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Abstract

We review standard basis for mixed module introduced by Gatermann [5] and
its parametric extension [19], their computational algorithms and application to
Singularity theory.

1 Introduction

Mixed modules are sums of several modules over different rings. Mixed modules appear
in various settings such as (extended) tangent spaces in singularity theory. In singularity
theory, mixed modules appear in classification of map-germs relative to various equiv-
alence relations such as A [13], Kz [6, 7], and A [G]-equivalence [9] for some Lie group
G including equivalence among divergent diagrams. There, the concept of (extended)
tangent space plays an important role and an (extended) tangent space is a mixed mod-
ule relative to these equivalences. Compared to the conventional module over a single
ring, the algebraic structure of a mixed module can be highly complicated, which makes
classification of map-germs relative to these equivalences difficult. This is thought of
as one of the motivations of Mather [14] to reduce classification of stable map-germs
relative to A to that of those relative to IC since, in the latter case, (extended) tangent
spaces of map-germs are modules.

One of the pioneering works for automation of classification relative to these equiv-
alences is done by Kirk [11, 10, 12] based on the complete transversal theorem [2, 16].
Unlike the conventional module where efficient computation can be done by using the
standard basis, there was no such a concept for mixed module at that time. In their



algorithm, they handle mixed modules in jet spaces as a huge vector space over R. It
seems that their software is no longer available and it is difficult to assess the efficiency
of their algorithm but it can be made much more efficient if mixed module structures
are taken into account.

Since then, a possible generalization of standard bases for mixed modules appearing
in classification relative to Kg is proposed by Gatermann et al.[5] where a mixed module
is supposed to be a sum of two modules over two different rings. In [19], we extended
it to parametric standard system for a mixed module (comprehensive standard system
(CSS) for a mixed module), proposed a computational algorithm (Algorithm 2-4) for it,
and applied the algorithm to solve classification problems involving complicated moduli
structure.

In Sec. 2, we review standard basis for a mixed module by [5] and introduce a
concrete computational algorithm (Algorithm 1) for it. In Sec. 3, we review CSS for a
mixed module introduced in [19]. In Sec. 4, we provide our feature perspectives.

2 Standard Basis for Mixed Module [5]

Let K be a field and let A = (Aq,---, \p,) and = (z1,--- , xp, ) be variables such that
they are disjoint with each other. Let K [z, A] be the polynomial ring with variables x
and A, (x,\) be the ideal generated by = and A, and K [z, ] (@) be the localization of
K [z, A] with respect to (z, A).

Definition 2.1. A (x, \)-mized module M C (K [x, )\]<x7/\>>n is a K [A] 5y -module which
may be written as a sum M = N+Q, where N C (K [, A] <x7A>>n is a K [z, )\ <x7>\>—m0dule
of finite codimension as a K -vector space in (K [, A] m}\))n and Q C (K [, A] <I7>\>)n is
a K [A] y,-module.

Let <, x be a local ordering in the set of monomials in z and A. Let <, ), be
n
a module ordering in the monomials in (K [, Al s, )\>) which is compatible with the

ordering < », i.e., a module ordering satisfying:
/ ! " " ! 1" ! "
L 29Ne; <pam a9 N ej = 20T N+ e, <\ 2@ TN e

2. xO\P <z 2 €N = 22\ e, <z \m xalz\ﬁlei,

for all a, o/, ” € Z%,B,ﬂ’,ﬁ”GZ’%,andi,j e {1,---,n}, wheree; = (0,---,0, 1 ,0,---

<K [m,)\]<x7/\>)n fori=1,---,n.
Let LM<, .. (f), LT<, .. (f), and LC<_,  (f) be the leading monomial, leading
term and leading coefficient of f € (K [, A] (L/\>>n, respectively.



Definition 2.2 (Initial Module). The initial module in<_ , . (M) is defined as the
K [Ny -module

N<ynm (M) = (LM<, . (f) Vg € K[2,M 4 5 ,9f € M)k,

+ <LM<M’m (f)If € M>K[/\}(>\>'

Definition 2.3 ((z, A)-mixed standard basis). A (x, \)-mized standard basis of M is a
pair (SM), S2)) of two finite sets SV and S such that

M = <S(1)>K[x,>\]<%>\> + <S(2)>K[>\}<A>

and
in{x,),m (M) = <LM'<x,)\,m (S(l))>K[‘T7)‘}<z,)\) + <LM'<I,>\,m (5(2)>>KP‘}<)\)

Lemma 37 in [5] guarantees the existence of a (z, \)-mixed standard basis with
respect to an arbitrary local order <, x. A brief sketch of the algorithm for computing
standard basis for a given pair of finite number of generators in N and @ is given
in [5]. Here, we provide a concrete algorithm for computing a pair (S (1),5(2)) for a
given pair of finite number of generators in N and ). We define the S-polynomial
spoly (f,g) for non-zero f,g € K[z, \]" as follows: Suppose LM<, , (f) = z*Ne;
and LM<, . (9) = 2 Me; (a,a € %, BB € Z?o and 7,5 € {1,---,n}). The
S-polynomial spoly (f, g) is defined as

g f g
LOM (237, 2% \") - ~ 1
ot LC-,, (N)2o\F  LCx,, () AP )
if i = j and 0 in the other cases, where z® = {25 - - - zp"* and M\’ = )\fl )\52 E AQZ*.

Algorithm 1. Compute Standard Basis for Mized Module

Input: N,Q C K [z, \]" : finite sets of generators of the mixed module <N>K[oc,>\]<x N

(@)K,
Output: (5(1)’5(2)) : standard basis
1: SM + the reduced standard basis of N;
2: S EQ; + the non-zero reduced normal forms of the elements of ) with respect to
S,
fesSW gesS® i=janda <o
3: P; < ¢ spoly (f,9) LM<, .. (f) = x%Ne;, :
and LM<, (g9) = 2 \e;
fesS® gesS® i=janda=d
4: Py < < spoly (f, 9) LM, . (f) = 2%Ne;, ;
and LM<, (g9) = 2 \e;




5 P=PUDPy;
6: while P # () do
f + one of the elements in P;

P« P\{f};
f < the reduced normal form of f in Algorithm 32 in [5] with respect to

(5(1), 5(2));
10 if f#0 (LM<M7 (f) = xa)\ﬁez then

. gES(l)z—]anda>a

11: PePU{spoly fy9) ‘ M., . (g —xa)\ﬁe ;
. 965(2)1—]anda—a

12: PePU{spoly 1y 9) ‘ M., . (g —x"‘)\ﬁe ;

13: S SO U {f};
14: end if
15: end while

end
For Algorithm 1, the following theorem holds [19].

Theorem 2.1. For a given finite set of generators N,Q C K [z, \]", Algorithm 1 ter-
minates in finite steps and outputs an (x, \)-mized standard basis (S(l), S(z)) of

(N K],y T (@K -

2.1 Example
In this example, we compute the A-codimension of a map-germ f: (]RQ, 0) — (RQ, 0),
defined as
(z1,22) = (1 = 21,92 = 2122 + 25 + 27) |

which is Type 6 in [17], by using a mixed standard basis. In this example and in the
forthcoming examples, we use the variables (z,y) instead of (z,\) as in [5] since in this
context y is supposed to be a coordinate in the target space of the map-germ and it is
not common to use A for that.

Let &, be the set of function-germs f: (R™, 0) — R, M,, be its maximal ideal, and
ME for k € N is recursively defined as: ML = M,, and ML = M,, - ME. Let the
tangent space of f relative to A be

TA (f) = M2<(1, wg) , (O, 1+ 5(13'% + 71’3»52 + f*<M2522>f*52,
where f*E = {no fln e &} and
f*<(y1,0) ’ (yQ,O) s (anl) s (an2)> = <(f1 (‘/E) ,0) ’ (f2 (l’) ’ 0) ’ (0’ fl ($)) ) (0’ f2 ($))>

Since f is 7-determined,
MoE2 N MoE2
TA(f) TA(f)+ME3

4



<<w1,3?2>R [xvy](wm)?

which is isomorphic to , as an R-vector space where M is an

(z,y)-mixed module with

of of

N = (331,ZE2> : <(‘3—xl’8_wg

>R[m,y]<z‘y> + <y1 —h (3:) Y2 — fo ($)> ’ (R [$7y](x,y>>2

e (Rleal,,) @
and
Q=) (Rlrsly) (3)

By computing an (x,y)-mixed standard basis of M, we can get the A-codimension of f.
In this example, we use the following module ordering:

o1 a2, B1, B2 oy as Bl B
Ty T Yy Yo €i Ty Ty Yy Yo €

iff one of the following holds:
1. ag+ag+ B+ B2 >a) + b+ 61+ 5
2. artax+ B+ B =0f +ay+ B+ By and i < B
3. art+as+ i+ Pe=a] +ay+ F1 + 65 and B = 5] and [ < 3
4. a1+ as+ 1+ P2 = + o+ ] + 5 and 51 = B and S = B and a1 < o
5. a=a' and =" and i > j.

For the module ordering, an (z, y)-mixed standard basis (S(l), 5(2)) of N+@Q) is computed
by Algorithm 1 implemented in SINGULAR [4]:

S(l) = {(05 Y2 + 42/3 + 63:;) ’ (yQ) _4yg + 6$§) ) (0) Y1 — $2) )
(yl, —Swg — 795;) , (xg,wg) , (xl, —5373 — 737;) ,
(O,xlxg + 5:173 + 7:1:;) , (O,x% - 253:2) , (:178, 0)}

and

S® = {(0,25 +7/525) , (0,21), (0,25 +3/228) , (0,25 +3/22]) , (0,2) , (0,25) }.

(<w1,3?2>R [xyy]<z,y>>2

M
that are neither multiples of LM< , (f) for f € SM nor involutive multiples of

2
The quotient vector space is spanned by monomials in ((:1:1, r2)R [z, y] (x,y>>



LMy, ., (f) for f € 52 where a monomial z%y”e; is an involutive multiple of x"‘,yﬁlej
ifi=j,a=a and 8> ' ie, B; > f foralli=1,---,n,. In this case,
Mo}
TA(f)

and the A-codimension of f is 4, which coincides with the result in Table 1 in [17].
In the next section, we extend the result to that of mixed modules with parameters.

<(0, wg) s (0, x%) s (0, w‘g) s (0, w%)hg

3 Comprehensive Standard System for Mixed Module

Let K be a field and let A = (Ag,---,\p,), @ = (a1, ,an,), and = = (21, ,Zp,)
be variables such that they are disjoint with each other. Let K[a] [z, A] be the poly-
nomial ring with variables x, A\, and a. Let K be the algebraic closure of K. Let
t = (t1,-- ,tn,) € K™ and oy: Kla] [z, \] = K [z,\] be a specialization morphism
defined as oy (f) = fl|,_,- Let V(E) = {t € K™ |Vh € E,h(t) =0} be an affin alge-
braic set of an ideal E C K|a].

Under the setting, comprehensive standard basis for a mixed module is introduced
in [19).

Definition 3.1 (Comprehensive Standard System for Mixed Module). Let N,Q C
Ka] [z, A]" be finite sets such that (o} (N)}K[x)\]@ \ has a finite codimension as a K-

vector space in <K [z, )\]@7»)” forallt € V. Let Si(l), 52(2) C Kla] [z, \]" be a finite sub-
set, and (E;, N;) C Kla]xK[a] fori=1,--- ,£. The triple set G = {(Ei,NZ-, (S-(l) S(z)>>}‘_1 ,

i 0
3Ty

is called Comprehensive Standard System (CSS) for N,Q with respect to <y xm over
V C K" if the following conditions hold:

1. VUL V(E)\V (V).

2. For any t € V and i € {1,--- ¢} such that t € V (E;) \ V (N;) holds, the
pair (Ut <5i(1)) , Oy (52(2))) is a (x, \)-mized standard basis of (o (N >K[m7)‘]<x ot
(o0 (@) i

Like in Algorithm 1, the first step is to compute the comprehensive standard basis of
N. By Definition 3.1, for any t € K™ the specialization oy (N) is of finite codimension

n

in <K [z, )\]<x7/\>) , the comprehensive standard basis of N can be computed by using

the algebraic local cohomology (ALC) [18, 15]. Another algorithm such as [8] can be
used for that purpose but there is at least one benefit to using ALC in this part, that
is, reduction by ALC does not require any division algorithm and can be made quite
efficient. In Algorithm 3, reduction by a standard basis of N occurs many times and this
part can be made quite efficient if ALC is used. In our implementation, we implemented
ALC for finite-codimension modules with parameters in SINGULAR.

In what follows, we provide our algorithm to compute CSS for given pairs of finite
generators N and @ in K|a] [z, \]".



Algorithm 2. Compute CSS

Input: N,Q C Kla] [z, ", Ein, Nin C Kla]

Output: G: CSSon V (Ein) \ V (Nin)
1. G« 0
2: {(Ei,Ni,SZ.(l)>}' ey < comprehensive standard system of N on V (Ey,) \
V (Nin); o

:forie{l,---,¢'} do

w

s { (EJ Nij, 89, Sg)) }jzl _,, + CSSMain (E N;, s, Q) :(See Algorithm 3)
s Geau{(Bnss®))
6: end for e

end

Algorithm 3. CSSMain (Ei7 N;, Sz‘(l)= Q)

Input: E;, N; C K|a], SZ»(l), Q Cc Kla] [z, \]"
Output: G : CSSon V (E;) \ V (V;)
1. G« 0
2: () < the reduced normal form of @) in terms of Si(l) in <K (a) [z, A] (w?)\>>n, keep
non-zero elements only and multiply each non-zero element to a least commom
multiple of the demominators of the coefficients of its terms in K [a];
3. S« g,
4: S@ ¢+ the reduced normal form of Q in terms of E;K [a] [z, \]", keep non-zero
elements only;
5: h < the square-free part of LCM (LCﬁ’A’m (5(2)));
6: (hl, e ,hnf) < the irreducible factors of h;
7 G+ GUJY, CSSMain (E + (hy), (1‘[{;11 hl> N;, SO, S<2>); *
fesSW gesS® i=janda <,
8: Py « < spoly (f, g) LM<, . (f) = 2*Me;, 1
and LM<, , (g9) = ¥ Me;
fesS® gesS® i=janda=d,
9: Py < ¢ spoly (f,9) LM<, ... (f) = z%Ne;, :
and LM<, ,  (g9) = 2\ e;

10: P+ PLUPy;
11: G« G UCSSSub (E hN;, 8, 53 P); (See Algorithm 4)

(2

*If j = 1, we suppose Hf;ll hy=1.
tHere, we suppose P; C K(a) [z, A" and compute spoly (f,g) for f,g regarded as elements of
K (a) [z, A]" by using Eq. (1).



12: return;

end

Algorithm 4. CSSSub (E;, N;, SM, 53 P)

Input: E;, N; ¢ K[a], SV, S? ¢ K|[a] [z, \]",
P cK(a)[z,\"
Output: G : CSSon V (E;) \ V (V;)

1. G« 0

2: while P # () and N; ¢ /E; do

3:  f < one of the elements in P;

£ PeP\{f}

5. f « the reduced normal form of f in Algorithm 32 in [5] with respect to
(S M. s (2)) in K (a) [z, \]" multiplied by a least common multiple of the denom-
inators of the coefficients of all the terms of f so that f € K[a] [z, A] holds;

6: f + the reduced normal form of f in terms of E;K [a] [z, \]";

7. while f # 0 do

ge SW i=jand a>d,

8: Py < {spoly (f,9)| LM<, .. (f) = zNe;, :

and LM<, , . (9) = ¥\ e;
ge S? i=jand a=d,

9: Py ¢spoly (f.g)| LM<, (f) =a%Ne;,  3;

and LM<, . (9) = ' \e;

10: Pl<—PUP1UP2;

11: G + GUCSSSub (E;,LC<, , . (f) Ni, SO, SA U{f}, P);
12: E,+ E;, + <LC<Z»\‘m (f)),

13: [ f-LT<, .. (f)

14:  end while

15: end while

16: if N; ¢ /E; then

1. G+ GU{(E;,N;,SW,8@)1};

18: end if

end

For a given input E;, N; C K]a], Sfl),Q C Kla] [z, \]", CSSMain outputs a CSS
for N,Q over V (E;) \ V (N;). In Algorithm 2, in line 2, a comprehensive standard
system of N over V (E;,)\V (N;y,) is computed. This computation can be done by using

[18, 15]. By letting {(Ei,Ni, Si(l))} be a comprehensive standard system over

G=1, 0!
V (Ein)\V (Niy), the algorithm computes S for each locally closed set V' (F;)\ V (IV;)
for i € {1,---,¢'} in line 4 and outputs a comprehensive standard system for a mixed
module.



In Algorithm 3, initialization of the set S®) and the set of S-polynomials for Algo-
rithm 4 is done. In lines 5 and 6 in Algorithm 3, the irreducible factors (hl, co L hy f)
and their product h of the product of LC<_, (5(2)) are computed. If o, (h) # 0 for

t € K™ all the leading coefficients of oy (5(2)) are non-zero. Algorithm 3 decomposes
the locally closed set V (E;) \ V (1V;) such as

nf j—1
V(E)\V (N;) = [V(E)\V (hN)JU | |V (Bi + () \ V <H thz)] ;
j=1 =1

and recursively call CSSMain for each locally closed set except to the first one V (Ej;) \
V (hN;). On the locally closed set V (E;) \ V (hN;), all the leading coefficients of the
elements in S are non-zero and thus the S-polynomials of the elements in between S
and S@ or that of the elements among S are well-defined on V (E;) \ V (hN;). The
set of the S-polynomials P is initiated in lines 8 - 10 of Algorithm 3 and forwarded to
CSSSub in line 11.

In Algorithm 4, CSS on V (E;) \ V (N;) (Put E; = E; and N; = hN; to match it
with the previous context.) is computed. Note that all the leading coefficients of S(?)
are supposed to be non-zero on V (E;) \ V (N;). For each element f in the set of the
S-polynomials P, its reduced normal form with respect to (S .5 (2)) and E;Ka] [z, )]
are computed in lines 5 and 6, respectively. If the reduced normal form of f is non-zero,
Algorithm 4 enters into the while loop starting from line 7 to line 18. In the while loop,
the locally closed set V (E;) \ V (1V;) is decomposed into

V(E)\V (N;) = [V(E)\V (LC<, . () N)JU[V (B + (LC<, . (f))\V (Ny)] .

For the first locally closed set V (E;) \ V (LC, , . (f)N;), the leading coefficient of f
is non-zero. In this case, Algorithm 4 updates the set of the S-polynomials and S
and recursively call CSSSub. For the second locally closed set V' (E; + (LC<, . (f A
V' (N;), the leading coefficient of f is zero and thus subtracts LT , , (f) from f, update
E; to E;+ (LC<, , ,, (f)) and continue while P # () and N; ¢ /E;. In the end, if P = ()
but N; ¢ /E;, Algorithm 4 adds the resulting (EZ-, N;, SO, 5(2)) to G. This is the flow
of Algorithms 2-4. For Algorithms 2-4, the following holds [19].

Theorem 3.1 (Correctness and Termination in Finite Steps). For a given finite set
of generators N,Q C Kla] [z, \]" such that (o¢ (N)) k(e , has a finite codimension

(T A
n

as a K wector space in (K [x, )\]<x7>\>) for all t € K", Algorithms 2-4 terminate in

finite steps and output a Comprehensive Standard System (CSS) for N,Q with respect

to <z am over V (Ep) \'V (Nip).
3.1 Example

Consider
i (z1,22) = (Z/l =T1,Y2 = 33%332 + mx% + 045”3 + 333 + 555;)



(Type 18 in Table 1 in [17]). Its A-codimension depends on the moduli parameters «, 5 €
R. We would like to detect exceptional values of the moduli parameters (In the generic
case, it has A-codimension 8 [17].). In this example, the degree of determinacy also
depends on the moduli parameters. By applying a result of du Plessis [3], Lemma 2.6,
f is k-A-determined if

0
MEHIES C TAL(f) + <w18—£2>m< + f (er)r + MU (M) £ + M3H2ES

2
holds. This condition is equivalent to (zy,zs)*+! (R [z, y] <x,y>) is contained in the

(z,y)-mixed module M = N + @ where

of of of
8_‘%17 a_wQ)R[Z',y]«v‘y) + <xla_w2>R[xvy}(z,y>

2
+ (1 = f1(2),y2 — f2 () - (R [x,y]@,y))

2
{anm) () - (R[50, + (010222 (R 24,

N = (21,22) -

2

and
2

Q= (y1,y2)*- (R [y]<y>> + (Y2€1)R[zy]

By computing CSS for the (z,y)-mixed module for k = 7 by using the same module
ordering in Example 2.1, the parameter space C? is decomposed into the 12 locally
closed sets in Table 1. Note that C is the algebraic closure of R and thus Algorithms 2-
4 provide a decomposition of C? instead of R%2. However, Algorithms 2-4 are based
upon arithmetic operations in the ground field only. This means that if the scalars in
the input data are contained in R, then all scalars in the output also lie in R. This
guarantees that the decomposition in Table 1 restricted to R? provides a semi-algebraic
decomposition of R? such that the pair (S @ g (2)) corresponding to each semi-algebraic
set specialized to any element in the semi-algebraic set is a (z,y)-mixed standard basis
of (o1 (N))R[zgi,,,, + (0t (@)rpy,,,-

The corresponding comprehensive standard basis is too large to be shown in this
paper and thus we only show the ones corresponding to the first three strata:

L V{e,B+4)\V((26+1)):

(y)

s = {(0,y2 - x%:ng - azlzng — aa?g — ZEg — ﬁx;) ,
(y2, (—8a + 10) 2125 + 16azf — 10z 2] + 1925 + 22825°) , (0,51 — 21)
(y1 — 21,0), (w%, 2x175 + xg) , (xlxg, —5x1x3‘ — 10axs — 1237; - 14/6’132) ,
(23, (—10a + 15) 2125 + 25axd — 122125 + 3025 — 14212 + 35823) ,
(0, z} + (5a — 9) w125 — 15aaf + 67125 — 183% + TBz125 — 215875 |
(0,z323 + 3x125 + baal + 625 + 7623) , (0,z125) , (0,23°) },

10



and

S® = {(0,-3/2x123 + 6/5x125 — 328 + (78) /52125 — 78/223) ,
(0,23), (0, —=3/2z3") , (0,—3/23125 + 5/4x125 — 323 + 38/22125 — 78/223) ,
(0,—3/223"), (0, —5/4z 25 + 5/4z 2] — 19/829 — 113/423°)
(0, (28 + 1) /22125 — 19/2023 — 118/1023°) , (0,23 + (628 + 20)/1923°) ,
(0, 2125 + 225 + (78 + 4) /325 + (1400587 — 4328)/17123°) }

2. V() \V ({282 +98+4)) :

S = {(0,y2 — T3y — 1175 — axh — ah — Brd),
(yo, (=8 + 10)x125 + 160y — 10212 + 1929 + 22B23°) , (0,41 — 71),
(y1 — 21,0), (23, 22123 + 2) , (z122, 53125 — 102§ — 1227 — 14325) ,
(23, (—10a + 15)z125 + 250z — 122125 + 3023 — 148z125 + 35873,
(0,23 + (5a — 9) 175 — 15023 + 62125 — 1825 + TBz125 — 21823) ,
(2323 + 32123 + baa§ + 625 + 7828) , (0,2123) , (0,23) },

and

S = {(o, —3/2125 + 6/57128 — 325 + 78/5x125 — 78/223) , (0,27),
(—3/23125 + 5/4x12§ — 325 + 38/2212] — 78/223) , (0, —3/223"),
(0, =5/4a125 + 5/4w125 — 19/825 — 118/423°)
(0, (28 + 1) /2z125 — 19/2023 — 118/1023°)
(0,29 + (6283 + 20)/1923°) , (0,23°) , (0, —3/2x3")
(0, 2123 + 228 + (78 + 4) /325 + (—14008* — 4328)/171230) } .

3. V((a,28+ 1)\ V(1)) :

S = {(0,y2 — rirs — 1175 + (—a)zh — 2§ + (—p)xl),
(y2, (—8a + 10)x12§ + (16a) 23 — 102125 + 1925 + (228)23°) ,
(0,y1 — 1), (y1 — 21,0) , (23, 22125 + 23)
(2172, —=br125 + (—10a)25 — 1227 + (—148)28)
(23, +(—10a + 15)z125 + (25a)z] — 122125 + 3023 + (—148)z125 + (358)23)
(0,25 + (5o — 9) 123 + (—15a)2§ + 62125 — 1825 + (78)z125 + (—216)372)
(0,2323 + 3123 + (5a)z§ + 625 + (78)28) , (0,2125) , (0,232) }

11



and

S® = {(0,-3/2x123 + 6 /52125 — 325 + (78)/5w1al + (—78)/223)
(0,23), (0, —3/2z3") , (0, —3/23125 + 5/4x125 — 325 + (38) /23125 + (=78)/223) ,
(0,-3/2x3"), (0, —5/4a125 + 5/4x 25 — 19/825 + (—118)/423")
(0,23 + (228)/1923°) , (0, w125 + 223°) ,
(0,125 + 225 + 1/625 — 134/17123°) , (0,25°) }

2
By reducing the generators of (z, x)**? <R [z, y] <x7y>) by the mixed standard basis for

each locally closed set, M C N + @ holds for parameter values in the locally closed set

V ((0)\V ({c (400003 — 8600c3 8 — 250002 + 426002 3 + 782502 — 540a — 2574 + 81)))
and thus f is 7-A-determined for the parameter values a # 0 and 400003 — 8600033 —
250002 + 4260025 + 782502 — 54003 — 2574a + 81 # 0. If the parameters o = 0 or
4000048 — 8600035 — 25000 + 4260023 + 7825a% — 54003 — 2574a + 81 = 0, higher
jets need to be investigated. If the parameters are in the locally closed set V ((0)) \

V ({a (400008 — 8600c 3 — 25000 + 426002 3 + 7825a% — 540a3 — 2574 + 81))), the
A-codimension of f can be calculated by computing CSS of finite sets of generators of

N and @ in Eq. (2) and Eq. (3). The resulting CSS is as follows:

1.

V ({4 — 5))
\V ({4000a° 3 — 8600a* 3 — 2500a* + 42600 B + 78250 — 54003 — 2574a” + 81a)) :

s — {(0, yo + 2:121:1:‘; + 401:1:3 + 5:173 + Gﬁx;) , (yg, (—8a + 10):121:173) ,
(0,y1 — z1), (y1, —5a173 + (—10a)xh — 1225 + (—148)z]) ,
(22, 23123 + 73) , (21, —br123 + (—10a) 25 — 1225 + (—148)z])
(0,235 + 3z125 + (5a)x) + 625 + (78)23) , (0,25) , (0, z127)
(0,25 + (5o — 9)z123 + (—15a)2§ + 6x125 — 18z% + (78)z123) }

and
S@ = {(0, 2123 + 5/225 + 12/528 + 148/527) ,
(0,21), (0, 2123 + 5/223 + 5/225 + 3623) ,

(0,25 +2B23) , (0,2123) , (0, 2125 + 25/22%) ,
(0,2%), (0,125 + (—1508 + 372) /11z3) } .
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V ((320000a° 8 — 2624000a° 8 — 200000a® + 887120007 8 + 1836000a”
— 15852240053 — 6723220a° + 15898680a° 8 + 125196960° — 871182003
—12383937a" + 231336003 + 6060663a° — 21870008 — 1130679 + 32805a))
\V ((40000°B — 8600a* 8 — 2500a* + 426008 + 78250 — 540a%3 — 2574a* + 8la)) :

SW = L(0,yo + 2x123 + daxl + 525 + 6823) , (y2, (—8a + 10)z128)
(0,91 — x1), (yl, —5x123 — 1002 — 1225 — 14ﬁx;) , (ZEQ, 22125 + 3:‘21) ,
(3:1, —bx1xs — 100z — 1225 — 14ﬁaz§) , (0,3:3) ,
(0,232 + 3z125 + baah + 625 + 7623) , (0,213 ,
(0,25 + (ba — 9)z175 — 150§ + 6a125 — 18z] + 7Bz125) }

and

S = {(o, T175 + 20wy + 12/535 + 143/525) , (0,21) , (0, (4o — 5) /4z129)
(0, 2123 + 20} + 5/225 + 3827) , (0,25 + 2B27)
(0, (20 — 3) /22125 — bar/223) , (0,23)
(0, (10a” — 33 + 27) /10z125 + (300%8 — 4508 — 3o + 27) /523 } .

V ((10a* — 33+ 27)) \ V ((960000a” 3% — 61440000° 82 — 6960000° 3
+ 1555440007 32 4 57624004 8 + 60000a” — 1955880005 3
— 1728270005 3 — 892800a° + 12490200a° 32 + 23930100a° 3
+ 38659260° — 36531000 5% — 154284750 8 — 67404870
+ 3645000 3% 4 392445003 8 + 48367530 — 273375028
—10942290 + 328050)) :

S = {(0,y2 + 22173 + daal + 525 + 6630;) (2, (=8 + 10)z125) ,
(0,y1 — 21), (y1, —bz123 — 100z — 1225 — 14827,
(ZEQ, 2z 25 + 3:‘21) , (3:1, —5x125 — 100z — 1225 — 14ﬁx§) )
(0, 2322 + 3x1735 + bax) + 635 + 7827) (0, 25), (0, 2123) ,
(0,25 + (b — 9)z175 — 150a§ + 6a125 — 182] + 7B7128) }
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and

5@ = {(0,3:1335’ + 2ax5 + 12/528 + 145/5:13;) ,(0,21), (0, (4o — 5)/4:1:1:1:3) ,
(0, 175 + 202 + 5/225 + 35:17;) , (0, x5+ 251’;) ,
(0, (2a — 3) /22125 + (—5a)/225) , (0,27) , (0,23) } .

V ((2a —3)) \ V ((—80000a B + 272000a° 8 + 50000a° — 300200a° 3
—219000a” + 11730008 + 2471050 — 13500a° 8 — 65970a° + 2025a2)) :

s = {(0,y2 + 22175 + dazl + 525 + 66:85) (2, (8 + 10)2173) , (0,41 — 21)
(yl, —bx1xs — 100z — 1225 — 14B33§) , (3:2, 2x1 73 + :E%) )
(z1, —5z123 — 10aah — 1225 — 14827) , (0,23)
(0,232 + 3z125 + baxh + 625 + 76x3) , (0,213 ,
(0,25 + (ba — 9)z175 — 150§ + 6a125 — 18z] + 7Bz125) }

and

S — {(0,3:1333 + 20[333 + 12/5:138 + 14B/5:13§) ,(0,21), (0, (4 — 5)/4:1:1:138) , (0,3:5) ,
(0, 2123 + 20z + 5/225 + 3B23) , (0,25 + 2627) , (0,27) , (0,125 — 4z123) } .

In this case, for all the parameter values in

V ((O)\V ({c (400008 — 8600”8 — 25000° + 426008 + 7825a% — 54003 — 2574 + 81)))

the A-codimension of f is 8, which is consistent with the results in [17]. Further appli-
cations to singularity theory is reported in [19].

4 Feature Perspectives

In this paper, we have considered mixed-modules that are sums of two modules over
two different rings, which can be applicable to classification of map-germs relative to A
and Kp equivalences. However, if we consider classification of divergent diagram (See
Section 6 in [1] for summary of a classification result.) whose target dimension is more
than 1 or Kp equivalences with more than 1 types of external parameters, (extended)
tangent space relative to them become sums of more than 2 modules over different rings.
We are going to report the generalization of our current algorithm to cover these cases
in the forthcoming paper.
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locally closed set

V({a,f+4))

N\V ({0, 28% + 98 + 4))

20+ 1))\ V(1)

Ao —5)) \ V ({(4200a3 — 16829a))

CDO'(»-POJ[\DH:H:

V (o
V (o
V (4o — 5,42008 — 16829)) \ V ((a))
V(
V(¢

2a —3)) \ V ((40® — 5a%))

V ((8000a°8 — 29200a” 8 — 5000a” + 343200 8 + 23150a” — 13860a° 3
—286230° + 1620028 + 78840 — 243a)) \ V ((9680a'” — 744040”
+2344440° — 3871890 + 353079a° — 1683990° + 32805a))

V ({0)) \ V ((774400000'°3 — 877888000 ° 3 — 484000000 + 4380366400 * 3
+ 5961120000 — 1263098688002 8 — 31717432400 4 2322358992002 3

+ 9569306412a'% — 283153536000 3 — 18028264338 + 23043600900a'°5

+ 2196472126500 — 122582808000° 8 — 172782100350 + 40318657200° 3

+ 8457282090a° — 7274836800 B — 235243342807 + 53144100a°4
+299555577a’ — 79716150°))

V ((110a” — 453a” + 594a” — 243a, 6520° 8 + 2860 — 17160°3 — 3630”
+1107a8 — 99a)) \ V ((—5808a'? + 34188a” — 79128a° + 89883a”
—500580° + 109350°))

10

V ((110a" — 453a° + 594a” — 243a)) \ V ((—37868160° 3 — 16610880/

+ 32257104023 4 11886072a'? — 1166875200 8 — 34465860t

+ 2322334800'° 8 + 5104539000 — 2744717400° 8 — 391104450° + 192529629053
+12400047a® — 7417866607 8 + 986337a” + 12105045058 — 1082565a°))

11

V ({11a — 9,306 — 1111)) \ V ((80a” — 340a® + 480a° — 225a7))

12

V (11— 9)) \ V (24480a" 3 — 88880a" — 104040a°3 + 377740a° + 1468800a° 3
—5332800° — 68850a" 8 + 2499750.))

Table 1: Decomposition of the parameter space C? into the locally closed sets
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