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INTRODUCTION

In this article, we introduce parametrized versions of Devlin-Shelah’s assertion
about uniformizations of ladder system colorings. For a subset S of the power set
of wy N Lim, U(S) is the assertion that, for any coloring (f, : & € wy N Lim) of the
ladder system (C, : @ € wy N Lim), there exist S € S and a function from w; into
w which uniformizes the restricted coloring (f, : @ € S). Devlin-Shelah’s original
assertion is the assertion U({w; NLim}). This follows from MAy,, and is equivalent
to the existence of non-free Whitehead group. The axiom K, which is one of
Todoréevié’s fragments of Martin’s Axiom, implies the assertion U([w; N Lim]*").
Todorcevié-Velickovié pointed out that Kj implies U({wy N Lim}). We show that
the axiom /C3 implies the assertion U(stat), and similarly, ) implies U(club). By
Larson-Todoréevié’s result, it is shown that it is consistent that U([w; N Lim]™")
holds and U(club) fails

1. BACKGROUND AND PRELIMINARIES

1.1. Todoréevié’s fragments of Martin’s Axiom. In 1980s, Todorcevi¢ inves-
tigated Martin’s Axiom from the view point of Ramsey theory, and introduced the
following fragments of Martin’s Axiom: K., denotes the assertion that every ccc
forcing notion has precaliber Xy; /C,, denotes the assertion that every ccc forcing
notion has the property K,; K”  denotes the assertion that every ccc partition
KoUK, = [w1]<% has an uncountable Ky-homogeneous set; K/, denotes the asser-
tion that every ccc partition KoUK = [w1]™ has an uncountable Ky-homogeneous
set.*! The following diagram is a summary of implications of these fragments of
MAy, . The triangle on the left side of the diagram is Todorcevié-Velickovié¢ theorem
[11, COROLLARY 2.7].
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It is not known whether any other implications in this diagram hold under ZFC.

Supported by Grant-in-Aid for Scientific Research (C) 18K03393, Japan Society for the Pro-
motion of Science.

*IThey are defined by Todoréevié in several papers. In [5, Definition4.9] and [11, §2], Ky’s
are defined as assertions for ccc forcing notions, however in [6, §4] and [8, §7], K,,’s are defined as
assertions for ccc partitions. To separate them, we use the notations as above. These notations
are same to ones in [12].
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Larson-Todoréevié introduced a property of ccc partitions on [w;]?, called the
rectangle refining property, and introduced the assertion Kj(rec) that every parti-
tion on [w]? with the rectangle refining property has an uncountable homogeneous
set. Larson-Todorcevié¢ proved that it is consistent that a Suslin tree can force
KCh(rec) [6]. More precisely, they introduced the assertion MAy, (S) which asserts
that there exists a coherent Suslin tree S such that the forcing axiom for all ccc forc-
ing notions which preserves S to be Suslin holds, and showed that, under MA, (S),
S forces Kj(rec). In [13], the author developed their result to K. (rec) in some
sense, that is, under MAy, (), S forces K. (rec) in some sense.

1.2. Uniformizations of ladder system colorings. The notion of uniformiza-
tion of a ladder system coloring was introduced by Devlin-Shelah, in order to study
the non-free Whitehead groups [2]. The following (4) is a parametrized version of
their assertion introduced in [2, 5.2 THEOREM].

Definition 1.1. (1) A ladder system on w is a sequence (Cy : @ € wy N Lim)
such that, for each a € wy N Lim, C, is an unbounded subset of o and the
order type of Cy, is w.

(2) A coloring of a ladder system (C,:a €w;NLim) is a sequence
(fa : @ € wy N Lim) such that, for each o € wy N Lim, f, is a function from
C, into w.

(3) For each coloring (f, : o € wy N Lim) of aladder system (Cy, : & € wy N Lim)
and a subset S of wy, a function ¢ from w; into w uniformizes the restricted
coloring (f, : € S) if for every o € S, f, and ¢ | C, are almost equal,
that is, the set

{5 €Cy: fa(g) # 90(5)}

is finite.

(4) For a subset S of the power set of wiNLim, U(S) is the assertion that, for any
coloring (fo : @ € w1 NLim) of a ladder system (C, : & € wy N Lim), there
exist S € § and a function from w; into w which uniformizes the restricted
coloring (fs : @ € 5).

Devlin-Shelah introduced the assertion U({w;NLim}) in [2, 5.2 THEOREM]. They
pointed out that U({w; N Lim}) is a sufficient condition of the existence of a non-
free Whitehead group [2, §6]. Moreover, Eklof-Shelah showed that U({w; N Lim})
is equivalent to the existence of a non-free Whitehead group [4], [3, Ch. XIII].

For any nonstationary subset N of wy NLim, one can prove the assertion U({N})
from ZFC [3, Ch. II Exercise 20 (a)]. Devlin-Shelah showed that MAy, implies
U({wy N Lim}) [2, 5.2 THEOREM]. It follows from their proof that K implies
U(jwi N Lim]®). In [13], the author proved that KCh(rec) implies the assertion
U([w N Lim]®1). Todoréevié-Velickovié pointed out that U({w; N Lim}) is followed
from ) [11, §2].

On the other hand, Larson-Todorcevi¢ essentially proved that a Suslin tree forces
the negation of the assertion U(club), where club stands for the set of all club subsets
of wy NLim [5, THEOREM 6.2]. Therefore, it is proved that under MAg, (S), S forces
that U(w; N Lim]™) holds and U(club) fails. The author does not know whether
U(club) implies U({w; N Lim}).



In the next section, it is proved that IC§ implies U(stat), where stat stands for
the set of all stationary subsets of w; N Lim. By a similar argument, it is proved
that K implies U(stat).

2. K4 IMPLIES U(stat)

In this section, we prove the title of the section. Here, for ordinals «, 8 and 7,
we write {o, B}<, or {a, 8,7}<, when o < 8, or a < 8 < 7.
Let {eq : a € wy) be a sequence such that

e each e, is an injective function from « into w, and
e (e, :a € w) is a coherent sequence, that is, for each o, 8 € wy with a < 3,
the set

{Sea:es§) # eald)}
is finite [7, 9, 10].
Let (ro :a € wy) be an injective sequence of members of the set “2. For each
a, B € wy with a < 8, and each n € w, define

o(a,B) :=min{n € w:ro(n) #rg(n)},

Fo(B) :={¢ € B:ep(§) <npuU{p},
and
b(a, B) := min (Fo(aﬁ) (8) \a) .
(See e.g. [7, §6].) Then, similar to [11, THEOREM 2.1], the following is proved.

Lemma 2.1. Let X be an uncountable subset of wi and M a countable elementary
submodel of Hy, such that the set

{{eq,: @ €Ewr), (ro:a €w), X}

belongs to the model M. Then, for any B € X \ M, there exists a € X N M such
that b(er, B) = w1 N M and, for any & € B\ o, eg(€) = ew,nm(§).

Proof. Let § € X N M. Since the sequence (r, : o € wy) is injective and X is
uncountable, we can find o/ € X \ ({#} U M) such that

ro [ eg(wi NM)=rs | eg(w NM).

(Here, we do not mind whether o’ is less than § or not.) We should notice that
there exist uncountably many such «’. Define n := o(3,a’) (or (o, 3)). Then we
notice that eg(wy N M) < n. Since the function eg is injective and the sequence
(eq : @ € wy) is coherent, we can find v € wy; N M such that for any € € 3\ v,

ewinm(§) = eg(§) > n.

By elementarity of M, we can find aw € (X N M) \ 7 that is a copy of ', which
means here that « > yand ro [ (n+1) =74 [ (n+1). Then

o(,B) = o(6,0') = n.
Therefore b(a, 8) = wy N M. O

The following is the main preliminary lemma of the proof.
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Lemma 2.2. Let (C,, : a € wy NLim) be a ladder system, {n% : n € w} the increas-
ing enumeration of Cy for each o € wy N Lim, I an uncountable subset of the set
[w1]<N0, K an enough large regular cardinal, M a countable elementary submodel of
H, that contains the set

{{eata€wr),(rq @ €wy),(Cy:ax €wy NLim), I, Hy,},
and 7 € I\ M. Then there exists J € [I|"* N M such that, for every v € JN M,

(1) v is an end-extension of TN M, that is, TN M C v and min(v \ (r N M)) >
max(7 N M),

(2) for any {a,B}< and {v,0}< in the set v U 7)%, if {a,B,7,6} € v and
{a,8,7,0} £ 7 and {b(a, B),b(~y,d)} C Lim, then

max ( {T)Z(O"B) tn > eg(a)} N {7}2(7’5) tn > 65(’7)})
< max (U {Chor gy N M : {, 8'}< € [717, (e, B') > w1 N M}) .

Proof. By simplifying the argument, for each v € wy \ Lim, we define C, := {y—1}
and n) := v — 1 for every n € w. Define
Lo := {b(a, ) : {a, B}< € [r\ M]?}

and

Ly := {min (Frapy(B)N [(winM)+1,8]): Ber\M,acT ﬂﬁ},
where

[(winNnM)+1,8 :={¢€B+1:(wNM)+1<E}.
We notice that
(LoULy) N M =0.

Take a number m € w such that

e for any d € Lo U Ly, {ngznzm}ﬂM:@,

e theset {{n% :n>m}:6 € {wNM}ULyUL;} is pairwise disjoint,

e forany § € {w; N M}ULoUL; and any {«, 8}« € [1]?, if b(r, B) € Lim\ {6},
then

(o 02 @)} 1 o2 ) =0,

m > max{eg(a),eglwiNM): feT\ M,a € 7N S}, and
m > max {o(, 8) : {o, B}< € [7]?}.
Next, take an ordinal € € w; N M such that

e TNM CE,

e for any {a, B}« € [1]?,

if b(a, B) < w1 N M, then b(w, 8) < &, and
if b(a, B) € Lim \ M, then
Ciiap) N M = Ci(a,5) N E,

and
e for any 8 € 7\ M and any ¢ € (w; N M)\ &, es(¢) > m.

Then we notice that
max (U {Chiapy "M : {a,B}< € [7]2,b(cr, B) > w1 N M}) < €.

Let {7 : i € n} be the increasing enumeration of the set 7\ M. Define
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J::{VEI: e vNE=TNM,
o [v\&| =n, and let {8 : i € n} be the increasing enumeration of the
set v\ &,
e for each a € 7N M and ¢ € n,
Ch(a.8r) N € = Cha,pr) NE,
e for each {i,j}< € [TL]2, Ob([%i”,ﬂ;’) ﬁZ = Cb(ﬂ;’,ﬂ;.') DE, and
e foreachi€n,rgy [mM=rg- [ M
Since 7 € J € M and 7 ¢ M, J is uncountable. Moreover, we notice that, for any
ved,
m > max {o(a, 8) : {o, B}< € P UT]*}.
Let v € J. Show that v satisfies the conditon (2) of the lemma.
Let a € 7N M (=vN M) and i € n. Then
Ch(a.pr) NE = Cya,pr) NE.
Moreover,
either both b(a, A7) < wi N M and b(a, 87) < € hold, ~
or both b(a, B7) € Lim\ M and Cy(q57) N M = Cy(q,p7) N € hold.

Therefore, for any a, o’ € 7N M and any i,7" € n with («, i) # (a/,#'), the pair of
the sets {a, 87} and {¢/, 5]} satisfies the condition (2).
Let {i,j} € [n]?. Then
Ob(ﬁfvﬁ}') n Z = Ob(B{,B;F) n Z
Therefore, by a similar observation in the previous paragraph, for any {i,j} € [n]?,
the pair of the sets {5/, 85} and {87, 57} satisfies the condition (2).
Let ¢ € n. Then, for any ¢ € [87,w1 N M),
esr (¢) >m > o(B7,5]).
Moreover, in this case,
o(Bi,B]) = epy (w1 N M).
Hence then, b(87, 87) = w1 N M and

Therefore, by the third condition of the number 7, for any {a, 8}« € [7]? and any
i € n, the pair of the sets {«, 8} and {87, 57 } satisfies the condition (2).
Let {i,j} € [n]?. Then, by the previous observation,

v oary [ =wiNM ifo(BY,8]) = egr (w1 N M),
b(B7 B7) { €Ly otherwise.
Therefore, for any {a, 8}« € [7]? and any {i,j} € [n]?, the pair of the sets {c, 8}
and {87, 57 } satisfies the condition (2). O

In the following proof, for each 7 € [w;]<N0, define
L(7) == {b(a. B) : {a, B}< € [7]*} N Lim.

L(7) is a finite set of ordinals. For each 7 € [w;]<®°, m, denotes the size of 7, and
let {7 :i € m,} be the increasing enumeration of 7.
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Theorem 2.3. Kf implies U(stat).

Proof. Let (Cy : @« € w; NLim) be a ladder system, and (f, : @ € wy N Lim) a col-
oring of the ladder system (C,, : & € wy N Lim). Define the set K, that consists of
all sets {a, 3,7} < in the set [w1]® with the property that the set

(fb(a,ﬁ) I {nff“*ﬁ) tn > 66(@}) U (fb(a,'y) I {nff“*” tn > ev(a)})

forms a function. We show that K is a ccc partition.

Let I € [[w1]<N0]N1 be an uncountable set of finite Ky-homogeneous sets, and
M a countable elementary submodel of H, that contains the set

{{ea: @ €wi), (ro:a€wy),(Cy:a€w NLim), (fo:a€w NLim), I, Hy,}.

By elementarity of M, we can take 7 € I\ M such that ws N M ¢ L(7), and can
take 7 € w; N M such that

U (CsNM)CT.
SeL(T)
Define the subset I’ of the set I that consists of all sets v in I such that

o ml/ - m‘l’a

o for any {i,5}< € [m.]?,

b( ;’,B}’) € Lim < b( [,BJT) € Lim,
and
e for any {i,j}< € [m,]?, whenever b(37,37) € Lim\ M,
fowgz 2y 171= Foipr 87) [T

Then, since 7 € I' € M and 7 ¢ M, I’ is uncountable. By applying I’ and 7 to
Lemma 2.2, we obtain J € [I’]"* N M that satisfies the condition in the lemma.
Then we can conclude that, for each v € J, v U 7 is Ky-homogeneous.

By K%, there exists an uncountable Kyhomogeneous subset X of wy. Take a
continuous €-chain (M : £ € wy) of countable elementary submodels of Hy, such
that My contains the set

{{ea i €wr), (rq:a€wr),{(Cy:acw NLim), X}.

Then the set D := {w1 N M : £ € w1} is club in wy. For each £ € wq, by Lemma
2.1, there are B¢ € X \ M¢ and o¢ € X N M such that b(ae, B¢) = wi N Me. Then
there are @ € w; and a subset I" of wy such that

o for every £ €', ag =@, and
o the set S := {b(a, b¢) : £ € I'} is a stationary subset of D.

Then, since X is Kp-homogeneous, the set
b(@, _
U (fb(a,ag [ {Wn(a ) > e, (Oé)})
er
forms a function, and uniformizes the restricted coloring (fs : § € S). O
Remark 2.4. Tt follows from the proof of the previous theorem that the forcing
notion of finite Ky-homogeneous sets in the proof satisfies the property Ry x, [12,

14], and so satisfies Chodounsky-Zapletal’s Y-cc [1].
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Remark 2.5. For a ladder system (C,:a € w;Nlim) and a coloring
(fa : @ € wp NLim) of the ladder system (C, : a € w; NLim), define the set Ky
that consists of all sets 7 in the set [w;]* with the property that, for any

{{a, BY<, {7,8}<} € [[712]°, the set
(fb(a,ﬁ) I {nﬁ("’ﬁ) in 2> 6/3(04)}> U (fb(%g) i {nz('y"s) in > q(’y)})

forms a function. As in the previous proof, it also follows from Lemma 2.2 that
Ky is a ccc partition. By the previous proof, we notice that an uncountable K-
homogeneous set produces a club subset D of w; as above and a function that
uniformizes the restricted coloring (fs : 6 € D). It concludes that K} implies
U(club).
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