Analysis of characteristic roots induced by a delayed
feedback control for discrete time systems

Rinko Miyazaki®’, Dohan Kim® and Jong Son Shin®
“Shizuoka University, °Osaka University, “Seoul National University

1 Introduction and preliminaries

1.1 Introduction

The delayed feedback control (briefly, DFC) is proposed by Pyragas [7] as a method of
chaos controls in continuous time systems. In this paper we consider a DFC for the
discrete time system

z(n+1) = f(z(n)), (E)

where f: RY — R? is differentiable and R? is the d-dimensional Euclidean space. For
signals to stabilize an unstable periodic orbit (briefly, UPO) with period w of Equation
(E), there exist some types of DFC signals (for example. [13]). The signal given by

u(n) = K(x(n —w) — z(n)), (Pyragas type)

is well-known as the typical signal of the DFC for continuous time systems (cf. [3,5,8,10—-
13]), where d x d real constant matrix K is the so-called feedback gain. Besides, Buchner
and Zebrowski [1] consider the signals formulated as

u(n) = K(z(n —w) = f(x(n))), (Echo type),

which is called DFC signal of “echo type”. Ohta, Takahashi and Miyazaki [6] compare
the validity of these two signals and suggest that Echo type is more effective than Pyragas
type for one dimensional case. In the case where K = kE (FE is the d x d identity ma-
trix), Miyazaki, Naito and Shin (cf. [4]) define a map which gives a relationship between
characteristic multipliers of the original system (E) and that of the system with Echo
type signals. Such a map is called “C-map”.

The aim of this paper is to establish the general criteria on the stability of UPO for the
DFC signals of Echo type by using C-map for the case where the gain matrix is K = kFE
and the period of UPO is 2. More details, we determine the region of the characteristic
multipliers of the target UPO of the original system (E) and the best range of feedback
gain k so that the DFC signals of Echo type successfully stabilize the target UPO.

In order to describe our main results, we consider the first variational equation of
Equation (E) around the target UPO,

z(n+1) = A(n)x(n), (1.1)



and that of the system with DFC of Echo type signals,
y(n+1) = Aln)y(n) + K(y(n —w +1) — A(n)y(n)), (1.2)

where A(n), n € Z :={0,+1,+2,...}, is the Jacobian matrix of f evaluated at the target
UPO and so that it is a periodic matrix function with period w.

The paper is organized as follows. In Section 2, we give several lemmas on the equation
deduced from the C-map theorem. In Section 3, we establish the general criteria on the
stability of the solutions with period 2 for Equations (1.2), see Theorem 3.4. In particular,
we determine the best range of feedback gain k so that the (unstable) periodic orbit is
stabilized.

1.2 Preliminaries

In this subsection we give give a relationship between the characteristic multipliers for
ordinary periodic linear difference equations (1.1) and delay periodic linear difference
equations (1.2). Let C be the set of all complex numbers and C? the d-dimensional
complex Fuclidean space. Let L : X — X be a bounded linear operator, where X is
a Banach space with dim X < co. We denote by o(L) the set of eigenvalues of L. Set
or(L)={¢€R:&co(L)}. Let Z, ={p,p+1,---}, p€ Z. Set N =7, and Ny := Z,.
Let C,_1 be the set of all maps from Z° , into C? which is a Banach space equipped
with a sup norm |p|c, , = SUDyez0 | lo(s)]-

We assume that the solution of Equation (1.1) through (m,2°) € Z x C? and the
solution of Equation (1.2) through (m,¢) € Z x C,_; exists uniquely. Then we denote
by T'(n,m) : C* — C? and U(n,m) : C, 1 — C, 1, respectively, the solution operators of
Equation (1.1) and Equation (1.2). Set

T(n)=T(n+w,n), and U(n) = U(n + w,n),
which are called the periodic operator. We note that
o(T'(n)) = o(T(0)), and o(U(n)) = o(U(0)).

Hereafter we assume that
(A) : A(n) is nonsingular for all n € Z.
(C): KA(n) =An)K, (n€Z) ;
(K) : (K-1) 0¢o(K):
(K-2) 1¢0(K);
(K-3) o(U(0))No(K)=0.
Then we note that 0 € ¢(7'(0)) and 0 € o(U(0)).
Now, we give a relationship between the characteristic multipliers of Equations (1.1)
and (1.2). Set

z —

9y, 2) = <(1_yy)z> , (W#FLy#2,2#0).
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A function zg(k, z) is called the characteristic multiplier function (briefly, C-map) for
Equation (1.2) with K = kFE, where E is an identity matrix.

Theorem 1.1. (C-map Theorem) Assume that K = kE, (0 < |k| < 1). Then v €
a(U(0)) if and only if pn:= vg(k,v) € o(T(0)).

Refer to [4] for more details of this subsection.

2 Some of lemmas

In this section we consider the C-map p = vg(k, v), that is,

uzu(ﬁ)w, (u,v € C), (2.1)

where w € N and |k| < 1. Moreover, setting v = |v|e, || # 0 and taking the absolute
value in the both sides of (2.1), we have

=1 (1) 22)

The principal value, denoted by Arg u, of the argument arg p of complex number y =
|p|et, is that unique value ¢ such that —7 < ¢ < 7.

2.1 Lemmas on Equation (2.1)

In this subsection we will state characterize Equation (2.1). Let us define two functions

(v =k)
Cw,k(V) = W, (V € (C)
and " .
By x(0) = Cyi(e?) = (7 — k) (6 € R). (2.3)

(1 _ k)wei(w—l)ﬂ’
Denote by n(vy, C, k) the winding number of C,, x(v), when v rotates along the unit cycle
~ in the positive direction.

Lemma 2.1. Let k # 1. Then the following statements hold.

1) Byx(2nm 4+ 0) = B, x(0) and B, x(0) = Byx(—0), (n € Z,0 € (—m,7|).
2) B,x(0) € R and B, (7)) = B, x(—7) € R.

3) Cok(v) = Cu (D).

4) n(v,Cux) = 1.

Proof. 1), 2) and 3) are obvious. 4) By argument principle, we have

1 [C,W)
2mi )., Cox(v)

dv = n(y, Cuy) =w— (w—1) = 1

as required. O



Note that there exist some intersection points of B, ;(f) in the real line by using the
assertion 1) and 2) in Lemma 2.1.

Lemma 2.2. Let |k| < 1(k #0) and v =€, 0 € (=, 7] in (2.1). Define 3 := B(k,0) as

ksin 0 T

1—kcosf’ Bl <3 (2:4)

t =
an 3 5

1) If 0 # 0,7, then 5 # 0 and

sin 8
_ . 0 .
(B 1 0) |sin(8 + 0)| > |sin ] >0
cos & w o
p= {Cos(@ig)} e, 0 <[u| < oo (2:5)

po=wl+0, 26+0#+m.

2) If0 =0, then $ =0,Arg p =0 and p = 1.
3) If0=m, then f=0,Arg p=m andu:—(ﬁ)w.

Proof. Consider the function (2.3), that is,

(eié _ k)w

Iu = Bw,k(6> = (1 _ k)CAJe’i(UJ—l)H’

0 € (—m,n].

If & = 0, then it follows from (2.3) and (2.4) that § = 0, = 1 and Arg p = 0 hold.

Similarly, if 6 = 7, then 8 =0,y = — (%)w and Arg p = .

Assume that 6 # 0, 7. Then § # 0. Clearly, we have

M( ) (eze k)w —i(w—1)0
620 k)w( iﬁ)w 0

=" (1- k:e_w) . (2.6)
Note that
(1 —kcos#)® + (ksinf)* =1 — 2kcosf + k? > 0.

Since

1 —ke ™™ = (1 —kcost) +iksind = V1 — 2kcosf + k2e”| (2.7)
we have

(1- ke_w)w = (1 — 2k cos ) + k?)2e™P

Hence,

|1 — K| =1 — ke ™| = (1 — 2k cos + k*)% >

By the definition of tan 3 we have

sinf  ksind
cosf 1—kcosf’
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and hence, ksin(f + 0) = sin 5 and sin 5 # 0. Thus

sin 3

= m and |sin(g8 + )| > |sin 5| > 0.

Since

_ Sln(ﬁ‘i_g) — Sinﬁ - 2COS(B—|— g)snlg

L=k sin(5 + 0) ~ sin(B+6)

we have cos(5 + g) # 0, that is, 26 + 0 # +n. Moreover, since (2.8) and

1 — ke ™ = (1 —kcosf) + iksinf
sin ¢ .
= W[COSﬁ + ZSIDB]
sinf 5
—— e
sin(f+60) "’

=

( sin 6 )w sin(3 + 0) i oi(wB+0)
sin(f + 0) 2cos (B4 %) sin §

w

we obtain

1

e’

Y

CcoS g
cos (ﬁ + g)
as required. O

Remark 2.3. (i) Notice that there is an [ € Z such that
Yo = Arg u=p+2r

when 6 # 0.
(ii) The statement 23 + 6 # £7 in 2) of Lemma 2.2 says that if w = 2, then ¢ # £7.
(iii) It follows from Lemma 2.2 that 0 < | B, x(0)| < oo for all § € (—n, 7.

Corollary 2.4. In Lemma 2.2 we obtain
(1l — k) = (1 —2kcosO +k*)2e", 1 —2kcos 4+ k* > 0,
and

o] < (g + 1) . (2.9)

In particular, if w = 2, then
p(l —k)? = (1 —2kcosf + k*)e™, 1 —2kcosf + k* > 0, and |p| < 27.

>



Proof. The proof follows from (2.6), (2.7) and Lemma 2.2. Moreover, we obtain

o] = lwp + 0] < w|B] + 16|

<(§+1)7T.

This proves the corollary. O

The function (2.3) with w = 2 is written as

(eie o ]{3)2

p=Ba(0) = = ke (0 € (—m, ), (2.10)

while (2.10) is refined in the following lemma.

Lemma 2.5. Let w =2 in Lemma 2.2. Then

(k+1) ”
= Yop=2 0 2.11
a k2+2k:cos<,0—|—1e p=20 (2.11)
and

cost = |u|(cosp+1)—1 (8 € (—m,7)). (2.12)

Proof. 1t 0 # 0, m, from (2.5), we have

2

cos 2 cos? _cosf+1

[
_ 2 _
2cos? £ cosp+1

lul =

ISHIINISS

cos?
or equivalently
cost = |p|(cosp+1) —1 (0 #0,m).

If # =0, then pr = By (0) = 1. Taking ¢ = 0, (2.11) and (2.12) hold for = 0. Since
|| # 0, we have that if = 7, then u = Byy(n) = — (ﬁf Taking ¢ = +m, (2.11) and
(2.12) hold for § = 7. Therefore (2.11) and (2.12) hold for 6 € (—m, 7].

By Corollary 2.4 with w = 2, we have, in view of (2.12),

lu|(1— k) =1—2kcosO + k*> =1 — 2k[|u|(cos o + 1) — 1] + Kk,

that is,
1| (1 + 2k cos p + k%) = (k + 1)%.
Since
E* 4 2kcosp+ 1= (1+kcosp)* + k?sin® ¢ > 0,

we obtain

] = (k+ 1)

M= +2kcosp+1’
as required. O



Corollary 2.6. Let w = 2 in Lemma 2.2. Then the following results hold.
1) ¢ =0 if and only if 6 = 0. In this case, p = 1.
14

2) ¢ = 47 if and only if @ = 7. In this case, u = — (m)2

=

Proof. Let ¢ = 0. By Lemma 2.5 we get =1 and 1+ cos = 2|u|. Thus cosf =1, i.e.,
0 = 0. Let ¢ = £7. Then we have y = — (%)2 by using (2.11). By Corollary 2.4 we
have

pw(l —k)* = —(1 — 2k cos 6 + k?),

ie., —(1+k)*>=—(1—2kcosf + k?). Thus, cosf = —1, i.e., 0 = 7.
Conversely, if 8 = 0, or 7, then the assertions follow from Lemma 2.5. O

Proposition 2.7. Let |[k| < 1(k # 0) and let w = 2 in (2.1). Then Byx(0) € R if and
only if 0 =0, 7.

Proof. Set u = |pu|e"¥ = By (). It follows from Corollary 2.4 and Lemma 2.2 that
(1 — k) = (1 —2kcosf + k*)e™, ¢ =wpB+ 0.

Thus we have that By (6) € R if and only if sinp = 0. Since || < (£ 4 1) 7, we obtain
that sinp = 0 if and only if ¢ = 28+ 60 = mm, |m| < § + 1 = 2, that is, m = 0,%1.
Therefore ¢ = 0, . The result of the proposition follows from Corollary 2.6. O

The curve dDg, : n = B,x(f), —a < 8§ < «, for some 0 < a < 7 with B, 1(a) =
B, k(—a), is closed. We denote by intDg, and extD, its interior and its exterior,
respectively. Set D, = 9Dg , UintDy .

In particular, if the origin belongs to intDg ;, then we denote by 9D, ,(0) and Dg ,(0)
those.

Let p = |ule’® € C,u # 0. We denote by L, the half line connecting the point u
from the origin. If 0DZ, N L, is unique, then there exists a unique 6, € (—a,a] such
that 1, = B, x(0,). Hereafter, this argument 6, is called the argument associated with

(1, 0D 1,(0))-

Definition 2.8. The closed curve 9D, is called to be a strong star-shaped curve if it
has the following properties :

(i) 9Dg , is a simple closed curve.

(ii) 0 € intD2,, i.e., D2, = D2, (0).

(iii) 0Dg ;N Ly, is unique for every p € C.

Lemma 2.9. Letw = 2, and |k| < 1. Then the closed curve OD3, is a strong star-shaped
curve.

Proof. Clearly, D5, is a closed curve. The equation 9D3, = 90D3,(0) follows from
Lemma 2.1, i.e., n(7, Cyx) = 1. Now, we claim that 9Dj, is a simple closed curve. Since
dDj3 . is continuous in § € (—m, 7], we have to prove that dD3, is bijective, Without loss
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of generality, we assume that there exist 6y, 6, 6; # 65 such that n = |n|e™” = By (6;) =
By ;(62),n € C\ R. Then we have, by (2.12), that cosfy = costy = |n|[(cosp +1) — 1
holds. Namely, cosf; = cosfs, and hence, §; = —60;. Thus By x(02) = Bax(—61). On
the othe hand, we have n = By ;(0;) = By x(—61) by Lemma 2.1. Therefore, By (—6,) =
By i(—61). This means n € R, which is a contradiction. Hence 0; = 6y, i.e., 81);,~C is
bijective. Next, we will show the uniqueness of D3, (0) N L. Let p = [p|e’?. Assume
that 0D3 . (0) N Ly = {n1, n2},m # n2. Since 1 = |ni]e’?, my = |12]e’?, Lemma 2.5 implies
that n; = 7, holds. Therefore, D7, (0) N L, = {n,}. O

2.2 Lemmas on Equation (2.2)
In this subsection we consider Equation (2.2). Equation (2.2) becomes
1 w=1
= (1= K)lv[7=" = [v — k.

Squaring both sides, we have

2(w—1)

|M|%(1 — k2| e = v —k|* = |v]* - 2k|v|cos O + k*.

In relation with this, we introduce a function as follows :

Folr ke, 0, ]) = |3 (1 = K225 — 12 4 2%k cos 6 — k2, (2.13)

defined on 0 <r < oo, k| <1, -7 <6 <.
In particular, if r = 1, then

Follik, 0, |p]) = |u|= (1 — k) = 1 + 2k cos 6 — k?
= (Iul> = DR = 2(lul* —cos O+ (jul> = 1), (214)
For Equation (2.1) we define a polynomial P, (\; 1) of A, with degree w, by
Pos(Nip) = (A — B) — (1 — k)2, (2.15)

Then Equation (2.1) is rewritten as P, x(A; 1) = 0. Clearly, Equation P, x(A; ¢t) = 0 has
w solutions, counted with multiplicity.

Lemma 2.10. Letw € N, k € (—1,1), u € C and v = |v|e",
0 if and only if fu(|v]; k. 00 u]) = 0.

w| #0. Then P, x(v;n) =

Proof. Clearly, it is easy to see that P, x(v;p) = 0 if and only if

2(w—1)

|u|%(1—]{;)2|y| v = |v|? — 2k|v|cos b, + k?,

that is, f,(|v]; k, 6., |p]) = 0, and vice versa. O



Next, we will consider the conditions on &k (|k| < 1) so that f,(1;%,0,|u|) < 0. In
particular, if # = 0, then

Fu(L 8,0, |ul) = (Jul> = D(k = 1)* = (Ju|> = D(|ul> + (k- 1)% (2.16)
The following result is easily obtained from (2.16).

Lemma 2.11. Let 0 = 0 in f,(1;k,0,|n|). Then the following statements hold for all
ke (-1,1):

(1) fo(L5k,0, |u]) <0 if and only if |u| <1 ;

(2) fu(L;E,0,|p]) > 0 if and only if |u| > 1 ; and

(3) fu(L;:£,0,|ul) = 0 if and only if [u] = 1.

Assume that 0 # 0. If |u] = 1, then
fo(Lik,0,1) = —=2(1 — cos 0)k. (2.17)

If |p| # 1, then (2.14) is rewritten as

) 2
oLk 0, Jul) = (ul? — 1) [ = W2 ZcosO) - Dul0) (2.18)
e —1 e —1

where ) )
Du(0) = (Il = cos8)” — (Jul® 1) .

By further calculation, we have

D,(6) = (1 — cosb) {2|M|% — (1 +cos9)}

= 4sin22 (|u|3 — cos® g)
0 1 0 1 7
= 4sin® 5 (|u|w + cos 5) (|u|w — CoS 5) : (2.19)

We note that if 8 # 0, then the following statements hold :
(1) D,(0) > 0 if and only if || > cos* &;
(2) D,(0) = 0 if and only if |u| = cos® ¢; and
(3) Du(0) <0 if and only if [u| < cos” 5.
In the case D,(f) > 0, the quadratic equation f(1;%,6,|n|) = 0 of k has two real

solutions : ,
\p|e —cos8 £ /D, (0)
k‘i(e) = P .
> =1
Lemma 2.12. Let —m < 0 < 7,0 # 0 and |k| < 1. Then the following statements hold :

1) Let |u] > 1. Then the inequalities 0 < k_(0) < 1 < ky(6) hold. Moreover, if
k_(0) <k <1 then f,(1;k,0,|n]) <0;if =1 <k < k_(0) then f,(1;k,0,|u) > 0.

[SSIM}
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2) Let |p| < 1.
(2-1) In case |p| > cos” &, the inequalities ki (0) < —1 < k_(0) < 0 hold. Moreover,
if k—(0) <k <1 then fu(1;k,0,|u]) <0;if =1 <k < k_(0) then f,(1;k,0,|u|) > 0.
(2-2) In case |pu| < cos* 8, fu(1;k,0,|u]) <O for all k € (—1,1).
3) Let |u| = 1. Then if 0 < k < 1 then f,(1;k,0,|u|) < 05 if =1 < k < 0 then
fu(L k.0, |pu]) > 0.

Proof. Set fo(k) = fu(1; k.0, |p).
1) Since |p| > 1 > cos” £,6 # 0, we find that D,(¢) > 0. Then the quadratic equation
fo(k) = 0 of k has two real solutions k_ () and k, (¢). By noting the following facts that

Jo(0) = |ul> =1>0
and
fo(1) = =2(1 — cos @) < 0,

we can easily see that the assertions are true.

2) (2-1) By the assumptions 1 > |u| > cos® § and 6 # 0, we find that D,(6) > 0. Then
the quadratic equation fy(k) = 0 of k£ has two real solutions k_(6) and k(6). Noting
that

fo(0) = |u[# =1 <0

and

fol—1) = 4|pu|> — 2 — 2cos b

2 0
=4 & — cos? —
(1 - o)
= (1 +cos ) (Il —cos2) >0
= |u cos 3 L cos 5 ,

we can easily see that the assertions are true.
(2-2) If |p| = cos® 4, then luls = cos? % = 1(cos# + 1) and we have

fo(k) = (Jp|> — 1)k — 2{|u|® — 2|ul& — D)} + |p|> — 1
(Juls — 1)(k+1)% <0.

If || < cos” &, then we find that D, () < 0, so that fy(k) < 0 from (2.18).
3) If |u| =1, fo(k) is given by (2.17). Then we can easily see that the assertion 3) is
true. O
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3 Stabilization by DFC : w =2

In this section we will analyze the stability of DFC for the case w = 2.

Proposition 3.1. Assume that w > 2 and K = kE. If |k| > 1, then there exists
v € o(U(0)) such that |v]| > 1.

Proof. Let P, ;(\; ) be the polinomial defined by (2.15). Then P, x(A\; 1) = 0 and
P, 1(0; 1) = (—k)“. On the other hand, since

Popip) = A =v)(A =) - (A=),
we obtain P, (0; u) = (—1)“vvs - - - 1,. Summing up these, we arrive at
vy -y, = (k)*. (3.1)
This shows that if |[k| > 1, then there exists v; € o(U(0)) such that |v;] > 1 holds. O

Proposition 3.2. Let w = 2,|k| < 1 and p = |pule’® € C be given and let 6, be the
argument associated with (u, 9D5,(0)). Then the following statments are equivalent :

1)
p € intDy ;. (0).
2)
k? — 2k cosf, + 1
ol < Il = 1Basl)] = = =7
3)
(k+ 1)
|l < 2 ’
k? 4+ 2k cosp + 1
4)
J2(1;K,0,, |p]) <0.
5)
95 (L k, ¢, |u]) <0,
where

¢ (L ko, pl) = |pl (1 = k)" = 1+ 2k(|nul(cos o + 1) = 1) = k%, n = Bax(0,).

Proof. The assertions 1) and 2) are equivalnt. It follows from Lemma 2.9 that if y =
lule? € intD3,(0), then |u| < [Byx(6,)]. This means the assertion 2), and vice versa.
The equivalence of 2) and 4) is shown as follows. Assuming that 2) holds, we have
lul(1 — k)2 < |e — k|?, and hence,

pl(1 = k)* < e — kl*.
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Since
e — k> =1 — 2k cos B, + k?,

we can obtain f>(1;k,6,,|x]) <0, and vice versa.
We derive 5) from 3).

95 (L K, o, |p])

= —1+|u|(1 = k)* + 2k[|nul(cos o + 1) — 1] — K
< 1] (1 = k)? + 2k, |(cos p + 1) — (k +1)?

= |77u|(k72 +2kcosp +1) — (k+1)?
=(k+1)2—(k+1)

=0.

The remainder follows from Lemma 2.9 and Lemma 2.5. O

Remark 3.3. In Proposition 3.2, if u € ea:thvk(O), then the inequality < can be replaced
by the inequality >.

Set
0 (U0) = Ko@) p=v (=) €T}

Now, we are in a position to atate the main theorem in this paper.

Theorem 3.4. Let w=2 and K = kE and |k| < 1,(k #0). Let pn € o(T(0)).
1) If p € intD3,.(0), then [v| <1 for all v € o(,.c)(U(0)).
2) If p € extD5,(0), then there exists a v € o(,,c)(U(0)) such that |v| > 1.

Proof. Since w = 2, we have that By () € R if and only if # = 0,7 by Proposition 2.7.
Let u = |ule® € o(T(0)), u # 0. Without loss of generality, we assume 0 < ¢ < . Then
p = Cyy(v). Let v = |v|e® € 04, cy(U(0)). Then 6, is the argument associated with
(1, 9D3,(0)).
1) It is sufficient to prove that 0 < |v| < 1 holds, provided p € intDj,(0). Taking
w=2and § =46, in (2.13) we have
f(r) = fa(r; K, 0., |pl) = |p|(1 = k)*r — 1% + 2kr cos 6, — K°.

Then fo(|v|; k,60,, |1]) = 0 by Lemma 2.10. Moreover, by (2.12) the equation cosf, =
10ul(cos¢ + 1) — 1 holds, and hence,

g5(r) = gr(rik, s, lul) = =r® + |ul(1 = k)*r + 2k[n.[(cos + 1) = 1Jr — k. (3.2)

Then g;(0) = —k* < 0 and g;(1) < 0. Indeed, by Proposition 3.2 and (3.2), we have
gr(1) < 0 holds.
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Then we prove that if g;(1) <0, then g}(r) < 0 for all r € [1, o0).

95(r) = =2r + |ul(1 = k)* + 2k[|n,|(cos o + 1) — 1]
=—-2r+g;(1) + 1+ &
= (14 k= 2r) + g4(1)
< gs(1) <0.

Next, we take ry,0 < rg < 1 so that

max g5(r) = g¢(ro)-

Then 7y is a point of local maximum of g¢(r). Now, we prove g¢(ry) > 0. If gs(r9) <0,
then g¢(r) < 0 for all r > 0.

Thus the equation f(r) = 0 has no solution, but f,(|v|;k,6,,|¢|) = 0 holds. This
yeilds a contradiction. Thus f(rg) > 0. Summing up these, we can obtain 0 < |v| < 1
holds.

2) Since p € extD3,(0), it follows that

(k+1)?
+ 2kcosp+1
holds. Then g¢(1; k, ¢, |p1|) > 0. Indeed, by (3.3) we have

1| > |l = 12

911k, 0, 1))
= —1+|u|(1 — k)* + 2k[|nul(cos o + 1) — 1] — k?
> [ (1 = k) + 2k (cosp + 1) — (k + 1)°
= nu|(k* + 2k cos o + 1) — (k + 1)*
=(k+1)?—(k+1)
=0.
Since f(0) < 0, by the theorem of intermediate value there exists an 9,0 < 79 < 1,

satisfying f(ro) = 0. Another solution exists on (1,00). This implies that there exists a
v € 0(u,0)(U(0)) such that || > 1. O

Figure 1: The region of u € o(7°(0)) so that unstable periodic orbit is stabilized in the
case where w =2, k = 2/3.
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Theorem 3.4 gives the region of u € o(7°(0)) in which DFC with the gain K = kE is
successful. Fig. 3 illustrate the region in the case where w = 2, k = 2/3. The blue curve
shows OD7  and if all 4 € o(7'(0)) are in the interior of the curve, then the unstable
periodic orbit is stabilized.

Based on Theorem 3.4, we bellow give the best range of feedback gain k£ so that the
(unstable) periodic orbit is stabilized.

Corollary 3.5. Let = |ule’? € ac(T(0)) be as in Theorem 3.4. Set

_ 1 —|pfcosp % /(|pulcosp —1)* — (Ju[ — 1)°
| =1 '

ki ()

1) If1 < |y < ﬁ,w # 1 and k_(p) < k < ky(p), then |v| < 1 for all
Ve U(u,C)(U(O)) ;

2) If l|p) < 1 and k < k_(p) < 0 or ki(p) < k < 1, then |v| < 1 for all v €
() (U(0)) ;

3) If lul =1 and 0 < k < 1, then |v| <1 for all v € o(,,cy(U(0)) ; and

4) If |\p| > pr and |k| <1, the there is a v € 0, (U(0)) such that |v| > 1.

Ccos

Proof. Since p € intD3, (0), the assertion 3) in Proposition 3.2 is rewritten as
h(k) == |u|(k* + 2kcosp+1) — (k+1)*> < 0

ie.,
h(k) = (|ul = Dk* +2(|p| cos o — 1)k + (Jul — 1) <0. (3.4)
The solutions of Equation h(k) = 0 are expressed as

1 —|plcosp /Dy
|l =1 ’

ki ()

where
Dy, = (|ulcosp = 1)* = (Ju = 1)*.
Clearly,
Dy, = |pl[|ul(cos p + 1) = 2](cosp — 1).
Therefore if |p| < 5 2__ then D), > 0.

os p+17
1) Case |u| > COSiH. Then h(k) > 0 for all k& (|k| < 1).
2) Case 1 < |p| < Cos?p—i—l' Then h(k) < 0if k_(¢) < k < ki (p).

3) Case || < 1. Then h(k) <0if k <k_(p) <O0or ki(p) <k < 1.
4) Case |pu| = 1. Then h(k) < 0if 0 < k < 1.
Therefore the proof follows from Theorem 3.4. O

The following corollary is the case where p € o(7°(0)) is a real number.

14



Corollary 3.6. Let p € or(T(0)). Then the following statements hold.
1) If > 1, then there exists v € 0(,,¢)(U(0)) such that v > 1.
2) Ifo<p<1and|kl <1,k#0, then |v| <1 for all v € o(,,c)(U(0)).
3) If u <0 and
Ve

V—p+1
then [v| < 1 for all v € o(,c)(U(0)).

< k<1,

Proof. The assertion 1) is obvious from the assertion 4) in Corollary 3.5. In order to
prove the assertions 2) and 3), we apply the assertions 2) and 3) in Corollary 3.5.

Let 0 < g < 1. Then ¢ = 0. Thus it follows from (3.4) that h(k) = (p—1)(k+1)* <0
if and only if 0 < p < 1 and |k| < 1,k # 0.

Let ;1 < 0. Then ¢ = 7. Thus (3.4) becomes

h(k) = (=p = DE* +2(p — Dk + (—p — 1) <0,

and hence, the solutions k4 (m) of h(k) = 0 become

p+1
(L—p)£2y/=p
B w1
RS
0= V=R + V7)
Hence
_ Vol _Voatl
k_(w)—\/__u+1 dk:+()—\/__u_1>1.
Hence, h(k) < 0 if and only if k_(7) < k < 1. O

Remark 3.7. Another method for the proof of the assertion 3) in Corollary 3.6 is as
follows. By Corollary 2.6 we have that u € intDj ,(0) if and only if

C(1+k 2< -1
1—k) M E

V—pr—1
NERE

then |v| < 1 for all v € 0(,,)(U(0)).

Thus if
< k<1,

The result of Corollary 3.6 coincides with one due to the Jury criterion (cf. [6]).
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