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1 Introduction

This is based on a joint work with Kyungkeun Kang and Tai-Peng Tsai [19]. The Navier-Stokes
equations describe the evolution of a viscous incompressible fluid’s velocity field v and its associated
scalar pressure . They are required to satisfy

Ov—Av+v-Vo+Vr=0, dive=0 (ns)

in the sense of distributions. For our purposes, (NS) is applied on R? x (0, 00) and v evolves from a
prescribed, divergence free initial data vy : R® — R3. Solutions to (NS) has a natural scale invariance:
If v satisfies (NS), then for any A > 0 the pair (v}, p*) defined by

vz, ) = Mo(x, \%t), 7Nz, t) = Nr (A, A%t)

is also a solution with initial data
v} () = Mvg(Az). (1.1)

A solution is called self-similar (SS) if v*(z,t) = v(x,t) for all A > 0 and is discretely self-similar
with factor A (i.e. v is A-DSS) if this scaling invariance holds for a given A > 1. Similarly, vg is
self-similar (a.k.a. (—1)-homogeneous) if vo(z) = Avg(Az) for all A > 0 or A-DSS if this holds for a
given A > 1. These solutions can be either forward or backward if they are defined on R3 x (0, 00)
or R? x (—o00,0) respectively. In this paper we work exclusively with forward solutions and omit the
qualifier “forward”.

Self-similar solutions are interesting in a variety of contexts as candidates for ill-posedness or
finite time blow-up of solutions to the 3D Navier-Stokes equations (see [12, 16, 17, 24, 29, 30] and
the discussion in [2]. Forward self-similar solutions are compelling candidates for non-uniqueness
[17, 12]. Until recently, the existence of forward self-similar solutions was only known for small data
(see the references in [2]). Such solutions are necessarily unique. In [16], Jia and Sverdk constructed
forward self-similar solutions for large data where the data is assumed to be Holder continuous away
from the origin. This result has been generalized in a number of directions by a variety of authors
[2, 3, 4, 5, 8, 21, 23, 31]; see also the survey [18].

The motivating problem is the following: It is shown in Tsai [31] that, if a A-DSS initial data
vy € C(R*\{0}), 0 < a < 1, with M = [Jvg|lce(p,\B,) < 00, and if A —1 < ¢1(M) for some
sufficiently small positive constant ¢; depending on M, then there is a A-DSS solution v with initial
data vg such that v is regular, that is, v € L (R? x (0,00)). The question is: What if we weaken
the assumption of vy so that vy belongs to LP or LP»*°(R3) (i.e. weak LP space)? Note that for
vo € L>*°(R3) that is A-DSS and divergence free, Bradshaw and Tsai [2] constructed at least one
A-DSS local Leray solution. However the proof does not imply regularity of the solutions, since it is
based on a weak solution approach and used compactness argument.
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Motivated by this problem, we need to study solutions whose initial data is locally in L2, as it is
also shown in [2] that, when vg is A-DSS, then vg € L3°°(R3?) if and only if vg € L3(By \ B1).

In order to state our results, we first recall the notion of the suitable weak solution. For any
domain 2 C R? and open interval I C (0, 00), we say (v,7) is a suitable weak solution in Q x I if it
satisfies (NS) in the sense of distributions in Q x I,

ve LI L3(Q) N LA(1; HY(), =e L?(QxI),

and the local energy inequality:

/Q|U(t)|2¢(t)dx+2/ot/g|Vv|2d>dwdt

S/Ot/Q |v]?(Orp + Ag) da:dtJr/Ot/Q(|U|2+27r)(v-ng)dwdt "

for all non-negative ¢ € C°(Q x I). Note that no boundary condition is assumed.
The following theorem is our first main result.

Theorem 1.1. There exist positive constants €9 and Cy such that the following holds. Let (v, ) is
a suitable weak solution of the Navier-Stokes equations (NS) in By x (0,Tp), To > 0, with divergence
free initial data vy in the sense limy o+ [[v(t) — vollz2(B,) = 0. For any M > 0, there exists Ty =
T (M) € (0,Ty] such that if (v,m) satisfies

[vollLa(m,) < €0 (1.3)

and
2
1olzse L2nrs B0y 17l 2 p32(my x 0.1y < M (1.4)

then v is regular in By /4 x (0,T1) and satisfies

Cy
v(z,t)| < — in By x(0,T1), 1.5
el <5 i Buyax 0.1 (1)
1 3
sup sup — |v|”dz < 1. (1.6)

2
Z()GB% x(0,T1) 0<r<oco % JQ,.(z0)N[B1 x (0,11)]

Moreover we can choose Ty (M) = min {c1 (1 + M)~ Ty} with some universal constant c;.

Above, we use the notation LYLI(A x I) := LP(I; Li(A)) for AC R3 and I C R, and Q,(2) :=
By(z) x (t — r%t) for z = (x,t).

Comments for Theorem 1.1:

1. It should be noted that the constant C; is independent of M. Intuitively, the nonlinear term
has no effect before Th = T7(M), and hence the solution behaves like a linear solution, and its
size is given by the initial data.

2. The boundedness of 7 in LfLi/ % is natural for the Leray-Hopf weak solutions defined in R3,
as 7 is given by 7 = R;R;j(v;v;), where R; = (—A)~1/20; is the Riesz transform, and

2 2
7l 2z 22 oo,y = CllVlLsmg ooy < C”U”L?OLiﬂLf}'I;(R?’X(07T))'

3. The assumption HWHL2L3/2( < M can be replaced by, e.g., ||7||La(B, x (0,1y)) < M for
7L3

B; X(O,Tl))
some g € (3/2,5/3]. It ensures that fOT S, 0] + |p|>/2dxdt is small for sufficiently small
T =T(M) (thus ¢ = 3/2 is not allowed), which is one of the key in the proof. Our choice of
exponents is to maximize the time exponent, so that T3 (M) = ¢(1 + M)~ has the smallest
m = 6.



4. Theorem 1.1 is an extension of Jia-Sverdk [16, Theorem 3.1], in which the initial data is
assumed in L™(By), m > 3. This is similar to the extension of the mild solution theory for
the scale subcritical data vg € L™(R?), m > 3, of Fabes-Jones-Riviere [J] to the critical data
vo € L3(R3) of Weissler [33], Giga-Miyakawa [11], Kato [20] and Giga [10].

Our first set of applications of Theorem 1.1 is concerned with local Leray solutions, which are
suitable weak solutions of (NS) defined in R? x (0, 00) that satisfy a mild decay condition at spatial
infinity; see Definition 1.2. In order to state the results, we introduce the uniformly local L? spaces.
For g € [1,00), we say f € LY __if f € L] (R3) and

uloc loc

[1£1lzs

uloc

= sup || fllLa(s (x)) < oo (1.7)
rER3

We also denote for p > 0
£l

uloc,p

= sup [|fllLe(B, ()
r€R3

Let EY be the closure of C°(R3) in LI

tloc-norm. Equivalently, 9 consists of those f € LY with
iy o0 [|.fl Lo (B, (@)) = 0, see [22].

uloc

Definition 1.2 (Local Leray solutions [15, 16]). A vector field v € L2 _(R3 x [0,00)) is a local Leray
solution to (NS) with divergence free initial data vy € E? if

3/2

1. for some w € Ly/”(R3 x [0,00)), the pair (v,m) is a distributional solution to (NS),

2. for any R > 0,

R2
esssup sup / |v|? dz + sup / / |Vo|? dr dt < oo, (1.8)
BR(wo) JO p BR(Z‘())

0<t<R? xo€R3 . zoER3

3. for all compact subsets K of R we have v(t) — vg in L*(K) as t — 0T,

4. (v, ) satisfies the local energy inequality (1.2) for all non-negative ¢ € C°(Q) with all cylinder
Q compactly supported in R x (0, 00),

5. for any R >0,

|zo|—00

R2
lim / |v|? dx dt = 0. (1.9)
0 BR(:E())

In the following corollary we assume that the initial data belongs to L3(Bs) N E2.

Corollary 1.3. Let ¢y and Cy be the constants from Theorem 1.1. Suppose v is a local Leray
solution of the Navier-Stokes equations (Ns) with divergence free initial data vo € E? and there
exists § € (0,00) such that

[vol| L3 (B;) < eo- (1.10)

Then there exists Ty = T5(5, Ns) > 0 with Ny := % sup,, cps fB&(xg) |vo|?dx such that v is regular in
Bs/q x (0,T2) and satisfies

Ch
v(x,t)| < —= in Bs x (0,Ts),
e, < S in By (0.7
1 3
sup sup — |v]” dz < 1.

2
20€Bs 4% (0,T2) 0<r<co T Qr(20)N[Bs /4 x(0,T2)]
Furthermore, we can take To = co(1 + N5) 982 with some universal constant co.

Comments for Corollary 1.5:



1. Compared to Theorem 1.1, the local Leray solution in Corollary 1.3 is defined globally in R3
and the assumption (1.4) for the solution is not necessary. We also have flexibility of the radius
of the ball in (1.10). Note that the time T5 depends on the radius, which is important for our
applications.

2. A result similar to Corollary 1.3 was independently obtained by Barker and Prange [!, Theorem
1]. In [1], it was proved that any local Leray solution is bounded under similar assumptions
as those of Corollary 1.3, and the smallness assumption of local L3 norm (1.10) is further
relaxed to L3> or critical Besov norms. Their approach is different to ours and relies upon
the iteration method by Caffarelli, Kohn and Nirenberg [7], while ours is based on the blow-up
and the compactness argument by Lin [25].

3. Consider general initial data vy € E2. Define

p(x) = p(x;v9) = sup {r >0:v9 € LS(BT(QJ))7/ luo|® < Eg} .
B, (x)

Let p(x) = 0 if such r does not exist, and let p(x) = 0o if [ps [vo|* < €. We also define
T(z) =co(1+ Np(m))_(sp(a:)2 € [0, ).

For each # € R? applying Corollary 1.3 with § = p(z), we see any local Leray solution v is
regular in the region
Q= {(Lt): r € R3, 0<t<T(zx)},

|v(z,t)| < G in Q.

Vit

Of course this is interesting only near those x with p(x;vg) > 0.

In the next corollary we assume the initial data vo € L3, .(R?) N E?.

Corollary 1.4. Let ¢y and Cy1 be the constants from Theorem 1.1. Suppose v is a local Leray
solution of the Navier-Stokes equations (NS) with divergence free initial data vg € E? and there
exists § € (0,00) such that

lvollzz, . < €o. (1.11)

e =
Then there exists Ts = T3(8) > 0 such that v is regular in R® x (0,T3) and satisfies
Gy
\/57

where Ty can be taken as Ty = c302 with some universal constant cs.

o(z,t)| < (0 <t<Ts), (1.12)

This result is similar to the one by Maekawa-Terasawa [27, Theorem 1.1 (iii)]. Indeed under
the assumption (1.11) the authors in [27] constructed mild solutions in L>(0,7; L3, .) and showed
that such solutions satisfy (1.12) with T" = C62||UOHZ§L . We emphasize that, compared to the

uloc,d
existence theorem of [27], Corollary 1.4 is a regularity theorem for any local Leray solution, but

assuming further vy € E2.

In the second set of applications, we consider solutions with initial data in the Herz spaces.
These spaces contain self-similar and DSS solutions, and are of particular interest to the study of
DSS solutions since they are weighted spaces with a particular choice of centre. We now recall the
definitions and basic properties of Herz spaces [14, 28, 32]. Let Ay, = {z € R™ : 2F=1 < |z| < 2F}.



For n € N, s € R and p,q € (0, 0], the homogeneous Herz space I.(';’Q(R”) is the space of functions
fe Ll (R"\ {0}) with finite norm

loc
. 1/q
(ZQ Sq|f||%p(,4k)> if ¢ < o0,

7l =1 e
sup 27| £ o (4,) if ¢ = oco.
keZ
The weak Herz space Wl'(]iq(R") are defined similarly, with L?(Ay)-norm in the definition replaced

by its weak version, LP:*°(Aj)-norm.
In what follows we take ¢ = oo, which is most suitable for our purpose. In this case, K, . -norm
is equivalent to

wmm=wp@mwwmmwﬂgm}-

I[ﬁéo

We are interested in the Herz spaces because they seem to be natural spaces for DSS solutions of
(Ns). The existence problem of mild solutions of (Ns) in the Herz spaces has been studied extensively
by Tsutsui [32]. He proved local in time existence of mild solutions for large data in subcritical weak
Herz spaces WI.(;’OO(]RS), 0 < s <1-3/p, and global existence for small data in the critical weak
Herz space WI.{P?)OO(]RS). The following results concern the regularity of the solution for the initial
data in the critical case K, with p > 3.

Theorem 1.5. Let €9 and C1 be the constants from Theorem 1.1. Let v be a local Leray solution
of the Navier-Stokes equations (NS) with divergence free initial data vg € E?. Assume further that
there exists p € (0,1) such that

sup [|vol|r3(B,, ., (x)) < €o- (1.13)
z#0
Then there exist o1 = 01(||vollks) > 0, C2 = Ca(||voll k), and oo = o2(u, ||vol|k;) € (0, 01] such that
1 9 1 0'17"2 9
sup  sup —/ [v(t)|]” dx + sup —/ / |Vo|” dzedt < Cy (1.14)
O<t<oir2zoeR3 T B,-(z0) zo€R3 T Jo B, (zp)
for any r > 0, and v is regular in the region
S={(z,t) : 0<t<oyl|zl}

and satisfies

lv(z,t)| < inX. (1.15)

<o

Comments for Theorem 1.5:

1. We easily see

feKs if and only if sup / |f|3 dx < oo for any p € (0,1).
Zo#0. BMI[)\(IU)

In particular, the assumption (1.13) implies [[vol[x, = SupP.,0 lvollz2(B ,, (2)) is finite (but
2
not small in general).

2. For vg € Kp, p > 3, the same conclusion of Theorem 1.5 is true, with the constants de-
pending only on |jvg|x,. This is obtained from Theorem 1.5, since (1.13) is valid for pu =

min(1/2, C~(eo/||vol| » )P/ ®=3)) from the following estimate:

_3 _3 _3
10011 L3 (B0 (2)) < (Cilz)) ™7 [0l Lo (B, (@) < (Crtlz))' 7 Vol Lo,y a2y < Cu' 7 w0l k-



The following corollary answers our motivating problem:

Corollary 1.6. (i) Let A > 1 and v be a \-DSS local Leray solution of the Navier-Stokes equations
(NS) with A\-DSS divergence free data vo € L>*°(R3). Then vy € K3, (1.13) holds for some
w € (0,1), and the same conclusion of Theorem 1.5 is true.

(ii) For any p € (0,1), there exists A\ = Au(p) € (1,2) such that if any A-DSS divergence free data
vo € L3°°(R3) with factor A € (1,\.] satisfies (1.13), then the A-DSS local Leray solution v is
regular in R? x (0,00) with

Cs
|U(I,t)| <— in Rg X (0,00),
Vit

where C3 is a constant depending on vg.

Remark. In Corollary 1.6, A — 1 has to be sufficiently small and its smallness depends on the
ratio parameter p in (1.13). The situation is similar to [31, Theorem 1.1]: The pointwise estimate
is based on regularity theory, which is known only for short time. If A — 1 is not small, we cannot
expect to use the available regularity theory to prove pointwise estimate everywhere.

The rest of this article is organized as follows. In Section 2 we recall auxiliary results, including
the theorems of Caffarelli-Kohn-Nirenberg [7], Kato [20], and the localization of divergence free
vector fields. We also present an interior regularity result for the perturbed Stokes equation, which
plays a crucial role in the proof of Theorem 1.1. Then we address the local analysis of the Navier-
Stokes equations and the proof of Theorem 1.1 in Section 3.

2 Preliminaries

We first recall the following rescaled version of the result of Caffarelli-Kohn-Nirenberg [7, Proposition
1]. Tt is formulated in the present form in [29, 25], and is the basis for many regularity criteria, see

e.g. in [13].

Lemma 2.1. There are absolute constants €cxy and Coxy > 0 with the following property. Suppose
(v,7) is a suitable weak solution of (NS) with zero force in Qr,, 11 > 0, with

1 1
— / [’ de dt + = / |73/ 2dx dt < €cpens
T T

1JQn 1JQn

then v € L>=(Qy, /2) and

CC‘KN

T1

[0l (@, 2) < 21

We next recall the results due to Kato [20] and Giga [10].

Lemma 2.2. There exists €2 > 0 such that if vo € L3(R3) with € = |Jvg||s < €2, then there is a
unique mild solution v € L>(0,00; L3(R3)) of (NS) with zero force and initial data vy that satisfies

[0l Lee Lanrs , w2 x (0,00)) T iggtl/QHU(t)HLw(Rs) < Ce. (2.2)

The following lemma concerns localization of divergence free vector fields.

Lemma 2.3 (localization). Let 1 < p < o0 and 0 < r < R. There is a linear map ® from
V = {v e LP(Bg;R?) : divo = 0} into itself, and a constant C = C(p,r/R) > 0 such that forv € V
and a = ®v € V, we have suppa C By, ), v = a in By, and ||al|Ls(5y) < Cllv] Lo (5y)-

We will also recall the following lemma, which is proved by Jia and Sverak [16, Lemma 2.1].



Lemma 2.4. Let f be a nonnegative nondecreasing bounded function defined on [0,1] with the
following property: for some constants 0 <o <1,0<0<1, M >0, 3> 0, we have

f(s) <O0f(t)+ @——AiW’ c<s<t<l

Then,

sup f(s) < C(o,0,58)M,
s€(0,0]

for some positive constant C' depending only on c,6, 3.

We end this section with the following interior result for the perturbed Stokes system. Recall

Q, = B, x (—12,0).

Proposition 2.5. For any q € [5,00), there exists o = do(q) > 0 such that the following statement
holds. For any M > 0, if G € L5(Qq1;R3*3) with 1G5y < M, a € L3(Q1) with diva = 0,
lallLs(q.) < 00, E €R3, €] <1, ue L®L*N LPHY(Q1), p € L¥2(Qy),

ullzs@uy + IpllLar2@,) < M,
and they solve the a-perturbed Stokes equations
ur —Au+(a+€&)-Vu+u-Va+divG+Vp=0, divu=0 inQ, (2.3)

then we have

u€ LYQ1y2):  ullLaq, ., < Cl@)M.

This proposition is proved via bootstrap argument based on a localization technique and the
linear Stokes estimates; see [19] for the details.

3 Local analysis for the Navier-Stokes equations

In this section we prove Theorem 1.1. The proof is split into 3 subsections.

3.1 Decay estimates for the perturbed Navier-Stokes equation

Let (u,p) be a suitable weak solution of the following a-perturbed Navier-Stokes equations in @) =
By x (0,T), with a € L?(Q), diva = 0,

ug — Au+ (a+u) - Vut+u-Va+ Vp=0, divu = 0. (3.1)

That is, u € L®°L2(Q)NL2H(Q), p € L3/2(Q), the pair solves (3.1) in the distributional sense, and
satisfies the perturbed local energy inequality: For all non-negative ¢ € C°(Q), we have

/|u|2¢(t) dx+2/0t/|Vu|2¢)d:cdt

S/o/ |U|2(3t</)+A§/))d$dt+/o/ ((Jul*(u + a) + 2pu) - Vo da dt (3.2)

t
+//ujai6j(ui¢) dx dt.
0

This is equivalent to (1.2) for v = u+a if v is a weak solution of (NS) in @ and a is a strong solution
of (NS); see the argument in Subsection 3.3 for details.
Let 20 = ($07t0) and QT(Z()) = BT(QJ()) X (to — 7"27t0). We denote

1
1 3 ° 1 3/2 ?
o(u,p,r, 20) = —2/ ’u— (U)Qr(z[))‘ dz | + —2/ |p— (p)BT(IO)(t)’ / dz| , (3.3)
r ~(20) ™ JQ(20)



where ) i ) i
(U’) (20) = TA TN udz, (p)va T (t) =T 7.\ pdx.
) 710, (20)] Jo, (=) @ 1B, (20)] I, (n0)

Note that ¢ is dimension-free in the sense of [7], and its form is invariant under scaling.

Lemma 3.1 (Decay estimate). For any o € (0,1), there is a small 5o > 0 such that the following
holds. Let (u,p) be a suitable weak solution to the perturbed Navier-Stokes equations (3.1) in Qr(z),
with a € L?(Q.(2)), diva = 0, llallzs (@, (z)) = 0 < do. Denote (u); = (u)qg,(z)- Then, for any
0 € (0,1/3) there exist e = €(6, ) > 0 and C = C(«) > 0 independent of 6 such that if

()] <1, plu,p,r2) +r|(u)[ 6 <e (3.4)

then
or|(u)or| <1, (3.5)
o(u,p, O, z) < CO% [p(u, p, 7, 2) + 1 |(w)r] 9] . (3.6)

Proof. Take ¢q € (5,00) such that o < 1 — (—‘3 and choose dy = dp(g(«)) according to Proposition 2.5.
Since ¢ and 7(u), are dimension-free, we may assume r = 1. We may also assume z = 0 and skip
the z-dependence in ¢ without loss of generality. We first show (3.5). Indeed,

8 (w)o| < 6)(u — (u)1)o| + 6] (w)1|
< 01Qo| ¥ lu— (W1l z3(0y) + 0 (3.7)
< C3078p(1) + 6,

with Cs = |@Q1]7%. By (3.4), (1) < ¢, hence 0](u)q| < 1 if

92/3

< 3.8
=90, (38)

Next we show the decay estimate (3.6). Here we argue by contradion, following a similar argument
as given in e.g. [25, Lemma 3.2] and [16, Lemma 2.3]. Since some modification is required, we give
the details for completeness. Suppose that this is not the case. Then there exist suitable weak
solutions (u;, p;) of (3.1), a;, and €; with lim;_, ¢; = 0 such that

&= (ui)1, |&I<1, aillLs,) <o, diva; =0,
w(uiapia 1) + |§’L|“G’L|‘Lr’(Q1) = €i,
o(ug,pi, 0) > Ca0%;.

Here Cy > 0 is a large constant to be chosen later. Setting v; = (u; —&;)/€; and ¢; = (p; — (pi)1(t)) /€,
it follows that

[s1
lvill 22 (@u) +llaill g g,y + e—iHaiHm(Ql) =1,

G [ e (wm”’dz)é +( | 0= @m0} i) = o, (3.9)

and (v;, q;) satisfies

i

8{01* — A’Ui + (Q’Ui + a; + fz) . V’Ui + ('Ui + é) . Vai + ti = 0, div V; = 0.
€

7

Denote

2 0
Ei(r) =ess sup / Mda:—l—/ / |V |* daedt.
—r2<t<0JB, 2 —r2JB,



By the local energy inequality for (3.1), the calculation in [16, page 242] shows that, for 3/4 < r; <
ro < 1,
C

(re —r1)?
By Lemma 2.4, if ||a;| 15(g,) < do is sufficiently small, we have E;(3/4) < C for all i.

By the uniform bound E;(3/4) < C for all 4, there exist (v,q) € (L* x L3/2)(Q3/4), £ € R3, and
a,G € L?(Q3 /1) such that (if necessary, subsequence can be taken)

1
Ei(r1) < + (Cllaillzs @y + §)Ei(7"2)7

v; — v strongly in LS(Q3/4), & — &
¢ — q weakly in L%(Q3/4)7 a; — a weakly in L5(Q3/4)7
é@ai — G weakly in L°(Q3/4),

€

as i — oo. Furthermore, (v,q) solves the linear perturbed Stokes system in Q3,4
ov—Av+¢-Vv+a-Vo+v-Va+divG+Vg=0, dive=0.

Due to Proposition 2.5, it follows that v € L(Q1/2), ¢ > 5, for the exponent ¢ chosen at the beginning
of the proof. Thus, by the strong convergence of v; to v in L3(Qs3 /4), we have for sufficiently large 4

(9% /Q v — (vi)ar”’dz)S <Cy i <06 (3.10)

On the other hand, by the pressure equation, we decompose ¢; = ¢/ + ¢/ such that
qiR = (—A)_ldivdiv ([E’Ui QU +v,Qa; +a; Ui]XB;) .
4

Here xp, is the characteristic function of B 3. Since v; converges strongly to v in L3(Q3 /4) and
2

a; converges weakly to a in L%(Q3 /4), the Calderén-Zygmund estimate implies that ql* converges
strongly to ¢® in L3 (Q3/4), where q® is

qR = (—A)_ldivdiv (['U ® a + a ® U]XBQ) :

We note that ¢ € Ll(Ql/g), where 1/l =1/q + 1/5. Therefore,

2
(6_12/ ’qR|l2dz)‘ <yt =o',
Qo

Thus, for large i, we also have
1 PN
(—2/ |qu|2 dz> < cos,
o Qo

Since ¢! is harmonic (in z) in Q3/4, We see that

1 3\ 3
<§/ gl — (¢, ()] dz> < Ch3.
Qe

Adding up the above estimates,

1 3 8 _s
(ﬁ/Q lg; — (%‘)Be(t)|2> < CO'Ta < 0o, (3.11)

The sum of (3.10) and (3.11) contradicts (3.9) if we take Co sufficiently large. This completes the
proof. O



3.2 Regularity criterion for the perturbed Navier-Stokes equations

In this subsection we prove the following regularity criterion for perturbed Navier-Stokes equations
(3.1). It is an extension of the result [16, Theorem 2.2] for the perturbed term a € L™(Q1) with
m > 5.

Lemma 3.2 (Regularity criterion). For any fized 8 € (0,1), there exist small constants €1(3) and
0(8) > 0 with the following properties: Let (u,p) be a suitable weak solution to the perturbed Navier-
Stokes equations (3.1) in Q3/4, with a € LS(Q3/4), diva =0, HGHL5(Q3/4) <4, and

/ Jul® + [p]? dz < 1. (3.12)
Qs34

Then we have
1 3/2
sup  sup m/ il + [p— )5, @y ()2 dz < C(B).  (3.13)
Qr(20)NQ3/4

ZUZ(OCOJU)GQ% r<i r

Remark. Our estimate (3.13) does not imply Hélder continuity, but Morrey type regularity. On the
other hand, the Holder continuity was shown by a different method in [1].

Proof. For fixed 8 € (0,1), choose a = (1 + 5)/2 so that o € (8,1), and choose 6§ € (0,1/3) so that
the factor C#* in (3.6) is bounded by %657 and 0179 < % In the following we omit the dependence
on zy € Q14 to simplify the notation. Let B(r) = r|(u),| and o(r) be defined by (3.3). It is proved
in (3.7) for r =1 that

B(6r) < C30~5(r) + 6B(r), (3.14)

where C3 = |Q1|~/3. The proof for general r is the same. Let
U(r) = p(r) + (2C3) 1052 B(r).
We will show by induction that

condition (3.4) is valid and (3.15)
T(0r) < 0°T(r) (3.16)

ph+1

for r € I, = [£—, &) with k € Ng = NU {0}. Let

U, = sup U(r;z0), k€ Np.
20€Q1 4, TEIK
By (3.12),
1/3
\IIO S C(/B)El S 67

if 1 = €1(p) is sufficiently small. In particular, the condition (3.4) is uniformly satisfied for every
20 = (20,t0) € Q1y4 and 7 € Iy.

Suppose that (3.15) has been proved for r € Uj<;I; and condition (3.4) is satisfied for r € Ij, for
some k € Ny. By (3.6) of Lemma 3.1 and (3.14) (note Lemma 3.1 is formulated in any scale),

U(0r) = p(6r) + (2C5) 03P B(6r)

08 08
< .
< S+

— 0% (r) + 07 (0356*%*13 n 91*5) (2C5) 105 B(r),

68 5
dB(r) + ?go(r) + (2C3) 71058 B(r)

which is bounded by #2U(r) if § < min{do(e), (2C3) 1035}, This shows (3.16) for r € Ij.
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As a result, Uy < 050, < ... < 9FHDAT, < 9(-+DBe Hence
rl(u),] = B(r) < 20565 Py 4 <2050 5 PP < 1

by (3.8),
r|(u)p]6 <1-6 <¢€/2,

and
QO(’LL7p,’I", ZO) S \I/k;+1 S 9/36 S 6/2

for r € Iq1. This shows (3.15) for r € Ijy.
By induction, we have shown (3.15), (3.16) for all » < 1/4 and all 29 € Q4. In particular, if
r € Iy,
U(r,29) < Ty < 0¥Be < Cer?,

which implies (3.13). O

3.3 Proof of Theorem 1.1

We now prove Theorem 1.1. Choose o = 1/2, 8 = 1/4 and choose € > 0 so small that 25, 91=5
and 0 are sufficiently small in the proof of Lemma 3.2.
By Lemma 2.3, there is ag € L3(R3) with

: . pe . 3
apg =79 1 33/4, apg = 0 in Bl7 div apg = 07 ||a0HL3(]R3) S 0(3, Z)HUOHLS(BH) S €2,

where €3 is the constant in Lemma 2.2. By Lemma 2.2, there is a unique mild solution a of (NS)
with zero force and initial data a(0) = ag that satisfies (2.2). In particular,

||aHL5(R3><(O,oo)) S CGQ. (317)
Let 7, be its corresponding pressure. We have 7, = R;R;ja;a;, and

17all L5/2®3x (0,00)) < CllallZs @ x (0,00)) < Cé3- (3.18)

By the maximal regularity for the inhomogeneous Stokes system, we have
Va € L2(R% x (0,00)), Vm, € L3(R? x (0,00)). (3.19)
Let by = vg—ap, b =v—a, and 7, = 7 — m,. Denote T'= T € (0,1/2) to be fixed later. Observe
that (b, mp) is a weak solution of the a-perturbed Navier-Stokes equations (3.1) in @ = By x (0,7),
with b(x,0) = bo(z), and bo(x) = 0 in Bsjy. It is easy to see that (b,7) satisfies the perturbed

local energy inequality (3.2). By the interpolation, [[v||p1zs(q) < Cllvllrecr2nrzai(g)- Hence the
assumption (1.4) leads to

1 1
[vllz3@) < Cllvllzags T < CVMT12 (3.20)

and . )
HWHLS/Z(Q) < ||7T||LEL2/2(Q)T6 < CMTs. (321)

Thus, taking T < e*M 6 with € sufficiently small, we get

T 3
/ / 16]* + || % dz < 2C€ < €1, (3.22)
0 B;

where ¢; is the constant in (3.12) of Lemma 3.2.
Extend a, b, and 7, by zero for t < 0 and denote QF := B, x (T — r2,T). By the definition of
b=v—aand by(z) = 0 in By we have lim; o+ [|b(¢)||z2(B,,,) = 0. This continuity condition at

11



t = 0 together with the bounds (3.20), (3.21) shows that (b, ) is a suitable weak solution of (3.1) in
Q3T/4 satisfying the perturbed local energy inequality (3.2), and %|(b)Q§/4| < 1. In particular, (b, mp)

satisfies (3.1) across ¢t = 0 in the sense of distributions. We now apply Lemma 3.2 to see

1 3/2
sup sup m/ ( |b|3 + |7rb — (Wb)B7,(x0)(t)| 24 <.

20€QT r<%
1

Choose largest ry < 1—11 satisfying C’r‘f@ < %ECKN. We may also take T so that T' < r?, which implies

QY > B1 x (0,T), and
1 4

1 3/2 1
sup sup — o] + [mb = (7) B, (20) ()| P dr < 0 < —€cxn- (3.23)
20€By x(0.1) <1 77 Q. (20) 2
For » > r1 we have
1 1
sup sup — b dz < —Ce < . (3.24)
zUGB% x(0,T) r>r1 r Qr(20)NQ L] 2
Applying (3.17), (3.23), and (3.24) to v = a + b, we obtain
1 3
sup sup — [v]”dz < 1. (3.25)
zUGB% x(0,T) 0<r<oo T JQ,.(20)NQ
Now for any zg = (zo,to) € B1/4 x (0,T), take r = $1/f5. We have r < r1 and
r? <t <4r? if (,t) € Qr(20).
For this r, let
T =Ta + T = (Tb) B, (a0) (1)-
Taking ey sufficiently small in (3.17), (3.18), and using (3.23) we have
1
- wf® + [7*2 dz < €cuen-
T JQr(20)
Since (v, 7) is a suitable weak solution of (NS) in @Q,(zp), by Lemma 2.1, we obtain
CCKN 4CCKN
< olleio ian < - . 3.26
[v(20)| < [[v]l L (@, /a(20)) < ) NG (3.26)
This completes the proof of Theorem 1.1. O
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