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1 Introduction to the Besov space and Leibniz rule

Let us recall homogeneous and inhomogeneous Besov spaces. For that purpose, we first introduce
the Littlewood-Paley decomposition of functions defined on R™ in terms with the partition
{¢j }]‘?‘;_oo of unity in the Fourier variables. We take ¢ € C§°(R") in such a way that supp ¢ =
{¢ e RyE < ¢ < 2} sa‘gisfying Z;‘;_Oo #(277¢) = 1 for all & # 0. The functions p; are
defined as Fip;(§) = #(277€),j € Z, where F denotes the Fourier transform. Let ¢ be as
Fip&) =1-— Z]oil #(277¢). For 1 < p < oo and s € R, the homogeneous Besov space B;, is

defined by Bs , = {f € S'/P; HfHBg’q < oo} with the seminorm

1
sy =1 (S @l s Ay} for1< g <o
" SUPjez, 2%7||p; * fllr» for g = oo,

where P is the set of polynomials in R™. We also define the corresponding inhomogeneous Besov
space B, , by By , = {f € §;||fl|B;, < oo} with the norm

1
Ifllgs = | = flloe + {Z;‘;O(?JH% " f”Lp)q}q for 1 < ¢ < oo,
p,q .
||Q/)*f||LP —I—SupjeNQSJHij*fHLp fOI‘ q = 0.

For more precise, see e.g., Bergh-Lofstrom [2]. The following lemma is a fundamental property
of Besov spaces.

C B

Proposition 1.1 (i) If ¢1 < go, then it holds that B J

p.a1
(ii) It holds the continuous continuous embedding

for all1 <p< oo and s € R.

B,y CH,CB,
for all 1 < p < oo and s € R, where

Hy = {f € 8'/P; | fllg; = II(=2)2 fll» < o0}
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If sg # s1, we have

(HSO,Hgl)e,q — B

g for1<pg<ocoand0 < <1,

where s = (1 — 0)so + s16.
(iii) If s > 0, then it we have that

By =1"NBy,
forall1 <p,q < .
We next consider the embedding theorem.

Proposition 1.2 Let 1 < p < p; < 00, and s1,s2 € R satisfy
n n
— —s5=— —5].
p P

Let 1 < q < q1 <o0. Then it holds that

s S1 oY} 81
Bp:q - BPly‘]l’ Bp:q - BPval'

Finally, we consider the Leibnitz rule in the homogeneous Besov space.

Lemma 1.1 (/8, Proposition 2.2]) (i) Let 1 < p,q < o0, s >0, a >0 and 8 > 0. Assume that
1 < p1,p2,p1, P2 < 00 satisfy ;l) = pil—i-p% = p%—kp%. If f € Bgig‘ﬂBpff;o and g € Bp_;‘ooﬂB;:f,
then we have fg € By , with the estimate

I£9l;,, < CUFLgggg 9l e, + 17155 _lgllgors) (1.1)

where C = C(p,p1,p2, P1, P2, 4, 5, @, B).
(ii) Let 1 < p,q < o0 and s > 0. Assume that 1 < py,pa, p1,p2 < 0o satisfy % =ty =

‘ ! ' - p o p2
p% + p%. If f € B, ,NL" and g € LP* N By, ., then we have fg € B, , with the estimate

179055, < CU gy lgllirs + 1A gl ) (1.2)

where C = C(p, p1,p2, D1, D2, 4, S).

Proof. (i) We make use of the following paraproduct formula of fg due to Bony [3]. Our method
is related to Christ-Weinstein [4, Proposition 3.3] and Kozono-Shimada [7, Lemma 2.1].

Frg = D (e NEPeg)+ D> (Pef)erxg)+ D> Y. (er*Hloxg)
k=—o00 k=—o00 k=—o00 [I—k|<2
=: hy+ he + hs, (1.3)

where Pyg = Z;:EOO @y * g. We first consider the case 1 < ¢ < co. Since

supp F((ion * /) (Prg)) C {6 € R € 2872 < J¢ < 2842},
supp Fpj = {£ € R 2771 < |¢] < 2711}



we have that

Q=

thHB;,q N { (2%l pj * | o)
— { Z wj* ((er * f)(Prg))
j=—00 k=—00 Lp
0
— { Z ©j * ((¢r * )(Prg))
j=—00 |[k—j|<2 Lp

Since pj(x) = 2/"(F~1¢)(2/z) for all j € Z, it holds by the Hausdorff-Young and the Holder
inequalities that

lles * (o Pea) e < lloslloll(or * £)(Peglle < IF ol prllor * fllzes [|Peg e

for all j, k € Z. Hence it follows from the Minkowski inequality that

1

0 K
1Pallgy < > ( o * fllLes || Pegll ez
j=—00 |[k—j|<2
. 0
= > 29> s = Flloo | Pisagl e
j=—o0 <2
1
o0 q
< O > @(pjsr * fllom || Pjgagllee )
<2 | j=—o0
1
o ) q
= ) { pORCEe *f||Lp1||Bg\|Lp2>q}
ll|<2 \i=—o0
1
00 ‘ ) i—3 9y 9
- C Z 9—sl Z 2(s+a)z”¢i s Fllpm2 Z O * Gr
[1]<2 i=—00 k=—00 LP2
oo ‘ i—3 . q %
< o{ > (2(S+")’Ilsoi*f\lw 3 z—aku@k*gum—MZ—M) }
1=—00 k=—00
| St
< 0sup2-a’fu¢k*gum{ > (2(8+a)2|180z‘*f“m1ZQ_OJ) }
keZ i=—o0 1=3
= Cligllgpe 15t (1.4)



where C' = C(n,p,p1,p2,¢, 5, ). In the above estimate it should be noted that »_;°, 27 <« o
since @ > 0. In the case ¢ = 0o, we see similarly to (1.4) that

Il < Csup2” **|lox * gll v sup 2 (0) 0y 5 £ Lo 22 = Cllgl g N,
=3

with C' = C(n,p, p1, p2, s, @), from which and (1.4) it follows that
1h1ll s, < Cligllppo Nl ggre forall 1 < g < oc, (1.5)

where C' = C(n?p» P1,P2,4, S, OZ).
Replacing the role of f by g, we obtain similarly to (1.4) and (1.5) that

Ihall gy, < CIF s lglgaen forall 1< q < o, (1.6)

where C = C(nvpvﬁlvﬁ%_qv S, /8)
Next we treat h3 in B, . Let us consider the case 1 < ¢ < oco. Since

supp F((pr * f)(pr % g)) C {€ € R™; €] < 2max{k,l}+2}’

we have that

oo ¢
Isllgy, = § 22 @7les = hslls)?

j=—00

o AW
= > (2 Z > i (orx P+ g)

Jj=—o0 k=—o0 |l-k|<2 Iy

o A
= > {27 >0 DD eixlerrHlaxg)

Jj=—00 max{k,l}>j—2|l—k|<2 Ip

o 7
= 127 D0 D s * (g % H(#rre % 9)

j=—00 r>—4t|<2 Lp

00 7Y ¢

(]

2% Z Z s * (@jrr * f)(@jrrrt * g)llLr

j=—o00 r>—4[t|<2

By the Hausdorff-Young and the Holder inequalities, it holds that

i ll Ll (sr * F)(@irse * 9)l Lo
IF 7 ol callpgr * fllzo ll@sere * gllzre

||<Pj * (80j+r * f)(%’+r+t * g)llLe

IAINA



for all j,r,t € Z. Hence it follows from the Minkowski inequality that

IRl
- 7y 2
< C9 029D D> Mlejar * Fllom llesarse # gllee
Jj=—00 r>—4|t[<2
- :
< 0N S ST @llgar # flomllpirse * glle)?
r>—4t|<2 \j=—
1
o0 ) ) q q
= 02y 2y 3T (2 g x fllim 2O gy x g )
r>—4 [t]<2 j=—00
- :
< Csup2 s glpm > 277 ZQat{ > (2(S+a)kH80k*fHLm)q}
ez r>—4 |t|<2 k=—o0
= Clallgo M e (1.7)

where C' = C(n,p, p1,p2,q, s, @). In the above estimate it should be noted that 3 . ;27" < oo
since s > 0. In case ¢ = oo, similarly to (1.7), we have that

Ihsllp, . < Csup2™lgrxglie Y 27 D 2% sup 20+ x £ 1o
’ leZ r>_4 <o Z

= Clllga M e,
with C' = C(n,p, p1,p2, s, @), from which and (1.7) it follows that
> < H—a S+ < < .
Iall s < Cllgllge_ £l gss for all 1< g < ox, (19)

where C' = C(n, p, p1,p2, ¢, $,@). Now the desired estimate (1.1) is a consequence of (1.5), (1.6)
and (1.8).

(ii) We also make use of the paraproduct formula (1.3). Let us first consider the case
1 < ¢ < c0. In the same way as in (1.4), we have

1
o q
cy 2 { > @i fllom \Iﬂgllm)q}

Ihllg, <
[1]<2 i=—00
1
o0 ) q
< Csup||Pg|l e { > e *fHLm)q} : (1.9)
i€z )
It should be noticed that
k
> pile) =2 (2Fa) = pyi(2), k€ Z,
l=—00



where f.(z) = e " f(z/e) for € > 0. Hence we have || Efzfoo illrr = ||z for all k € Z, and
it holds that

i—3
IPiglle = || Y wrxgl| = lldg-sxglle < [[9llllgloen forallic Z,
l=—00 P2
from which and (1.9) it follows that
il < Cllglzeall fls, (110

where C' = C(n,p, p1,p2, ¢, ).
In case ¢ = 0o, we have that

Ihll 3, < Csup [[Pigllrr sup 2*llp; * fllzem < Cllgllzea I fll gy
Pyoo i€Z i€Z P1ee
from which and (1.10) it follows that
Ihallgs < Cllgllze(lfllg, — forall 1 < g < oo, (1.11)
p,q P1,9

where C' = C(n7p7 p1,p2,4, S)‘
Replacing the role of f by g, we have similarly to (1.11) that
Ihallgg, < Ol fluanlgllg,  forall 1< g < oo, (112)

where C = C(n,p, p1,D2, ¢, 5)- .
Concerning the estimate of h3 in B, , for 1 < g < oo, we have similarly to (1.7) that

o0 g
Ihallg;, < 0242‘“2 > @ gyir s+ fllm [ria # gllea)?
r>— t<2 j=—o0
- 1
q
< Cswpllpixglin Yy 2{ > (QSZH%*fIILm)q}
i€z r>—4 i=—o0
< Clleelfllp - (1.13)

where C = C(n’p’plvp% q, 8)‘
In case ¢ = 0o, we have similarly to the above that

Ihsllzy, < € D02 3 sup2U gir s fllio og4rer * glrs

r>—4 <2 7€

< Csup|lpi * gllre sup 2|y % fllpm Y 27
i€z leZ el

<

Clglla s,
from which and (1.13) it follows that
Ihall, < Cllallrlfll g, forall 1 <g < oo, (114

where C' = C(n,p, p1,p2,s). Now the desired estimate (1.2) is a consequence of (1.11), (1.12)
and (1.14). This proves Lemma 1.1. Il



2 Application to the stationary Navier-Stokes equations

Let us consider the stationary Navier-Stokes equation in R™ for n > 3;

—.AU‘FU'VU—FVTFZJC, (NS)
div v =0,
where u = u(z) = (u'(x), - ,u"(x)) and 7 = 7(x) denote the unknown velocity vector and
the unknown pressure at the point x = (x1,---,x,) € R", respectively, while f = f(x) =
(fY(x),---, f*(x)) denotes the given external force. we rewrite (NS) to the generalized form

by means of the abstract setting of the functional analysis. Let P be the projection operator
from LP onto the solenoidal space L) = {u € LP;divu = 0}. It is known that P has the
expression P = {Pj;}1<jr<n With Pk = 0, + RjRy, j,k = 1,--- ,n, where d;; denotes the
Kronecker symbol and Ry = agk( A)” 3 denotes the Riesz transform. Since Ry, k=1,2,---'n

is a bounded operator in L for 1 < p < oo, P is also bounded from L? onto L} for 1 < p < oo.
However, P is unbounded in LP for p = 1 and for p = co. On the other hand, we have

Proposition 2.1 P is bounded in the homogeneous Besov space B;q foralll <p<oo,1<
q < o0 and s € R.

Proof. For the proof, it suffices to show that the Riesz transforms Ri(k = 1,2,---,n) are
bounded in B]jq forall 1 < p <oo,1 < ¢qg < oo and s € R. It should be noted by the
Hausdorff-Young inequality that

Jj+1

g * Riflle = || D wrx Ri(oj * f)
l=7—1 p
j+1 i€
< 3 | (A(ﬁ)m>*¢j*f
I=j—1 Ly

< Bl®kllplley = flle,  k=1,---.n
for all 1 < p < oo and for all j € Z with &}, = f‘l(gb(f)%) in L', from which we see that Ry,
k=1,---,nis bounded in B;q even for p =1 and p = co. This proves Proposition 2.1. ll

Since we need to find the solution u of (NS) with div u = 0, let us introduce the space
qu PB, ,. Since Pu = u, P(Vr) = 0 and since P commutes with —A, application of
P to both 81des of (NS) yields that —Au + P(u - Vu) = Pf. Since div w = 0, it holds that
u-Vu=V-u®u, and hence we see that u can be expressed by

u=(—A)"'P(u-Vu) + (-A)"'Pf
=P(-A)"'V-(u®u) + P(—A)" f
= K(u®u)+ P(=A)"f, (E)

where K = P(—A)7'V- may be regarded as the Fourier multiplier with the differential order
—1. More precisely, Kg = (Kgi, -+, Kg,) has an expression

(2r) ’S/ MZ

k=1

Kg;(x) = <m—fﬂf’“) L e Fgue)de, j=1,--.n

SEVANE



for n x n tensors g = (gki)1<k,<n. Then we have the following proposition.

Proposition 2.2 ([8, Proposition 1.1]) Let 1 < p < py and —c0 < sp < s+ 1 < oo satisfy
so—n/pp—1=s—n/p. Let1 < q<oo. K is a bounded operator from By, to B, with the
estimate

159l 520, < Cligll, - (2.1)

for all g € B; where C'= C(n, p, po, q, S, So)-

7q’

Proof. Since the projection P is bounded from B onto B . it suffices to show that K’ =

P0.q P0.q’
(—A)~1V with the expression

/ 1 it 1 - .
K'gp(z) = W/ne gwglﬁl}"gkz(ﬁ)df, k=1,---,n

is a bounded operator from B;q to B;qu with such an estimate as (2.1).

Let us first consider the case 1 < ¢ < co. We define 1 <r <ocoby 1/r=1—(1/p—1/po).
By the Hausdorff-Young inequality, we have that

Q=

1 q
K gllgzg, = 3D (2l * K'g|wo)
JEZ

Q=

= 9> (2°9)1@; % @5+ K'gllLwo)*
JEZ

Q=

= 9D (2 K'G % 0 % glliw)*
jez

Q=

< 9D @YK Gl lles * glle)’ 7 (2.2)
JEZ

where ©; = @1 + ¢; + @jt1. It is easy to see that

n . 1
'Gj(x) =272 (2x) with U= F <Z& > ¢(2"“£)) ;
=1

1e2
P 2
which yields that
1K' Bl < 279202 ||w | < 277G 7300 = om0l

where C'= C(n, p, pp) is independent of j € Z. Notice that ¥ € S because supp E,lﬁ:_l #(27F¢) C
{¢€ e R"; 272 < |¢] < 22}, Hence it follows from (2.2) that

q

j q
1K gllgz0, < C 9> (271195 * glle)* b = Cllgll, -
JEZ



where C' = C(n, p,po,q, s, So0). In case ¢ = oo, the proof is quite similar to the above, so we may
omit it. This proves Proposition 2.2. [

Our main result in this section now reads as follows.

Theorem 2.1 (/8, Theorem 1.2]) Let n > 3. For every 1 < p <n and 1 < q < oo there is a

+
constant & = &(n,p,q) > 0 such that if f € By, * satisfies ||j||B_3+% < 0, then there exists a

p,q
n

14
solution u € Bpg * of (E). Moreover, there exists a constant n = n(n,p,q) > 0 such that if u

n

142
and v are two solutions of (E) in the class Bpq 7 satisfying Hu” S S, Hv” —1+z <1, then

p q P q
it holds that u = v.

In the case n/2 < p < n, a similar result to Theorem 2.1 has been obtained by Cunanan-
Okabe-Tsutsui [5]. An immediate consequence of the above theorem is the existence of self-
similar solutions.

n

.34
Corollary 2.1 (/8, Corollary 1.3]) Let n > 3. Let 1 <p <mn and ¢ =oco. If f € Bpp:” is a
homogeneous function with degree —3, i.e., f(Ax) = A3 f(x) for all x € R"™ and all X\ > 0 and if
f satisfies ||f||B_3+% < 4, then the solution u given by Theorem 2.1 is a homogeneous function

p,00

with degree —1, i.e., u(Az) = A~ tu(x) for all z € R™ and all X > 0, which means that u may be
regarded as a self-similar solution of (NS).

The following lemma of the bilinear estimate plays an important role for the proof of our main
theorem.

n

Lemma 2.1 ([8, Lemma 2.3]) Let n > 3 and let 1 <p <mn, 1 <q<oo. Foru vequ+ we
have K (u ®v) € By, q+5 with the estimate

1 (u @ 0)| avz < Cllull ez lloll —1ez, (2.3)

p,q p,q Pq

where C' = C(n,p,q).

Proof. Taking p = pg, s = —2 + n/p in Proposition 2.2, we have that so = —1 4+ n/p, and so it
holds that
I (&)l 1vz < Clueo]l 2z, (2.4)
BP q P q
where C' = C(n, p, q).
Let us first consider the case for n > 3 and 1 < p < n/2. Take p; and ps in such a way

D
pi=p, n<py P ——1§p2

We define pg and sg by



Since 1 < p < n/2, we have that

1<po<p, 0<so, (—2+ﬁ>—ﬁ:so—ﬁ. (2.6)
p p Po

It should be noted that the above (2.6) yields 1 < py < p < n/2, which necessarily implies that
n > 3. Hence it follows from Proposition 1.2 that

lu vl vy < Cllus vl g (2.7)

p.q

Since n < p2, we have « =1 —n/py > 0, and we have by Lemma 1.1 (i) that
Ju ol , < Cllull g ol gz, + el ol gpeve). 2.3

Since p = p1, p < p2 and since

sota— o 1= (_HE) h g (_Hﬁ) _n
p1 p p P2 p p
it follows from Proposition 1.2 that
L1 . 14+ .
Bpg 7 = B;%aa Bpg " = By
Hence we obtain from (2.8) that
oY} < _ n — n., .
Ju® vlagg, < Cllul g ol 1o (2.9

Now, the desired estimate (2.3) is a consequence of (2.4), (2.7) and (2.9).
We next consider the case for n > 3 and n/2 < p < n. In such a case, we take p; and pa so
that

p1=p, n<p2< .
2p—n

Define py and sg by (2.5). Since

1
- <<
p Po p P2 n
1 2 1
30:2—2:n<——<———>>>0,
Po b2 n o p

we have (2.6), so it holds (2.7). Since &« =1 — n/py > 0, implied by n < pg, in the same way as
in the above case, we obtain (2.9), which yields the desired estimate (2.3). This proves Lemma
2.1. i

Proof of Theorem 2.1. We first prove the existence of the solution to (E). We solve (E) by
the successive approximation. For that purpose, let us define the approximating solutions {u;}
of (E) by

(2.10)

upg = P(_A)_1f7
uy+1:K(u3®uJ)+UOa ]:()717 :

10



n n n

342 1+ 1+
Since f € By, *, we see that ug € By, *. Assume that u; € By, ”. By Lemma 2.1, we have

1+
that uj41 € By ” with the estimate

2
gl 1vp < Ol + ol 1o (2.11)

142
where C' = C(n,p,q) is independent of j. By induction, it holds that u; € By, ” for all
j=0,1,---. Taking M; = ||uj||B_1+%, we have by (2.11) that
p,q

M < CM; + My, j=0,1,---. (2.12)

By the standard argument we see from (2.12) that under the condition

1
My < — 2.13
0 < Mok ( )
the sequence {M;}7%, is subject to the estimate
1 —+/1—-4CM,
M;<a= 0 j=01,---. (2.14)
2C
Take wj = ujy1 — uj;, and we have
wj = K(uj ®uj) — K(wj1®uj1)
= K(Uj & ZUj_l) + K(wj_l X uj_l).
Letting L; = ijHB_H%, we have similarly to (2.12) that
p,q
Lj < C(Mj+Mj1)Lj
S QCOzLj_l.
Therefore, it holds that '
LjS(QCO[)JLo, j:1,2,'-'.
By the definition of « in (2.14), we see that
2Ca=1—+/1—4cMy < 1,
and hence it holds that -
Y Lj <o, (2.15)
j=0
14D
which implies that u; converges to some u in Bp,q+p . Since
My = [APF| . on < CIfllsin < C6 (2.16)
prq prq

with C' = C(n, p), by taking 6 = §(n, p, ¢) sufficiently small, we see from the above estimate that
the condition (2.13) is fulfilled provided ||f||B_3+% < 4. Now, letting j — oo in (2.10), we see

p,q
n

1+
from Lemma 2.1 that the limit u € By, * is a solutions of (E).

11



n n

1+ 1
We next consider the uniqueness. Let u € By, * and v € By, ” be the solutions of (E)
such that ||u||B,1+% <mn, ||UHB,1+% <. It follows from Lemma 2.1 that

p.q p.q
bl ep = K (o)) + K- ) @) s
By 4 Bpq
< C(|’u”3;i+% + HUHB;;+%)|’U - v|’B;i+%

By taking n > 0 sufficiently small to satisfy 2Cn < 1, we obtain w — v = 0. This completes the
proof of Theorem 2.1. l

3 L? — L% estimates of the Stokes semigroup in Besov spaces

We first investigate the behavior of the heat semigroup in the homogeneous Besov spaces.

Proposition 3.1 (i) Let 1 S p=<qg=o0,1 =7 <00 and sp < s1. It holds that

n

(5—3)—3(s1=50

»

A —
le®all g1 < Ct llall o,

for all a € Bf)?r and all 0 < t < oo with a constant C' = C(n,p,q,r, S0, S1).
(i1) Let so < s1, 1 < p < o0. It holds that

A _Llig—
le"2all o1, = Ct 2061750 lal| o

for all a € Bf,?oo and for all 0 < t < oo with a constant C = C'(n,p, so, $1)-
(iii) Let sp < s1 and 1 < p < ¢ < oo. It holds that

A Cmloly deg
et oy S CE 3G g

for all a € B;’?Oo and for all 0 < t < oo with a constant C = C(n,p,q, So,51).

For the proof, see [10, Lemma 2.2] and [9, Lemma 2.2].

The following theorem characterizes the class of the initial data a in the homogeneous Besov
space in the case that ¢ belongs to the Serrin class in the generalized Lorentz space in time.

n

L1
Theorem 3.1 ([12, Lemma 2.1]) (i) Let n <p < oo and 1 = q = co. Fora € Bpg " it holds
that e'®a € L”’q(O,oo;Bgl) forallp <r < 0 and 2 £ a < oo satisfying % + % =1 with the
estimate ’

.—14n
where C = C(n.p,q,r). In particular, if a € B, 7S+” for
that e'®a € L*(0, oo; 3271).

1

leall 0 : = Clall -1+3, (3.1)

L*»4(0,00 Pa

2
s

+% =1 withn < p < o0, then it holds

12



(ii) Assume that a € S’ satisfies
e®a e L0, 00; L7).

forn<r§ooand2§a<oowith%+%zlandf0r1<q§oo. Then it holds that

n

a € B, ql T with the estimate
lall -1 < Clle"all oo o), (3:2)
9

where C' = C(n,r,q).

Proof. The special case when ¢ = « was proved by [1, Theorem 2.34]. Here we give another
proof based on the real interpolation.
(i) We take pg,p; and 0 < 6 < 1 in such a way that
1 1-6 0

n<pyo<p<p = oo, = + —.
p Po y41

n

e

For every a € By o 7', i = 0,1, it follows from Proposition 3.1(iii) that

O ) e =6 o) e, =01,
Bp,oo V223 B Py

p,00

S =

tA . < —%(l—
e a”Bg1 SOt 2w

(3.3)
Let us define oy and oy in such a way that

1 1 1 1 1
_:E<___+——f), 1=0,1. (3.4)

Since n < py < p < p and since p < r < oo, we easily verify that 1 < a; < oo for i = 0,1, and
obtain from (3.3) that the mappings

n

. +-— ) .

Bpoo "' D a ||ema||Bo1 € L%°(0,00), i=0,1.

are bounded sub-additive operators. Here L*#%(0, c0) denotes the Lorentz space on (0, c0) (see,
e.g., Bergh-Lofstrom [2, Chapter 5]). Then it follows from the real interpolation theorem that

'_1+% '_1+ﬁ tA o ,00 a1 ,00
(Bpoo ™5 Bpoo " )o,g 2 a = [[e%allgo € (L*%(0, 00), L*%(0,00))g 4 (3.5)

is also bounded sub-additive. Since
-1+ -1+ 142

(Bpoo " Bpoo ™ )o.g = Bpg 7 (LO(0,00), L(0,00))g,q = L™(0, o0)

with « defined by

)

1 1-6 0 n 1

o o0 o 2r 2’

we conclude from (3.5) that

n

. 141
Bpg " 2a+ HemaHBg,l € L0, 00)

13



is a bounded sub-additive operator for % + % =1 with p < r < oo, which implies (3.1). This
proves (i).
(ii) Let us first consider the case 1 < ¢ < co. We make use of the following characterization

of the equivalent norm of the homogeneous Besov space B:,_q,? due to Triebel [13]:

L
q

el = { /j( S ONE AL (3.6)

where we have used the relation % 2 —1 with1-— ; = % > 0.

For a € &', we take a dual couphng with ¢ € §. Since
t o t
Bo—p= / —ePpdr = —/ (—A)e™pdr,
0 O 0
¢ is expressed by ¢ = e'®p + fg(—A)eTAcp dr. We consider the coupling

[(a, 0)| < [{a, ") +/0 [(a, (=A)e™ @) |dr =: L(1) + I2(1). (3.7)

By (3.6) and the Holder inequality, it holds that

< / (500, (~A)eE2 ) dr

/ I3l (—A)e2 |, dr

< / 0D 58 g er
0

Q\‘ =

“207D)) (2 A)eE 2| dr

S
q

- . 1 . §
< /( —lt (1 ”62 aHLr)da]q [/ (Tl—ﬁ—%(l—ﬂ”(_ ) SOHLT )4 dT:|
LJo 0
- J i, J 1
lp_mny, T T _1lq_n T rdr |4
< /(7-2(1 ’")H“AaHLr)q—] [/ (7_1 5(1 ’")||(—A)62A90||Lr’)q _]
LJ0 T 0 T
[t . - dr
<| [(le Aaumq—] Il s
LJO T T q

Since {€™®},>¢ is a contraction semigroup in L", we see that t € (0,00) — |[e!®alrr is a
non-negative and non-increasing function. Hence it is easy to see that

« dr

1
t 1 q
2 [t ] = e al o

which yields that

L(t) £ Clleall paao oosr 11l 12
T/,q/

14



forall 0 < t < oo and all ¢ € § with C = C(n,r,q). Since a € &' and ¢ € S, it is easy to see
that I;(¢t) — 0 as ¢ — oco. Hence, letting ¢ — oo in both sides of (3.7), we obtain that

SIS

~

A
[{a, )| = Clleall oo, Il 1
'f’/#q

. . S
)* and since S is dense in B, o » it follows from the above

for all p € S. Since B,:qH% = (B:’Tq’%
estimate that
lall y-142 = sup (@, )| < Clle*all Lo 00
ma PES, IIAOIIBi,_qg, =1

1'_1?)*- Again by the character-

which implies (3.2).
Next, we consider the case ¢ = co. Notice that B,«_ i:? = (BT

n

ization of the norm B:;i we see that
dt
(3.8)

) —

o _l_n
AR [N S

ol g1 =
Since )
le"®al| oo (0,00.m) = sup te || alLr,
0<t<oo

in the same manner as in the above case 1 < ¢ < oo, we see easily that

I(t) £ Clleall paco (0,00 10l s1-2,
rl 1

for all 0 < t < oo and all p € § with C' = C(n,r), from which, as in the same way as the above

case, we obtain the desired estimate. [ |
We next consider the maximal regularity theorem for the heat equation in the homogeneous

Besov space. To this end, let us first consider the homogeneous heat equation.

Proposition 3.2 (/11, Lemma 2.1]) Let 1 < p < o0, 1 < a < 00, 1 < ¢ < 00 and s € R.

2 n
<= +-.
o

Assume that 1 < r < p satisfies
p

<

D3
= |3

Fora e :qu with k =2+ n/r — (2/a+n/p—s), it holds that
Aet®a e L(0, oo;B]‘il)

with the estimate
A
186 al g, [lzoatoo0 < Clallgy

where C'= C(n,p,, s,q).
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Proof. Since n/r < 2/a + n/p, we have that k < s+ 2. Hence taking § € (0,1) and ko < k <
k1 < s+ 2 so that k = (1 — 0)ko + 0k;1. By Proposition 3.1(iii) it holds that

A A _nel 1y 1 +2—k;
|8 2all, = llal i < O30T g,
for ¢ = 0,1, and hence we see that the mapping
a € B,]floo > ||AetAaHB; € L%°(0, 00)

is a bounded sub-additive operator for

— )4+ =(s+2—Fk), i=0,1.

1 1 1
rop 2

Then it follows from the real interpolation theorem that

0 € (B Birc)og = 8¢ al . € (L2(0,00), L™(0,00))o .

Since (B,@’%O,B,’igo)g,q = B,’f,q and since (L*°°(0, 00), L*"*°(0, 00))g,, = L*9(0, 00), implied by

1 1-6 0 n/1 1 1 n({1 1 1
" p” +a1 ( 9)(2 (r p) +2(s+ k0)> +9<2 (T p) —1-2(5—1— k1)>

n{1l 1 1
—5(;—]—))4-5(3‘1‘2_(1_9)]‘70_9]?1)

n (1 1 1
—5(;—5>+§(8+2—]€),

we conclude that the mapping
a€ B,]fq — |Ae?all 5. € L0, 00)
’ p,1

is a bounded sub-additive operator, which yields the desired result. This proves Proposition 3.2.

Now, we are in a position to state the maximal regularity theorem for the Stokes equations.

Theorem 3.2 (11, Theorem 1]) Let 1 < p < 00, 1 <a < o0, 1 < <00, 1< q< o0 and
s € R. Assume that 1 < r < oo satisfies
_|_

< =<

= |3
Qo

(3.9)

S
S

For every a € Bﬁq with k = 2+ n/r — (2/a+n/p — s) and every f € L*9(0,T; B; ) with
0 < T < o0, there exists a unique solution u of

5 o~ Au= Pl aete (0,T) in By, 4,



in the class ‘
ut, Au € L0, 1B, 5).

Moreover, such a solution u is subject to the estimate
loelgoniors )+ 1800 o zise < Cllellge, + W lpmaois ) (3:10)
where C' = C(n,p, a, q, 3,8,7) is a constant independent of 0 < T < oo.

Proof. Step 1. Let us first prove in case a = 0. By the usual maximal regularity theorem in H;
for sp < s < s1 < k+ 2, for every f € L*(0,T}; ng) (1 =0,1) with 0 < T < oo, there exists a
unique solution u of (S) in the class

ug, —Au € L0, T} H;l)
with the estimate
laell oo, 7 gty + 1AW Lo gy < CllFlpaorigiy: ©= 001,

where C' = C(n, p, a, so, s1) is independent of T'. For the detail, see, e.g., Giga-Sohr [6, Theorem
2.1]. This implies that the mapping

St feL*0,T; Hy) — (uy, —Au) € L0, T3 Hy)?, i=0,1

is a bounded linear operator with its operator norm independent of 7". Hence by the real inter-
polation, S extends a bounded operator from L*(0, T’ (H,°, Hy')g 5) to L¥(0, T (H,°, H;l)gﬁ)Q
foralllﬁ@ﬁqo. .

Since (H,°, Hy')g,3 = B, 5 with s = (1 — 0)so + 0s1, we see that

S feL0,T: Bl y) = (u,—Au) € L0, T; B )

is a bounded operator with its operator norm independent of 1. Taking oy < a < «a; and
0<6<1sothat 1/a=(1—6)/ay+ 0/a1, we see that

St f € (L*0,T;B; 5), L*(0,T; B 5))0.q
— (uta _Au) € (LCYO (07 T; B;,,B)» L (Oa T; B;;,,B))g,q

is a bounded operator with its operator norm independent of T'. Since
(L2(0.T3 By ), L (0,1 By 5))o.g = L¥(0. 75 B; ),
we obtain the desired result with the estimate (3.10) for @ = 0.
Step 2. For a € Bﬁq and f € L*0,T; B;ﬁ), we see that
u(t) = ePa+ Sf(t), 0<t<T

solves (S). Since 5’;71 C B]ﬁ g» the desired result with the estimate (3.10) is a consequence of
Proposition 3.2 and the argument of the above Step 1. This completes the proof of Theorem
3.2. 11
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