, [a, Y5]) using the above
observation. With the Riemannian metric ¢ on S” we obtain

(W, [am:g( m[zaj Za—wxe])

7

=) o oG OF 9(Xe, [X5. X)),

oo 8a
rjl=1 T ¢

Finally, relation (a) of Section 2 implies

9(Xo, [X5. X)), = —2(Ava, AjAgz) o = —2(AA Ay, o) .

O
We reconsider the sub-Laplacians Aj“b for j = 4,5,6 defined in (2.7). In the
following we write pi”(z, ) for its principal symbol. Let w = (wy, ... ,x5) € ST

be fixed and j € {1,...,7}. We consider the functions ¥;,, € C*(R®) defined at
= (z1,...,28) € R by

Then,

X (w) == dVj,(w) = Z (Aj)rqw,dr, € TIR® j=1,-- T,

q,r=1
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are the dual elements to [X;(w) : j=1...,7] in T,,R® and can be considered as a
basis of TS in global coordinates. In fact, from (2.1) it follows

X;(w)<Xz(w)) = Z (Aj)rqwqdz, (Z (AZ)i’mwmﬁi%)

q,r=1 i,m=1

8

= — Z (Aj)g,i(Ae)smwqwm = —(A; Agw, w>R8 = 0;0|w|* = ;.

q,m,i=1

More generally, with £ = (&;,...,&)" € R7 and fixed w € S” we put

qu (@) € CF(RT x R7).

Applying the differential d with respect to the z-variable shows
Z £X(w) € TS

Let y =1,...,7, then it follows by the same calculation as above:

8

8
Z z £ éa.LZ Z m,nwnﬂjm
n,m=

i0=1
8

- Z Weln, (Aj)e,i (Aq)i,n = —<Aquw,w>R8 = 0jq-

n,i,d=1

T=w

Therefore, it follows that Xj\Ifw(-,£)|x:w = ¢;. The principal symbol of A;“b for

j =4,5,6 at a point (w Z X, (w)) takes the value:

r=w

7
(w’;@W) - oo (- 00000540 ,0:0)
J
— Z £2.
w =1

According to the above identification T*S” = S” x R” we express the principal
symbol of A%™™ on S” x R in the form

= tlglgo %2 exp ( — t\I/w(w,f)> zj:XZQ exp (t\I’w(S’%f))

/=1

r=

o?.

]~

Py (w, @) =
=1

Lemma 3.6. The Hamiltonian vector field ijps associated to the principal symbol
of the sub-Laplacian A;“b acts on functions F € C®(S" x R") in the following form:

OF
(3.5) Xppr (z, —QZag (X F ZB (z,a) - E

(=1
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where the coefficient functions By in the second sum are given by:

j
By(z,a) :=4 Z Zamar<AgAmArx7:c>R8.

m=j+1 r=1

Proof. According to Lemma 3.5, we have

’ oy OF ops OF
— 5 (X F) ——(Xgpgs) 2 L T (A A A, )

" Doy Oy
/=1 rom,f=1

=9 az —4 Z Zamar AgA Az, ZC>R8

(=1 myl=1 r=1

From the Clifford relations (2.1) we find that

zj: ZJ: ozmozr<AgAmAra:, x>R8 =0,

m=1 r=1

and therefore (3.5) follows. O

Remark 3.7. In case of the standard Laplace-Beltrami operator A = A$™ on S7
7

we obtain that X ps(F) = 2Zag(XgF) since Bp=0for{=1,...,7. ¢

Proposition 3.8. For j = 4,...,6 the Hamiltonian system corresponding to the
principal symbol pi° of AP s given by

(3.6) (4.d) = X,pe(x,0) = (2 3 aXo(w), ~Bi(z,a)....,~ B, a)).

Note that a projection to ST of a solution to (3.6) defines a horizontal curve on (2.6).
Example 3.9. Let j = 6, then we obtain for { =1,...,7:

6
(3.7) By(x, o) = 4()[7Z(JT<AZA7ATLL', x>R8

r=1
In particular, B; = 0 since A2 = —I and A, is skew-symmetric. Let ¢ € ST and

choose p = (p1,...,pr)" € R with |p| = 1. Consider the following curve on S’

24(t) = exp (—tprAz) exp (tA(p))q  where A(p) := Z peAy.

We construct a,(t) such that (z4(t), ay(t)) for t € (—e, €), where € > 0, solves (3.6)
and hence z,(t) is a normal subriemannian geodesic curve. In fact, consider

aq(t):%<<93A<p)q(t),Alfcq(t)>R87~--7<56A(p>q ), Azt >Rs)

A direct calculation shows that

(3-8) j7q = _P7A7$q + T A(p)q and <:kq, A7$q>Rs =0.



SUBRIEMANNIAN GEODESIC FLOW ON §7 11

The first equation in (3.6) is obtained from the fact that [Az, : ¢ =1,...,7] forms
an orthonormal basis of Tqu7 and

6

6
2 Z ag) Ay = Z (T a(p)q5 Agxq>R8Agxq = Za(p)g — {Ta()> A7xq>R8A7xq
=1 =1

together with (za(p)q, A77q)rs = p7. We verify the second equation in (3.6). From
(3.8) and the observation that A(p)* = —|p|?I = I it follows:

) 1,. 1 .
(O‘q)g = §<IA(p)qv Aémq>Rs + §<IA(p)qa Aémq>Rs

1 1
= _< — préAzTa(p)g — Tq, Aﬂq>R8 + §<*77A(p)qa —prAeArg + AET%‘X(p)q>IRS

2
P Pt
2 <A7$A q’Azxq>R B 3<xA(p)q’AZA7xq>R8
_ _p7<xA(p)q7A€A7$q>R87 if L#T,
In particular, (¢,)7 = 0 = By. It follows that
— 1 P
(3.10) (@), = (@0)2(0) = 5(Alp)a. 4q) =2

Finally, in the case of £ € {1,...,6} it follows from (3.7), (3.9) and (3.10) that:
6

By(xq, 0q) = 4(aq)7<A€A7 Z (ag)rArzg, Iq>R8

r=1

= 2(« )<A4A7(ZL“A = prdrzg),x >Rs

= _p7<$A(p)qvAfA737q>R8 = (dq)e'

4. ON A HAMILTONIAN SYSTEM AND NORMAL GEODESICS

We calculate families of normal subriemannian geodesics on S” for the subrieman-
nian structures introduced above, using a Hamiltonian system on R® x R8. In the
case where the distribution has co-rank 1 (i.e. j = 6) the formulas we present have
been previously derived in [13, Proposition 5] based on more general results in [16,
Theorem 1.26].

With j € {4,5,6} consider the subriemannian Hamiltonians defined by:

J
> (A, 5
/=1

Correspondingly we obtain three Hamiltonian systems:

Hip REXR® = R: Hj (2, &) =

l\DI}—t

o aHj,sub o d
- 85 — ; 1 <Ag$,£>R8Ag.T,
(HS);

: aH ,su
§ =—— Z<AMR8AZ£
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If (z(t),€(t)) for t € (—¢,€), where € > 0, is a solution to (HS); then the “dual
curve” £(t) is tangent to a sphere and starting at a point & = £(0) € ST it defines
a curve on S”. In relation to the subriemannian geodesic flow (3.6), we have the
following theorem.

Theorem 4.1. The Hamiltonian system (HS); can be restricted to TS” C R® x R®.
The restriction of (HS); to T'ST is equivalent to the system (3.6) of the subrieman-
nian geodesic flow induced from the standard symplectic structure on T*S7.

Proof. Recall that T'S7 is regarded as the submanifold of R® x R® defined through
(z,2)rs = 1,(z,&)rs = 0. Let (x,€) : [0,1] — S7 x R® be a solution to (HS); and
for ¢ =1,...,7 define

1
a=(ay,...,a7)"  where = §<Agx,§>R8.

j

Then the first equation in (HS); implies that & = 2 Z ayAgx which gives the first
=1

equation in (3.6). Moreover, for r =1,--- |7, we have

) 1 . 1 :
O = §<Arma§>Rs + §<Arm7€>R8

1 J
= 5 20 [(Aer e g + (e (e A
(=1

J
= — Z <Ag$, €>R8 <Aé$7 Ar£>R8
tr
On the other hand:

7
ZZ Az, §>R8 A x, §>R8<AZA Az, :13>

J
m=1 r=1
LF£T

< $§>R8<A4A Z mxf mz,x,>R8

MQ

r=1

t#r
j
== Z <Ar:’77 §>R8<A€AT§7 x>R8
trr
By skew-symmetry of A, we obtain that &, = —By(z,a) for £ = 1,...,7 which

implies the second set of equations in (3.6).

Conversely, assume that a solution (z, ) : [0,1] — S” x R” to (3.6) is given. Then
we define a curve ¢ : [0, 1] — R® via:

f =2 zj: OégAg.T.

{=1
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Note that (£, )rs = 0 due to the skew-symmetry of A,. Since 20y = (Apx, &)rs we
immediately obtain the first equation in (H S);:

T = QZ apApr = Z Ag:c,§>R8Aga:.
=1

Finally, note that

]~

(4.1) £=2

[d(AgZE + Ongngi|

(=1

<ol

2 [ — By(x,a)Apz + 200 Ay zj: oquqx] .

=1 q=1

We calculate the first sum:

J Jj 7T 7
ZBg(m,a)Agm = —Z Az, 5 RS A T §>R8<Agz4 Az, :E> A
(=1

=1 m=1 r= 1

J
= - Z <Arx7 §>R8 <A€Ar§7 $>R8Ag£€

rd=1
bFr

= -2 Z 057'<A€§7 ATI>R8AZ’T = 07

as AgA, = —A A if r # £ and (A€, Apz)rs = (€, x)gs. According to our definition
of ¢ we conclude from (4.1):

=4 Z CY[OZquA xr = 22 apA§ = Z <Ag$ €>RSAZ£7

£,q=1

which proves the second equations in (HYS5);. g

Let ((t) = (z(t),&(t)) be a solution to the system (HS); with ((0) = (z0,&) €
S” x R7. Then the projection x(t) is called a normal subriemannian geodesic. Note
that «(¢) is a horizontal curve, ie. z(t) € S7 with i(t) € (H;). for each t.
More precisely, sufficiently short arcs of x(t) are length minimizing subriemannian
geodesics. By the form of (HS);, z(t), £(t) are horizontal curves on ST if z(0), £(0) €
S7, respectively.

Lemma 4.2. Let J € R(8) be an arbitrary matriz and ((t) = (x(t),£(t)) be a
solution to the system (HS);. Then

jtux Ops = Z (A, €)oo ([, Al 2, €) 5.

=1
In particular, t — (Jxz(t),£(t)) is constant if [J, A =0 for all £ =1,...,7.

Proof. The statement follows by a direct calculation. In fact:

d : '
£<JSL’7§>RS = (&, € )ps + (T2, s
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The assertion follows by inserting the equations in (HS); into the right hand side
and using the skew-symmetry of A,. O

Example 4.3. Choose J = I = identity. Then (z,&)gs is constant along a solu-
tion of (HS);. In particular, x(t) and £(¢) remain orthogonal if z(0) and £(0) are
orthogonal. ¢

We start by calculating the simplest type of normal subriemannian geodesics.

Let ¢ € S” and a = (v, ..., )" € R7. Consider the great circle on S7 defined by

Ya(t) := exp (tA(a))q where  A(a) = z]: oAy

From the anti-commutation relation (2.1) we conclude that A(«) is skew-symmetric
with A(a)? = —|a|*I. Therefore, we have

sin (¢|a|)

|CY| : A(Oé)q,

Yalt) = cos (tla]) - g +

J
where |a|? = Z ;. Note that v, (t) is horizontal on S7 with respect to H;. Put
=1

Ealt) = Taa(t) = exp (tA(a)) A(a)g.

Then we obtain
™ (Ault), &al0) e Arialt) = D (Acexp(tA(a))a. Alo) exp (FA(0))q)_ Arra(t)

(=1

- Z Ay (t) = Aa) exp (tA(@)) g = Ya(t).

Hence the pair (z(t),£(t)) = (7Va(t),&a(t)) solves the first equation of (HS);. A
similar calculation shows that the second equation in (H.S); is fulfilled, as well.

Proposition 4.4. For j € {4,5,6} and each a € R7 the great circle v,(t) defines
a normal subriemannian geodesic on ST with respect to the subriemannian structure

(877 %]’7 <'7 '>Sub7j)'

In order to enlarge the family of geodesics obtained in Proposition 4.4, we consider
the cases j € {4, 5,6} separately. If j = 6, then normal geodesics can be constructed
via [16, Theorem 1.26] (see [13, Proposition 5]). From

7 7
= (2, Al)rs At = =Y (A, )rs A + (7, €)rs,
=0 =1
7 7
§= Z(@ Aez)ps Apx = Z<§7AZ$>R8A£37 + (7, re,
=0 (=1

and (HS)g we obtain the equivalent equations

£ =—x— (Az,OneAr + (2, &)pst,
r = 5 — <A7.T,§>R8A7flﬁ — <$,§>R8$.
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If we assume that the initial data (z¢, &) = (z(0), £(0)) are orthogonal, then (x, {)grs =
0 according to Example 4.3 and we arrive at the simplified system

{f = —z — (A7z, §)re A7,

(4.2) .
T =&— <A7$75>R8A7557

which we can solve explicitly (see Example 3.9). Let ¢ € ST and fix a = (ay, ..., a7)t €
R”. Consider the following curve starting at ¢:

7
Yo,0,0(t) :=exp (— taz A7) exp (tA(a))q where Aa) = Z Ay
=1

In Example 3.9 we already have seen that 4., defines a subriemannian geodesic
starting at ¢. Here we reprove the result using the Hamilton system (HS)g. First,
we show the following lemma.

Lemma 4.5. 75.4,4(t) is horizontal with respect to Hg.

Proof. It suffices to show that 6 44(t) is orthogonal to A7 q4(t) at t € R. Note
that

(43) A/6.,a,q(t> - _CV?A?VG,a,q(t) + Vﬁ.a,A(a)q(t»

Hence, we obtain:

(foaa(t): Avsad(t)) | = —ar+ (exp (= tards) Ala) exp (A(0)) g Are.a(t) )
=—ay+ <A(a) exp (tA(a))q, As exp (tA(a))q>

= —ay + 047‘147 exp (tA(a))q|2 =0.

RS

R8

This shows that assertion. O

In order to verify that yg,4.4(t) for each a € R defines a subriemannian geodesic
for the structure induced by the distribution Hg we define:

€6.0,(t) = Vo.0,4(a)q(t) = exp (— tar A7) exp (tA()) A(a)g.

Proposition 4.6. For each o € R” with || = 1 the curve Ts 4 4(t) := (Y6.0.q(t); E6.04(F))
solves the Hamiltonian system (HS)g under the initial condition s 5 ,(0) = (¢, A(a)q).
In particular, V6.4 defines a subriemannian geodesic with respect to He.

Proof. According to Lemma 4.5 the curve 7g,4,4(t) is horizontal with

(44> ;Y()’,a,q = _057A7ﬁ/6,a7q + fYG,a,A(a)q = _a7A776,a,q + 56,a7q-
It follows that
6 6
;)/6,04,q = Z <;Y6,o¢,q7 A€76,a,q>R8AZ76,a,q = Z <€6,o¢,q) AEVG,a,q>R8AZ76,a,q~
=1 =1

Hence the first equation of (HS)g is fulfilled with = 7,4 and § = £, 4. Applying
Lemma 4.5 again gives:

éﬁ,cx,q = A/ﬁ,a,A(a)q < Span{AZVG,a,A(a)q = 17 ceey 6}
= span{Agfﬁ,mq l=1,... ,6}.
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Hence,
. 6 .
(45) gﬁ,a,q - Z <€6,a,qa AZ€6,Q7q>RsAE€6,a,q-
/=1
From (4.3) we have
SG,a,q - ;Yﬁ,a,A(a)q - _047A7€6,a,q + V6,0, A2(a)q
- _a7A7€6,a,q - |O‘|276,a,q - _a7A7€6,0¢7q — 76,0,

By inserting the last relation into (4.5) we observe that the second equation in (H.S)g
is also solved by (z,£) = (V6.a.9> $6,0,9)- O

Now let j = 5, then we can rewrite (HS)s in the form:

(ﬁé)g) . E = —x + <37, A6§>R8A6£ —+ <27, A7£>R8A7€ —+ <$7§>R8§7
T = 5 - <€7 146I>]R8/46Jj - <£, A7$>R8A7$ — <CU,§>]R8$.

Remark 4.7. Note that Ay, ..., A5 commute with
Je{l,AgA7, AyAy--- A5, AyAy - - Ar}
and based on Lemma 4.2 we obtain four constants of motion. ¢

Let (z,¢) be a solution to (HS)s, then (z, &) solve (ﬁg)s and we obtain:

7

d - '
i 2 (A €05 = 23 A (40 )+ (4.8

r=6

— QZ<A T, € RS[ < (€, Aet) o Ast — (€, Ar) gy Art — <x,5>Rs:s,Ar€>R8+
< (x, Ae&)rs A6€ + (x, A7&)rs A€ + (x, 5>R8§> ]

7
=2 Z <A7‘x’ £>R8 [<§» Asx)ps(Aex, Ar&)ps + (€, Arx)ps(A72, Ap&)ps+

r=6

(2, Ao A, A€)s + (7, ArE)ae{ A, ArE s

7
=4 Z <Arx7£>Rs<Afx7§>R8 <A€x7AT£>RS -

r =6 r#¢
Hence, we have the following lemma:

Lemma 4.8. The function

C:STxRS 5 R: F(q,€) Z(A,«q%s

defines a first integral of the subriemannian geodesic flow on S7 with respect to Hs.

Remark 4.9. With the notation in (2.2) consider the second order operator on S”:

L5 = —X(A6>2 - X(A7>2 = AS7 - A;ub.
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Since each vector field X (A;) is induced by a flow of isometries it commutes with
the Laplace-Beltrami operator Agr on S7. From this it follows that

[L5, A;ub] == [L57 AS7 — L5] - 0

Moreover, the function C' in Lemma 4.8 is the symbol of Ls and hence Poisson
commutes with the subriemannian Hamiltonian Hjg,,. By this observation one
obtains a second proof of Lemma 4.8. ¢

As before, if x(0) and £(0) are orthogonal, then (x,{)grs = 0 and we obtain the
reduces system of equations

(4.6) § = —q+ (v, Aek)rs AcE + (¥, Ar€)ps Ar,
| B =& — (& Aot At — (€, Ar)ps Are.

5. OPEN PROBLEMS

Above we have obtained solutions to the system (HS); and first integral of the
subriemannian geodesic flow in some special cases, cf. Proposition 4.4, 4.6 or Lemma
4.8. We will postpone a more systematic discussion of the geodesic equations to
a future work. Finally, we mention some open problems in the analysis of the
subriemannian geodesic flow on S7 described in this paper. For j = 4, 5, 6:

(A) Derive explicit solutions to (HS);. In particular, given two points A, B € S,
can we find a normal subriemannian geodesic explicitly induced by (H.S); and
connecting A and B? A solution to this problem may, at least locally, lead
to an explicit form of the Carnot-Carathéodory distance on S7 with respect
to (HS);. We mention that such an expression could be also derived from
the small time expansion of the heat kernels for the corresponding subelliptic
sub-Laplacians (2.7). However, to our knowledge, an explicit expression of
these heat kernels is unknown in the cases j # 6, 7.

(B) Decide whether the subriemannian geodesic flow induced by (HS); is com-
pletely integrable in the sense of Liouville. In particular, can we find seven,
linearly independent, and Poisson commuting first integrals explicitly?

(C) Compare the subriemannian structures on S” considered in the present paper
with the one induced by the quaternionic Hopf fibration [14, 15, 16].
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