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Abstract

We describe two new characterizations of the freeness for a hyperplane arrangement in terms of the
generic initial ideal and of the sectional matrix of the Jacobian ideal of the arrangement.

1 Introduction

An arrangement of hyperplanes is a finite collection of affine subspaces of codimension one in a finite
dimensional vector space. Associated to these spaces, there are many algebraic, combinatorial and topo-
logical invariants. Arrangements are easily defined but they lead to deep and beautiful results connecting
various area of mathematics. We refer to [9] for a comprehensive treatment of this subject.

In the theory of hyperplane arrangements, the freeness of an arrangement is a key notion which
connects arrangement theory with algebraic geometry and combinatorics. The notion of freeness was
introduced by Saito in [11] for the case of hypersurfaces in the analytic category. The special case of
hyperplane arrangements was firstly studied by Terao in [12], where he showed that we can pass from
analytic to algebraic considerations. By definition, an arrangement is free if and only if its module of
logarithmic derivations is a free module. It turns out that, by Terao’s characterization [9], this notion is
equivalent to the fact that the Jacobian ideal of the arrangement is Cohen-Macaulay of codimension 2.
There are several ways to prove freeness, e.g. using Saito’s criterion [11], addition-deletion theorem [12],
etc. However, it is not always easy to characterize freeness or to construct new free arrangements.

We will give new characterizations of freeness for any dimension. Namely, we will characterize freeness
in terms of the generic initial ideal and of the sectional matrix of the Jacobian ideal of an arrangement.

These results are part of [5]. All the computations in the paper are done using the computer algebra
system CoCoA, see [1], [2], [3] and [10].
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2 Preliminares on hyperplane arrangements

Let K be a field of characteristic zero. A finite set of affine hyperplanes A = {H,...,H,} in K' is
called a hyperplane arrangement. For each hyperplane H; we fix a polynomial o; € S = S*(K') =
Klzy,...,;] such that H; = a; '(0), and let Q(A) = [[/_; a;. An arrangement A is called central if
each H; contains the origin of K'!, and it is called essential if there exist H;,,..., H; € A such that
dlm(Hzl n---N H'Ll) =0.

We denote by Derg: = {Zlizl fiOx,
(or S-derivations). Let ¢ = Zi:l fiOz, € Derg:. Then § is said to be homogeneous of polynomial
degree d if f1,..., fi are homogeneous polynomials of degree d in S, and we write pdeg(d) = d.

A central arrangement A4 is said to be free with exponents (ei,...,¢;) if and only if the module of
vector fields logarithmic tangent to A, that is

fi € S} the S-module of polynomial vector fields on K'

D(A) = {8 € Dergr | () € (i), Vil,

is a free S-module and there exists a basis d1,...,0; € D(A) such that pdeg(d;) = e;, or equivalently
D(A) = 692:1 S(—e;). When we say that A is free with exponents (eq, ..., e;), we suppose e; < -+ < ¢y,
and if A is essential then e; = 1.

The module D(A) is a graded S-module and we have that D(A) = {4 € Derg: | §(Q(A)) € (Q(A))S}.
In particular, since the arrangement A4 is central, then the Euler vector field ép = Zé:l x;0y, belongs
to D(A). In this case, D(A) = S-0g @ Do(A), where Dy(A) = {6 € Derg: | 6(Q(A)) = 0}.

Given an arrangement A = {Hi,...,H,} in K!, the Jacobian ideal J(A) of A is the ideal of S
generated by Q(A) and all its partial derivatives.

In [12], Terao proved the following statement.

Theorem 2.1 (Terao’s criterion)
A central arrangement A is free if and only if S/J(A) is 0 or Cohen-Macaulay.

Given an arrangement A, we can compute the minimal resolution of the Jacobian ideal, and if A is
free this is quite easy. See [12, p.296] for more details. Specifically, if A = {Hy,...,H,} is a central,
essential and free hyperplane arrangement with exponents (1, es, ..., ¢;), then S/J(A) has a minimal free
resolution of the type

l
0= EPS(—n—ei+1) 2 Dy(A) = S(-n+1)' > S.

=2

Example 2.2
(i) Consider the arrangement A in C® defined by the polynomial Q(A) = zyz(z +y)(z —y) € Cla,y, 2].
This is a free arrangement with exponents (1,1, 3), in fact S/J(A) has resolution

0— S(=5)®S(-7) = S(—4)*> = 8.

(ii) Consider the arrangement A in C® defined by the polynomial QA) =z(z+y—2)(z+2)(x+22)(z+
y + 2) € Clx,y, 2]. This arrangement is not free, in fact S/J(A) has resolution

0— S(—8) = S(—6) @ S(~7)? = S(—4)* = S.

3 Generic initial ideals and free hyperplane arrangements

We firstly characterize freeness of hyperplane arrangements by looking at the generic initial ideal rgin(J(A))
of the Jacobian ideal J(A) of A with respect to the term ordering DegRevLex. For more details and
additional properties of generic initial ideals, we refer to Galligo [7] and the book [8].



Definition 3.3
A monomial ideal I in K[xy,...,x;] is said to be strongly stable if for every power-product t € I and
every i, j such that i < j and z;|t, the power-product x; - t/xz; is in I.

Theorem 3.4 (Galligo)

Let I be a homogeneous ideal in K[z1,...,x;] and o a term ordering such that x1 >, X3 >4 ... >, Zy.
Then there exists a Zariski open set U C GL(l) and a strongly stable ideal B such that for each g € U,
LT, (9(1)) = B.

Definition 3.5

The strongly stable ideal B given in Theorem 3.4 is called the generic initial ideal with respect to
o of I and it is denoted by gin_(I). In particular, when o = DegRevLex, gin, (I) is simply denoted with
rgin(7).

We are now ready to present our first characterization.

Theorem 3.6
Let A= {Hy,...,H,} be a central arrangement in K'. Then A is free if and only if rgin(J(A)) is S or
its minimal generators include :C?_l, some positive power of xo, and no monomials in x3,...,x;. More

precisely, A is free if and only if rgin(J(A)) is S or it is minimally generated by

n—1 n—2_MA1 An—1
R R

withl1 < A\ <Ay < -+ <Ap_1and A\j41 —A\; =1 or 2.

Example 3.7
(i) Consider the free arrangement A in C? of the Example 2.2.(i) defined by the polynomial Q(A) =
zyz(z +y)(x — y) € Clz,y, 2]. Then the generic initial ideal of its Jacobian ideal is

rgin(J(A)) = (24, 2%y, 2%y%, xy*, ¢°),
as expected by the previous theorem.

(ii) Consider the non-free arrangement A in C® of the Example 2.2.(ii) defined by the polynomial Q(A) =
z(z+y—2)(x+2)(r+22)(x+y+2) € Clz,y, 2]. Then the generic initial ideal of its Jacobian ideal
is

rgin(J(A)) = (¢!, 2%y, 2%y, 2y*, y°, 2y°2%),
as prescribed by the previous theorem.

If we look at the resolution of the rgin(J(.A)), we can not only understand if A is free but we can also
compute its exponents.

Theorem 3.8
Let A = {H,,...,H,} be an essential and central arrangement in K', with | > 2. If A is free with

exponents (ey,...,e;) then rgin(J(A)) has free resolution
n+e;—2 n+e; —2
0— P S(-j— i G S(-—j)%I —rein(J(A)) -0,
j=n—1 j=n—1

where Bon—1 = Pin+l =1 and B1 41 = Bo; = #{i | & > j —n+ 1} for all j > n. In particular,
Bon—1 > Bon = -+ = Bonte—2-

Example 3.9
Consider the essential arrangement A in C® of the Example 2.2.(i). A is free with exponents (1,1, 3),
and S/J(A) has a resolution

0— S(-5)DS(—7) = S(—4)* = S.



The graded Betti numbers of S/J(A) are bounded by those of S/rgin(J(.A)) which can be computed
by the exponents of A (Theorem 3.8).

Boa=3,515=Poa—1=2,
Bi6 = Bos = #{i | e; > 1} = #{es} =1,
Prr = Boe = #{i | es > 2} = #{es} = 1.
Thus, the resolution of S/rgin(J(A)) is
0— S(=5)2dS(-6)@ S(=7) = S(—4)> ® S(—5) ® S(—6) = S.

Corollary 3.10

Let A = {H,,...,H,} be a central and essential arrangement in K', with n > 2. If A is free, then
rgin(J(A)) is uniquely determined by the exponents of A. Vice versa, the exponents of A are uniquely
determined by rgin(J(.A)).

Corollary 3.11
Let A and A’ be two essential, central and free arrangements. Suppose that A and A’ are combinatorially
equivalent, i.e. they have isomorphic intersection lattices, then rgin(J(A)) = rgin(J(A")).

4 Sectional matrices and free hyperplane arrangements

We now characterize freeness of hyperplane arrangements by looking at the sectional matrix of S/J(A). In
this setting, the sectional matrix Mg, of a polynomial ideal I encodes the Hilbert functions of successive
hyperplane sections of the quotient S/I. For more details and properties of sectional matrices, we refer
to [6] and [4].

Definition 4.12
Given a homogeneous ideal I in S, the sectional matrix of S/I is the function {1,...,1} x N — N

MS/[(i, d) = dimK(Sd/(I + (Ll, .. 7Ll—i))d)7
where Ly, ..., L;_; are generic linear forms.

The following result is a rewriting of Lemma 5.5 from [6].

Lemma 4.13
Let I be a homogeneous ideal in S. Then

MS/[(i, d) = Ms/rgin(j) (i,d) = dimK(Sd/(rgin(I) + (.’L‘H_l, R 7$l))d)-

Theorem 4.14
Let A be a central arrangement and dy = max{d | Mg, j4)(2,d) # 0}. Then A is free if and only if
Mg 5y is the zero function or the following two conditions hold

1. Mgy yay(3,do) = Mgy yay(3,do+1) = Mgy 5a)(3,do + 2),
2. Mg/yeay(3,do) = S0 g Mis/y(ay(2.d).

Example 4.15
(i) Consider the free arrangement A in C? of the Example 2.2.(i) defined by the polynomial Q(A) =
zyz(z +y)(x —y) € Clz,y, 2]. The sectional matrix of Clz,y, z]/J(A) is

3 4 6 7
1 0 0 0 0
4 2 1 0 0

0 12 [13] [13] [13]

D W =N

0 1
11
1 2
1 3



(ii)

In this case dy = 5, MS/J(A)(3,5) = MS/J(A)(3,6) = MS/J(A)(3,7) = 13 and MS/J(_A)(3,5) =
5
> a—o Msyi(a)(2,d).

Consider the non-free arrangement A in C? of the Example 2.2.(ii) defined by the polynomial Q(A) =
v(x4+y—2)(x+2)(x+22)(x+y+2) € Clx,y,2]. The sectional matrix of Clx,y, 2]/ J(A) is

o1 2 3 [4] 5 6 7
1 11 1 0 0 0

1 2 3 4 2 0 o 0 ...
13 6 10 [12] [12] [11] 11 ...

In this case dy = 4, but 12 = Mg/ y4)(3,4) = Mg/ 54)(3,5) > Mg, 54)(3,6) = 11. Notice that
My g0a)(3.4) = 300 Msys(a)(2,d).

With the notation of the previous theorem, dy coincides with min{d | z3™* € rgin(J(A))}.

Conjecture 4.16
Let A be a central arrangement in K'. If rgin(J(A)) has a minimal generator T that involves the third
variable of S, then deg(T) > do + 1.

If the previous conjecture is true, then the statement of Theorem 4.14 becomes easier, as follows:

Corollary 4.17
Let A be a central arrangement. Then A is free if and only if Mg, 4y is the zero function or
Mgy (3,do) = Mgy (3,do +1) = Mgy 54)(3,do +2).
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