Complex Hadamard matrices coming from association schemes

Takuya IKUTA (joint work with Akihiro MUNEMASA)

Kobe Gakuin University

RIMS Dec. 10, 2018

Takuya IKUTA

Complex Hadamard matrices and association schemes

X = a finite set, n = |X|.

complex Hadamard matrix

W: a square matrix of order n, $|W_{i,j}| = 1$ for $\forall i, j \in X$.

W: a complex Hadamard matrix

$$\stackrel{\text{def}}{\Longleftrightarrow} \overline{W} \overline{W}^{\top} = nI.$$

(real: ± 1) Hadamard matrix \subset complex Hadamard matrix.

A Hadamard matrix of order n exists for

$$n = 1, 2, 4, 8, 12, 16, \dots$$
, (multiples of 4), ..., $428(2004)$. $\underline{668}$?

Conjecture

A Hadamard matrix of order n exists for any $n \equiv 0 \pmod{4}$.

$$W = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \\ 1 & i & -1 & -i \end{pmatrix}.$$

J. Wallis, Complex Hadamard matrices,

Linear and Multilinear Algebra, 1 (3), (1973), 257-272.

entries: ± 1 , $\pm i$,

In this talk, we allow entries in $\{\xi \in \mathbb{C} \mid |\xi| = 1\}$.

A complex Hadamard matrix is said to be Butson-type, if all of its entries are roots of unity.

Takuya IKUTA

Complex Hadamard matrices and association schemes

 $\mathfrak{X}=(X,\{R_i\}_{i=0}^d)$: commutative d-class association scheme. A_j : adjacency matrix $\longleftrightarrow R_j$.

Bose-Mesner algebra

• $\mathfrak{A}=\langle A_j\mid j=0,\ldots,d\rangle\subset M_n(\mathbb{C}),$ Bose–Mesner algebra, semi-simple,

 $\mathfrak{A} = \langle A_j \mid j = 0, \dots, d \rangle = \langle E_j \mid j = 0, \dots, d \rangle,$ $\{E_j\}_{j=0}^d$: the set of the primitive idempotents, $E_0 = \frac{1}{n}J$,

• $(A_0, A_1, \dots, A_d) = (E_0, E_1, \dots, E_d)_{P}$,

$$P = \begin{pmatrix} 1 & k_1 & \cdots & k_d \\ \hline 1 & & & \\ \vdots & & P_0 & \\ 1 & & & \end{pmatrix},$$

P: the first eigenmatrix of \mathfrak{X} .

Our aim is to find both of

- a complex Hadamard matrix W
- \bullet an association scheme $\mathfrak{X}=(X,\{R_i\}_{i=0}^d)$ such that

$$W = A_0 + w_1 A_1 + \dots + w_d A_d \in \mathfrak{A},$$

 $|w_1| = \dots = |w_d| = 1.$

Takuya IKUTA

Complex Hadamard matrices and association schemes

Set

$$W = \sum_{j=0}^{d} w_j A_j \in \mathfrak{A}, \tag{1}$$

where $w_0 = 1$ and $|w_j| = 1$ for $\forall j \in \{1, \dots, d\}$. Then

$$W = \sum_{k=0}^{d} (\sum_{j=0}^{d} w_j P_{k,j}) E_k,$$

$$\overline{W}^{\top} = \sum_{j=0}^{d} \frac{1}{w_j} A_{j'} \qquad (A_{j'} = A_j^{\top})$$

$$= \sum_{k=0}^{d} (\sum_{j=0}^{d} \frac{1}{w_j} P_{k,j'}) E_k.$$

$$W = \sum_{k=0}^{d} (\sum_{j=0}^{d} w_j P_{k,j}) E_k, \quad \overline{W}^{\top} = \sum_{k=0}^{d} (\sum_{j=0}^{d} \frac{1}{w_j} P_{k,j'}) E_k.$$

$$\mathbf{W}\overline{\mathbf{W}}^{\top} = \sum_{k=0}^{d} \left((\sum_{j=0}^{d} P_{k,j} w_j) (\sum_{j=0}^{d} \frac{P_{k,j'}}{w_j}) \right) E_k.$$

Let $X_0 = 1$ and let X_j $(1 \le j \le d)$ be indeterminates. For k = 0, 1, ..., d, let e_k be the polynomial in $X_1, ..., X_d$ defined by

$$\mathbf{e_k} = X_1 \cdots X_d \left(\left(\sum_{j=0}^d P_{k,j} X_j \right) \left(\sum_{j=0}^d \frac{P_{k,j'}}{X_j} \right) - n \right).$$

< ロ ト ∢ 昼 ト ∢ 重 ト ∢ 重 ・ 夕 Q で

Takuya IKUTA

Complex Hadamard matrices and association schemes

$$\mathbf{W} = \sum_{j=0}^{d} w_j A_j \in \mathfrak{A},\tag{1}$$

Lemma 1

The following statements are equivalent.

- (i) the matrix W defined by (1) is a complex Hadamard matrix,
- (ii) the sequence $(w_j)_{1 \leq j \leq d}$ is a common zero of e_k $(k = 1, \ldots, d)$.
 - \bullet $R = \mathbb{C}[X_1, \ldots, X_d],$
 - $\mathcal{I} = \mathsf{ideal}\langle R \mid e_k(k=1,\ldots,d)\rangle \Longrightarrow \mathsf{basis}$?
 - Magma(computations in algebra)

- E. R. van Dam, Three-class association schemes,
- J. Algebraic Combin. 10 (1999), 69-107,

 \sharp examples of symmetric 3 class association schemes = 103.

Appendix B

Four integral eigenvalues; excluded here are association schemes generated by $SRG \otimes J_n$, and the rectangular schemes R(m,n), except the 6-cycle C_6 and the Cube.

v	spectru	n	1	L_1		L ₂		L_3	#	
6	$\{2, 1^2, -1^2, $	-2 ¹ }	0	1 0	1	0 1	0	1 0	1	$C_6 \simeq R(3,2)$
	{2, -1, -1,	2}	1	0 1	0	1 0	1	0 0		DRG
	{1, -1, 1,	-1}	0	2 0	2	0 0	0	0 0		Q-123

		spec	ctrum			L_1			L_2			L_3		#	
8	{ 3,	1 ³ ,	-1 ³ ,	-3 ¹ }	0	2	0	2	0	1	0	1	0	1	Cube $\simeq R(4,2)$
	{ 3,	-1,	-1,	3}	2	0	1	0	2	0	1	0	0		DRG
	{ 1,	-1,	1,	-1}	0	3	0	3	0	0	0	0	0		Q-123
5	{ 4,	2 ⁵ ,	-1^{4} ,	-25}	1	2	0	2	4	2	0	2	0	1	L(Petersen)
	{ 8,	-2,	-2,	2}	1	2	1	2	4	1	1	1	0		DRG, R2 SRG
	{ 2,	-1,	2,	-1}	0	4	0	4	4	0	0	0	1		
0	{ 9,	3 ⁵ ,	-1 ⁹ ,	-3^{5} }	4	4	0	4	4	1	0	1	0	1	J(6,3)
	{ 9,	-3,	-1,	3}	4	4	1	4	4	0	1	0	0		$R_1 \simeq R_2$ DRG
	{ 1,	-1,	1,	-1}	0	9	0	9	0	0	0	0	0		Q-123, Q-321
7	{ 6,	3 ⁶ ,	012,	-3 ⁸ }	1	4	0	4	4	4	0	4	4	1	H(3,3)
	{12,	0,	-3,	3}	2	2	2	2	5	4	2	4	2		DRG
	{ 8,	-4,	2,	-1}	0	3	3	3	6	3	3	3	1		Q-123
7	{ 8,	212,	-1 ⁸ ,	-4 ⁶ }	1	6	0	6	8	2	0	2	0	2	GQ(2,4)\spread
	{16,	-2,	-2,	4}	3	4	1	4	10	1	1	1	0		R1 DRG, R2 SRC
	{ 2,	-1,	2,	-1}	0	8	0	8	8	0	0	0	1		

Takuya IKUTA

Complex Hadamard matrices and association schemes

	(symmetric) construction
d = 3	Complex Hadamard matrices
	contained in a Bose–Mesner
	algebra, Spec. Matrices,
	3 (2015), 91–110.
d = 4	Complex Hadamard matrices
	attached to even orthogonal
	scheme of class 4, (2016),
	submitted.

not Butson!

 $e \ge 3$: an odd positive integer

$$GF(2^e) = \frac{GF(2)[x]}{(\varphi(x))}, \quad \varphi(x)$$
: a primitive polynomial of degree e over $GF(2)$
 $GF(2^e)^{\times} = \langle \zeta \rangle$

$$\mathbb{Z}_{A} = \mathbb{Z} / 4\mathbb{Z}$$

 $\exists \Phi(x) : \text{a monic polynomial of degree } \boldsymbol{e} \text{ over } \mathbb{Z}_4 \text{ s.t.}$ $\left\{ \begin{array}{l} \Phi(x) \equiv \varphi(x) \mod 2\mathbb{Z}_4[x], \\ \Phi(x) \mid x^{2^e-1}-1 \text{ in } \mathbb{Z}_4[x]. \end{array} \right.$

$$\Re = \frac{\mathbb{Z}_4[x]}{\left(\Phi(x)\right)} : \text{ Galois ring}$$

$$|\Re| = 4^e$$

$$|\Im| = 2^e$$

$$|\Im| = 2^e$$

Takuya IKUTA

Complex Hadamard matrices and association schemes

$$\Re^* \qquad \qquad \emptyset$$

$$S_1 = (\mathcal{T} \setminus \{1\})(1 + \emptyset_0), \quad S_3 = 1 + \emptyset_0, \quad S_0 = \{0\}, \quad S_5 = \emptyset_0 \setminus \{0\}, \quad S_2 = (\mathcal{T} \setminus \{1\})(-(1 + \emptyset_0)), \quad S_4 = -(1 + \emptyset_0). \quad S_6 = \emptyset \setminus \emptyset_0.$$

We've constructed a commutative nonsymmetric association scheme \mathfrak{X} of class 6 on Galois rings of characteristic 4, whose first eigenmatrix is given by

$$(p_{i,j})_{\substack{0 \leq i \leq 6 \\ 0 \leq j \leq 6}} = \begin{pmatrix} 1 & 2b(b-1) & 2b(b-1) & b & b & b-1 & b \\ 1 & bi & -bi & 0 & 0 & -1 & 0 \\ 1 & -bi & bi & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & bi & -bi & b-1 & -b \\ 1 & 0 & 0 & -bi & bi & b-1 & -b \\ 1 & -2b & -2b & b & b & b-1 & b \\ 1 & 0 & 0 & -b & -b & b-1 & b \end{pmatrix},$$

where b is a power of 4.

Takuya IKUTA

Complex Hadamard matrices and association schemes

Theorem 2 (A. Munemasa and T. I.)

Let $w_0 = 1$ and w_j $(1 \le j \le 6)$ be complex numbers of absolute value 1. Set

$$W = \sum_{j=0}^{6} w_j A_j \in \mathfrak{A},$$

and assume that W is hermitian.

Then, W is a complex Hadamard matrix $\stackrel{\mathrm{iff}}{\Longleftrightarrow}$

$$W = A_0 + \epsilon_1 i (A_1 - A_2) + \epsilon_2 i (A_3 - A_4) + A_5 + A_6,$$
 or (2)

$$W = A_0 + \epsilon_1 i (A_1 - A_2) + \epsilon_2 (A_3 + A_4) + A_5 - A_6,$$
(3)

for some $\epsilon_1, \epsilon_2 \in \{\pm 1\}$.

Let \mathfrak{X} be an association scheme given in Theorem 2. Fusion schemes of \mathfrak{X} with at least three classes are listed in Table 1.

	fused relations	class	nonsymmetirc or symmetric
\mathfrak{X}_1	$\{1, 2\}$	5	nonsymmetric
\mathfrak{X}_2	$\{3,4\}$	5	nonsymmetric
\mathfrak{X}_3	$\{1,2\},\{3,4\}$	4	symmetric
\mathfrak{X}_4	$\{3, 4, 6\}$	4	nonsymmetric
\mathfrak{X}_5	$\{1,2\},\{3,4\},\{5,6\}$	3	symmetric
\mathfrak{X}_6	$\{1, 2, 3, 4\}$	3	symmetric
\mathfrak{X}_7	$\{1,3\},\{2,4\},\{5,6\}$	3	nonsymmetric
\mathfrak{X}_8	$\{1,4\},\{2,3\},\{5,6\}$	3	nonsymmetric

Table: Fusion schemes of \mathfrak{X}

Takuya IKUTA

Complex Hadamard matrices and association schemes

 $\mathfrak{X} = (X, \{R_i\}_{i=0}^3)$: a 3-class commutative nonsymmetric association scheme with the first eigenmatrix

$$\begin{pmatrix}
1 & \frac{k_1}{2} & \frac{k_1}{2} & k_2 \\
1 & \frac{1}{2}(r+b_i) & \frac{1}{2}(r-b_i) & -(r+1) \\
1 & \frac{1}{2}(r-b_i) & \frac{1}{2}(r+b_i) & -(r+1) \\
1 & \frac{s}{2} & \frac{s}{2} & -(s+1)
\end{pmatrix},$$
(4)

where

- k_1 is an even positive integer, $k_2 \in \mathbb{Z}$,
- $r, s \in \mathbb{Z}$,
- $b \in \mathbb{R}$ and b > 0,
- $i^2 = -1$.

 $\mathfrak{A} = \langle A_0, A_1, A_2, A_3 \rangle$: Bose–Mesner algebra of \mathfrak{X} which is the linear span of the adjacency matrices A_0, A_1, A_2, A_3 of \mathfrak{X} , where $A_1^{\top} = A_2, A_3$ symmetric.

S. Y. Song showed the following.

Lemma 3 (S. Y. Song, 1995)

For the matrix (4), one of the following holds.

(i)
$$(r, s, b^2) = (0, -(k_2 + 1), \frac{k_1(k_2 + 1)}{k_2}), m_1 = \frac{(k_1 + k_2 + 1)k_2}{2(k_2 + 1)},$$

(ii)
$$(r, s, b^2) = (-(k_2 + 1), 0, (k_2 + 1)(k_1 + k_2 + 1)), m_1 = \frac{k_1}{2(k_2 + 1)},$$

(iii)
$$(r, s, b^2) = (-1, k_1, k_1 + 1)$$
, $m_1 = \frac{(k_1 + k_2 + 1)k_1}{k_1 + 1}$.

In Lemma 3,

- (i) and (ii) are nonsymmetric fissions of a complete multipartite graph,
- (i) is self-dual, and (ii) is non self-dual.
- (iii) is a nonsymmetric fission of a disjoint union of complete graphs.

Takuya IKUTA

Complex Hadamard matrices and association schemes

 w_1, w_2, w_3 : complex numbers of absolute value 1. We assume that $w_1 \neq w_2$, and set

$$W = A_0 + w_1 A_1 + w_2 A_2 + w_3 A_3 \in \mathfrak{A}. \tag{5}$$

Complex Hadamard matrices and association schemes

Theorem 4 (A. Munemasa and T. I.)

The matrix (5) is a complex Hadamard matrix $\stackrel{\text{iff}}{\Longleftrightarrow}$ $(k_1, k_2, r, s, b) = (2a(2a - 1)c, 2a - 1, 0, -2a, 2a\sqrt{c})$ for some positive integers a, c, and one of the following holds.

- (i) c=1, and
 - (a) $(w_1, w_2, w_3) = (w, -w, 1)$ with |w| = 1,
 - (b) $(w_1, w_2, w_3) = (w^{\pm}, w^{\mp}, w^{\pm}w^{\mp})$, where

$$w^{\pm} = \frac{-(a-1) - a_i \pm ((2a-1)_i - 1)\zeta \sqrt{a(a-1)}}{2a^2 - 2a + 1},$$

- ζ is a primitive 8-th root of unity, and $i = \zeta^2$, (c) a = 2, $(w_1, w_2, w_3) = (\frac{3 \pm 4i}{5}, -1, \frac{-3 \mp 4i}{5}), (-1, \frac{3 \pm 4i}{5}, \frac{-3 \mp 4i}{5})$,
- (ii) a = 1, c = 3, and
 - (d) $(w_1, w_2, w_3) = (\frac{1 \pm 2\sqrt{2}i}{3}, -1, 1), (-1, \frac{1 \pm 2\sqrt{2}i}{3}, 1),$ (e) $(w_1, w_2, w_3) = (\pm i, -1, \mp i), (-1, \pm i, \mp i).$

