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Abstract. Determination of whether periodic orbits, homoclinic orbits, first inte-
grals or commutative vector fields may persist under perturbations is one of the most
important problems in the field of dynamical systems. In this paper, we give several
theorems on necessary conditions for their persistence in general perturbed systems.
Moreover, we consider periodic perturbations of one-degree-of-freedom Hamiltonian
systems and describe some relationships between our results and the standard Mel-
nikov method for periodic orbits and homoclinic orbits. This is a joint work with
Kazuyuki Yagasaki (Kyoto University).

1 Introduction

For continuous dynamical systems, periodic orbits, homoclinic orbits, first integrals and
commutative vector fields (continuous symmetries) play important roles. Especially, first
integrals and commutative vector fields are closely related to integrability in the meaning
of Bogoyavlenskij (we see its definition in Section 2) which is a generalization of the
complete integrability for Hamiltonian systems. In most case, their persistences are not
trivial.

So we consider continuous dynamical systems with perturbations of the form

t=X(v), zeA

where .# is a smooth manifold, X, = X" + eX' + O(¢?) is a smooth vector field on
M depending on e smoothly and X, has a periodic orbit or homoclinic orbit, and a
first integral. In this paper, we give several theorems on necessary conditions for their
persistence in general perturbed systems. Moreover, we apply our result to periodic
perturbations of one-degree-of-freedom Hamiltonian systems under the assumption of the
Melnikov method and give a connection of the Melnikov method and persistence of the
first integral.

2 Summary of the Known Results

We briefly review the known results on persistence of periodic orbits, homoclinic orbits,
first integrals and commutative vector fields in perturbed systems.



2.1 Periodic orbits and homoclinic orbits: Melnikov’s method

For brevity, we only present the standard Melnikov method for periodic perturbations of
single-degree-of-freedom Hamiltonian systems.
We consider systems of the form

i =JDH(z)+eg(x,t), z¢€R? (2.1)

where ¢ is a small parameter such that 0 <e < 1, H : R? - R and ¢ : R?> x R — R? are
smooth, g(x,t) is T-periodic in ¢t with 7" > 0 a constant, and J is the 2 x 2 symplectic

matrix,
0 1
J—(_l 0),

When € = 0, Eq. (2.1) becomes the single-degree-of-freedom Hamiltonian system with the
Hamiltonian H(x),

@ = JDH(x). (2.2)

Let # =t mod T so that § € S, where S' = R/TZ. We rewrite (2.1) as an autonomous
system, .
&t =JDH(z)+¢eg(z,0), 0=1. (2.3)

We make the following assumption:

(M) The unperturbed system (2.2) possesses a one-parameter family of periodic orbits
q®(t) with period T, a € (a1, az), for some a; < as.

Assume that a € (ay, ay) satisfies [T = mT for some relatively prime, positive integers
m and n. Then we can regard that Eq. (2.3) has a one-parameter family of mT-periodic
orbits z = ¢*(t) and § = ¢t + 7, 7 € S', when € = 0. Using the Melnikov method [6,13],
we see that if the subharmonic Melnikov function

mT
M™(7):= | DH(g*(t)) - 9(q°(t),t + 7)dt
0
has a simple zero at 7 = 79 € S!, then for ¢ > 0 sufficiently small Eq. (2.3) has a periodic
orbit of period mT near x = ¢*(t — 79) and # =t mod T'. In other words, the periodic
orbit (z,0) = (¢*(t — 7),t), t € [0,T), persists under the perturbation eg(x,0) if the
subharmonic Melnikov function M™/!(7) has a simple zero at 7 = 75 € S'.
We next assume the following instead of assumption (M).

(M") The unperturbed system (2.2) possesses a hyperbolic saddle point p connected to
itself by a homoclinic orbit ¢"(¢).

Under the assumption (M’) we can regard that Eq. (2.3) has a hyperbolic periodic orbit
(2,0) = (p,t) connected to itself by a one-parameter family of homoclinic orbits z = ¢"(¢)
and 0 =t+7 mod T, 7 € S', when € = 0. We easily show that there exists a hyperbolic
periodic orbit near = p and # =t mod T (see [6,13] for the proof). Using the Melnikov
method [6,7,13], we see that if the homoclinic Melnikov function

M(r) = / T DHGM®) - gl (1)t + )t
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has a simple zero, then for ¢ > 0 sufficiently small, there exists a transverse homoclinic
orbit of (2.1). In other words, the homoclinic orbit x = ¢*(t — 1) and § = ¢t mod T
persists under the perturbation eg(z,#) if the homoclinic Melnikov function M (1) has
a simple zero at 7 = 79 € S'. By the Smale-Birkhoff theorem [6,13], the existence of
transverse homoclinic orbits to hyperbolic periodic orbits implies that chaotic behavior
OCCurs.

2.2 First integrals and commutative vector fields

Integrability for autonomous systems due to Bogoyavlenskij [4] means that the systems
have an adequate amounts of first integrals and commutative vector fields.

Definition 2.1 (Bogoyavlenskij). Let .# be a n-dimensional smooth manifold and X be
a smooth vector field on A . Consider an autonomous n-dimensional system

t=X(z), ze . (2.4)

FEquation (2.4) is called integrable in the meaning of Bogoyavlenskij if there exist q vector
fields X;(:= X), Xs,..., X, and n — q scalar-valued functions Fi, ..., F,_, such that

(i) Xi,...,X, are linearly independent almost everywhere and commute with each other,
i.e., [X;, Xg] =0 forj,k=1,...,q where [-,-] is the Lie bracket;

(i) dFy,...,dF,_, are linearly independent almost everywhere and Fi, ..., F,_, are first
integrals of Xy,...,X,, i.e., dFy(X;) =0 forj=1,...,qandk=1,...,n—q.

If X0, Xo,...,X, and Fy, ..., F,_, are analytic, then Eq. (2.4) is said to be analytically
integrable.

Definition 2.1 is regarded as a generalization of complete integrability for Hamiltonian
systems. The statement similar to that of the Liouville-Arnold theorem [1] also holds
for integrable systems in the meaning of Bogoyavlenskij: if Eq. (2.4) is integrable and
a connected component of the level set F~*(c) with F' := (Fy,..., F,_,) is regular and
compact for ¢ € R"7%, then it can be transformed to a linear flow on the g-dimensional
torus TY [4].

It is well known that Poincaré proved nonintegrability of the restricted three body
problem [12]. In his work, he proved nonintegrability of analytic nearly integrable Hamil-
tonian systems under some assumptions. Here we only emphasize that his result means
that first integrals and commutative (Hamiltonian) vector fields do not persist generally.

2.3 Relationships between the Melnikov method and integrabil-
ity

In addition to facts in Subsection 2.1 and 2.2, there are some relationships between inte-
grability and the Melnikov function for perturbed systems.

As Moser stated in his monograph [11], the horseshoe map does not possess a real
analytic first integral. This means that, for (2.1) with assumption (M’), if the Melnikov
function has a simple zero, then (2.1) is real analytically nonintegrable.



In [8], Morales showed that, for (2.1) under some conditions with the assumption
(M), if the differential Galois group for the variational equation around the unperturbed
homoclinic orbit is commutative, then the Melnikov function is identically zero. We
remark that if an extended system of (2.3) is integrable near homoclinic orbit, then the
identity component of the differential Galois group is commutative, by Morales-Ramis
theory [9], [10].

Our main results in Section 3 can be regarded as a primitive case of these facts.

3 Main results

Let .# be a n-dimensional, paracompact, oriented, and smooth real manifold. Consider
following system in .Z:
T = X (x) (3.1)

where X, is a smooth vector field such that X, = X° 4+ X! 4 O(e?).

3.1 Periodic orbits

We take following assumptions:
(A1) X has a T-periodic orbit (t) where T' > 0 is a constant,
(A2) XY has a non-constant smooth first integral F.

Let T' be a trajectory defined by x = ~(t) and

Iy ::/0 dF (X1 (y(t))dt.

Theorem 3.1. Assume (A1) and (A2) for (3.1). If X. has a smooth first integral Fr
near I' depending on € smoothly such that Fy = F, then Sp, =0 holds.

Theorem 3.2. Assume (A1) and (A2) for (3.1). If X, has a T.-periodic orbit ~y. depend-
ing on € smoothly such that Ty =T and vy = v, then g, =0 holds.

In other words, if .#r, # 0, then F’ and v does not persist in the perturbed system.
Next, we impose an additional assumption:

(A3) XY has a smooth commutative vector field Z.

Let

Frzn = / AF((X", 2)) (7 (1))t

where [, ] is Lie bracket.

Theorem 3.3. Assume (A1), (A2) and (A3) for (3.1). If X. has a smooth commutative
vector field Z. near I' depending on e smoothly such that Zy = Z, then f#r .z, = 0 holds.



3.2 Homoclinic orbits of periodic orbits

We give similar results for homoclinic orbits of periodic orbits. Instead of the assumption
(A1), we consider following assumption:

(A1’) X° has a homoclinic orbit v"(¢) of a periodic orbit vP(t).

In this subsection we always assume (A1) and (A2).

As in Subsection 3.1, we want to define a specific integral but in this case the situation
is complicated. When ~P(¢) is an equilibrium, we denote xy = 7? and define a formal
integral

I ag = /_ h dF (X1 (v2(t))dt. (3.2)

o0

When ~P(t) is not an equilibrium, we define jpﬁhyxo as follows. Let TP = {yP(¢) : t €
R} and I’ = {4"(¢) : t € R} UIP. Fix 29 € {7P(¢) : t € R} and take n — 1 dimensional
supersurface S such that xy € S and S h I'P. Take a sufficiently small neighberhood V,,
of zy. We set a Poincaré section ,, = S NV,,. If [t| is sufficiently large, since v"(¢) is a
homoclinic orbit of a periodic orbit 4P (¢), by its continuity, v*(#) and 3, cross. We denote
the positive (respectively negative) time of the i-th intersection by 77" (respectively 7).
In this setting, (A1) means that

; h/pxoy
Jim AT = o (3.3)
Then we define a formal integral
~ leo
Iz 1= lim dE (X (™ (t))dt. (3.4)

k,l—+o00 zQ
T—y

Theorem 3.4. Assume (A1°) and (A2) for (3.1). If X. has a smooth first integral F;
near I'" depending on € smoothly such that Fy = F', then Iph g, converges to 0.

Theorem 3.5. Assume (A1’) and (A2) for (3.1). Suppose that there exists a periodic
orbit 4% of X. depending on ¢ smoothly such that vg =~P. If X. has a homoclinic orbit
Y2 to AP depending on & smoothly such that v =~", then Fp ., converges to 0.

Now we impose the additional assumption (A3). When ~? is an equilibrium, define

0
Tl

Fponay = lim dF([X, Z]) (7" (t))dt. (3.5)

k,l—+o00 zQ
%

and when ~? is not an equilibrium, define

Frpani= [ AR Z) M0 (3.6)

[ee)

Theorem 3.6. Assume (A1°), (A2) and (A3) for (3.1). If X, has a smooth commutative
vector field Z. near I depending on & smoothly such that Zy = Z, then Zr z. converges
to 0.



4 Ideas of the proofs

We have Theorem 3.1 and 3.2 by calculating f7 dF. and f% dF respectively. Similarly, we
can prove Theorem 3.3 and 3.4.

Here we give the sketch of the proof of Theorem 3.3. At first, we construct a first
integral corresponding to given commutative vector field by using the cotangent lift trick
[3]. It is well-known that any cotangent bundle has a symplectic form induced by Liouville
form [2] and we denote it by €. Let X be a smooth vector field on .#Z and hx be a
function on T*.# defined by

hx(x,p) = (p, X(x)) (4.1)

for (z,p) € T*.# where (,) is a natural pairing. Then the cotangent lift of X, denoted by
X, is the Hamiltonian vector field of the Hamiltonian hx with the symplectic form €.
In the local coordinates (x4, - Ty P1y -, Pn), With the frame 8%1, - %, 8%1, - 8%, the
differential equation given by X is expressed as

‘;_f ~ X(a) (: a_p> (4.2)

dp 6X(93)Tp <: _%) |

dt ox (4.3)

In [3]:proposition 2, they use following fact.

Lemma 4.1. Assume Z is a commutative vector field of X. Then hz is a first integral
of the cotangent lift X of X.

Next, we find a periodic orbit in the lifted system. Let X be a smooth vector field
on .#and I' be an integral curve given by a non-stationary particular solution x = ¢(t)
of X. An immersion ¢ : I' — .# induces a vector bundle Tt := ¢*T'M. Then we get a
connection of the vector bundle Tt:

Vs .= »CXYlF (44)

where Y is any smooth vector field extension of the section s of the bundle T1. Then
Vs = 0 is said to be the variational equation of X along I' [2,5]. Moreover, for the dual
connection V*, V*a = 0 is said to be the adjoint variational equation of X along I'.
Locally, V*a = 0 can be written as

o (Sem) u (4.5)

Lemma 4.2. Let I' be an integral curve of the vector field X and V*a = 0 be its adjoint
variational equation. If X has a first integral F', then o = dF|r is a horizontal section of
V*.

We remark that (4.3) is the same as (4.5) when x = ¢(t). So under the assumptions of
Theorem 3.3, the lifted system X of X has a periodic orbit (y(t), dF(y(t))) by Lemma 4.2
and a first integral hy; by Lemma 4.1. If the lifted system X. has a commutative vector
field Z. such that Z. = Z + O(e), X. has a first integral h,_ such that hy = hy + O(e)
and we can apply Theorem 3.1 to the lifted system.
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5 Some relation with Melnikov methods

Finally, we remark relationships between our main results and Melnikov method.

We return to (2.3) and make the assumption (M). By the setting and the assumption
(M), we have a first integral H and a orbit (¢“(t),t) of the unperturbed system of (2.3).
Moreover, when the resonance condition (7% = mT (I,m € N are relatevely prime)
holds, 42/ ‘() == (¢*(t),t + 7) is mT-periodic orbit of unperturbed system of (2.3) for all

€ [0,7]. So we can apply Theorem 3.1 to the system (2.3) with a first integral H(z)
and mT-periodic orbit 42 ‘(). Then the integral in Theorem 3.1 is

mT

I mit = DH(q*(t)) - g(q“(t), t + 7)dt

HAr B

and this coinsides with the subharmonic Melnikov function M™(7). So we get following
Theorem.

Theorem 5.1. Under the resonance condition IT* = mT (I,m € N are relatevely prime)
and the assumption (M), if (2.3) has a smooth first integral F. depending on € smoothly
such that Fy = F, then M™/' (1) must be identically zero.

As in the subharmonic case, we get similar statement for the cese of homoclinic orbits.

Theorem 5.2. Under the assumption (M’), if (2.3) has a smooth first integral F. de-
pending on € smoothly such that Fy = F, then M (1) must be identically zero.
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