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Abstract. In this paper we present a simpler proof of that no inequality between
cof(SN ) and c can be decided in ZFC using tecniques and results well known.

1. Introduction

Borel [Bor19] introduced the new class of Lebesgue measure zero subsets of the real
line called strong measure zero sets, which we denote by SN . The cardinal invariants
associated with strong measure zero have been investigated. To summarize some of the
results:

Theorem A. The following holds in ZFC

(i) (Carlson [Car93]) add(N ) ≤ add(SN ),
(ii) cov(N ) ≤ cov(SN ) ≤ c,

(iii) (Miller [Mil81]) cov(M) ≤ non(SN ) ≤ cov(N ) and add(M) = min{b, non(SN )},
(iv) (Osuga [Osu08]) cof(SN ) ≤ 2d.

Moreover, each of the following staments is consistent with ZFC

(v) (Goldstern, Judah and Shelah [GJS93]) cof(M) < add(SN ),
(vi) (Pawlikowski [Paw90]) cov(SN ) < add(M),

(vii) (Yorioka [Yor02]) c < cof(SN ) (from CH),
(viii) (Yorioka [Yor02]) cof(SN ) < c,
(ix) (Laver [Lav76]) cof(SN ) = c.

To prove (vii) and (viii) Yorioka give a characterization of SN , to do this he introduced
the σ-ideals If parametrized by increasing functions f ∈ ωω, which we call Yorioka ideals
(see Definition 2.1). These ideals are subideals of the null ideal N and they include
SN and SN =

⋂
{If : f ∈ ωω increasing}. Even more, he proved that cof(SN ) = dκ

(see Definition 2.2) whenever add(If ) = cof(If ) = κ for all increasing f . But Yorioka’s
original proof assumes add(If ) = cof(If ) = d = cov(M) = κ for all increasing f , but d
and cov(M) can be omitted since add(N ) ≤ minadd ≤ add(M) and cof(M) ≤ supcof ≤
cof(N ) (see [Osu08, CM19]).

In this work, we provide a simpler proof of the result.

Main Theorem (Yorioka [Yor02]). Let κ, ν be an infinite cardinals such that ℵ1 ≤ κ =
κ<κ < ν = νκ and assume that λ is a cardinal such that κ ≤ λ = λℵ0 . Then there is some
poset Q such that 
Q add(N ) = cof(N ) = κ, cof(SN ) = dκ = ν and c = λ.

This result give the consisteny that values value cof(SN ) may be less than c.
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2. Proof the main theorem

We first start with basic definitions and facts:
Let κ be an infinite cardinal. Let f, g ∈ κκ. Set f ≤∗ g if ∃α < κ∀β > α(f(β) ≤ g(β)).

Denote powk : ω → ω the function defined by powk(i) := ik, and define the relation �
on ωω as follows: f � g iff ∀k < ω(f ◦ powk ≤∗ g).

Definition 2.1. For σ ∈ (2<ω)ω define

[σ]∞ := {x ∈ 2ω : ∃∞n < ω(σ(n) ⊆ x)} =
⋂
n<ω

⋃
m>n

[σ(m)]

and htσ ∈ ωω by htσ(i) := |σ(i)| for each i < ω. Let f ∈ ωω be a increasing function,
set

If := {X ⊆ 2ω : ∃σ ∈ (2<ω)ω(X ⊆ [σ]∞ and hσ � f)}.

Any family of the form If if f increasing is called a Yorioka ideal, since Yorioka [Yor02]
has proved that If is a σ-ideal in this case, and SN =

⋂
{If : f increasing}. Denote

minadd = min{add(If ) : f increasing}, supcof = sup{cof(If ) : f increasing}

Definition 2.2. Let κ be a regular cardinals. Define the cardinal numbers bκ and dκ as
follows:

bκ = min{|F | : F ⊆ κκ & ∀g ∈ κκ∃f ∈ F (f 6≤∗ g)} the (un)bounding number for κκ

and

dκ = min{|D| : D ⊆ κκ & ∀g ∈ κκ∃f ∈ D(g ≤∗ f)} the dominating number for κκ

In particular, when κ = ω, bκ and dκ are b and d respectively, well known as the
(un)bounding number and the dominating number.

Set Fn<κ(I, J) := {p ⊆ I × J : |p| < κ and p function} for sets I, J and an infinite
cardinal κ.

Lemma 2.3. Let ν, κ be uncountable cardinals such that κ<κ = κ and ν > κ. Then
Fn<κ(ν × κ, κ) 
 dκ ≥ ν.

Proof. Let ϑ < ν and let {ẋα : α < ϑ} be a set of Fn<κ(ν × κ, κ)-names of functions in
κκ. Since Fn<κ(ν × κ, κ) is (κ<κ)+ = κ+-cc we can find a subset S of ν of size < ν such
that ẋα is a Fn(S × κ, κ)-name for each α < ϑ.

Claim 2.4. Fn<κ(κ, κ) adds an unbounded function in κκ over the ground model.

Proof. Let G be a Fn<κ(κ, κ)-generic set over V . Let c := cG =
⋃
G ∈ κκ be the real

generic added by Fn<κ(κ, κ). Assume that f ∈ κκ ∩V . We will prove that f 6≤∗ c. To see
this, for α < κ, define the sets Dα := {p ∈ Fn<κ(κ, κ) : ∃β > α(p(β) > f(β))} which are
dense, so G intersects all of these yielding ∀α < κ∃β < α(c(β) > f(β)). �

By Claim 2.4, Fn<κ(ν × κ, κ) forces that the κ-Cohen real at some ξ ∈ ν r S is not
dominated by any ẋα. �

As mentioned in the introduction that add(N ) ≤ minadd ≤ add(M) and cof(M) ≤
supcof ≤ cof(N ) (see [Osu08, CM19]) we can reformulate Yorioka’s characterization of
cof(SN ) as follows.

Theorem 2.5 (Yorioka [Yor02]). Let κ be a regular uncountable cardinal. Assume that
κ = minadd = supcof. Then cof(SN ) = dκ.
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To prove our Main Thereom we need to preserve dκ for κ regular. The following result
show one condition under it can be preserved.

Lemma 2.6. Let κ be a regular uncountable cardinal. Suppose that P is a κ-cc. Then

P dVκ = dκ.

Proof. It is enough to show that P is κκ-bounding1 because κκ-bounding posets preserve
dκ. Let ẋ be a P-name for a member of κκ. We prove that ∀α < κ∃z(α) < κ(
P ẋ(α) <
z(α)). Fix any α < κ. Towards a contradiction, assume that ∀β < κ∃pβ ∈ P(pβ 
P β ≤
ẋ(α)).

Claim 2.7. Assume that P is κ-cc and {pα : α < κ} ⊆ P. Then there is a q ∈ P such
that q 
 |{α < κ : pα ∈ Ġ}| = κ.

Proof. To reason by contradiction assume that 
P |{α < κ : pα ∈ Ġ}| < κ. Let β̇ be

a P-name such that 
 β̇ ∈ κ and {α < κ : pα ∈ Ġ} ⊆ β̇. Fix a maximal antichain

A deciding β̇ and a function h : A → κ such that p 
 h(p) = β̇ for all p ∈ A. Set
γ := supp∈A h(p) < κ. since κ is regular and P is κ-cc, γ < κ, so 
P {α < κ : pα ∈ Ġ} ⊆ γ.

But pγ+1 
 γ + 1 ∈ {α < κ : pα ∈ Ġ} ⊆ γ, which is a contradiction. �

By Claim 2.7, we can find a condition q ∈ P such that q 
 |{β < κ : pβ ∈ Ġ}| = κ, so
there are a r ≤ q and ϑ < κ such that r 
 ẋ(α) = ϑ, even more, we can find s ≤ r and
ε > ϑ such that s 
 pε ∈ Ġ. Hence s 
 ẋ(α) = ϑ < ε ≤ ẋ(α) because pε 
 ε ≤ ẋ(α)
which is a contradiction.

For α < κ set z ∈ κκ such that 
P ẋ(α) < z(α). This z work. �

Now we are ready to prove the Main Theorem.

Proof of the Main Theorem. In V , we start with P0 := Fn<κ(ν × κ, κ). Note that P0 is
κ+-cc and < κ-closed. Then 
P0 dκ = 2κ = ν by Lemma 2.3.

In V P0 , let P1 be the FS iteration of amoeba forcing of length λκ. Then, 
P1 add(N ) =
cof(N ) = κ and c = λ. In particular, add(SN ) = non(SN ) = κ and minadd = supcof =
κ. On the other hand, cov(SN ) = κ because the length of the FS iteration has cofinality
κ (see e.g. [BJ95, Lemma 8.2.6]). Therefore, 
P1 add(SN ) = cov(SN ) = non(SN ) = κ
and cof(SN ) = dκ = ν by Theorem 2.5 and Lemma 2.6. �

3. Open problems

Very quite recently, the author with Mej́ıa and Rivera-Madrid [CMRM] constructed
a poset forcing non(SN ) < cov(SN ) < cof(SN ). This is first result where 3 cardianl
invariants associated with SN are pairwise different, but its still unknown for 4, so we
ask.

Question 3.1. Is it consistent with ZFC that add(SN ) < non(SN ) < cov(SN ) <
cof(SN )?

In a work in progress, the author with Mej́ıa and Yorioka have improved methods and
results known from [Yor02] to prove the consistency of cov(SN ) < non(SN ) < cof(SN ).
However its still unknown the following problem.

Question 3.2. Is it consistent with ZFC that add(SN ) < cov(SN ) < non(SN ) <
cof(SN )?

1A poset P is κκ-bounding if for any p ∈ P and any P-name ẋ of a member for κκ, there are a function
z ∈ κκ and some q ≤ p that forces ẋ(α) ≤ z(α) for any α < κ.



4 MIGUEL A. CARDONA

The method of κ-uf-extendable matrix iterations, introduced recently by the author with
Brendle and Mej́ıa [BCM], could be useful to answer the question above. For example
they constructed a ccc poset forcing

add(N ) = add(M) < cov(N ) = non(M) < cov(M) = non(N ) < cof(M) = cof(N ).

In the same model, cov(SN ) = cov(N ) < non(SN ) = non(N ) by Theorem A and
because this model is obtained by a FS iteration of length with cofinality ν (where ν is
the desired value for non(M)), and it is well known that such cofinality becomes an upper
bound of cov(SN ) (see e.g. [BJ95, Lemma 8.2.6]). But it is unknown how to deal with
add(SN ) and cof(SN ) in this context.
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