On v-adic multiple zeta values in positive characteristic
YEN-TSUNG CHEN

ABsTRACT. This is a survey article for the recent progress on the integrality of v-adic mul-
tiple zeta values which plays a characteristic p counterpart of Furusho’s p-adic multiple
zeta values.

1. INTRODUCTION

1.1. Furusho’s p-adic multizeta values. Let r € IN. An r-tuple s = (s1,...,s,) € IN
is called an index, and is called admissible if s; > 2. Classical multiple zeta values,
abbreviated as MZVs, are real numbers defined by

(5)= Y !

—— € R”,
1> >n>1 nil e nir
where s = (s1,...,s,) € N" is an admissible index. We define dep(s) := r to be the depth
of s, wt(s) := Y./ s; to be the weight of s and ht(s) := the cardinality of {i | s; # 1} to
be the height of s.
In what follows, we briefly review the p-adic MZVs introduced by Furusho in [Fo4].
Consider the one-variable multiple polylogarithm

zM

Lis(z) := Yy pra Q[z],

ny>ng>-->n>1 nl
for admissible index s = (s1,...,s,) € IN". We have

{(s) = Lis(z) |2=1 -

We write Lis(z), for the p-adic function defined by the same series as Lis(z), but regarded
p-adically. Then Lis(z), converges on the open unit disk centered at 0 but does not be
defined at z = 1. Furusho [Fo4] applied Coleman’s integration theory [Col82] to p-
adically analytically continue Lis(z), to C, \ {1}, and then took a certain limit z — 1 to
define the p-adic MZV {(s),.

Furusho predicted that his p-adic MZVs are all p-adic integers and this prediction was
independently proved by Akagi-Hirose-Yasuda and Chatzistamatiou.

Theorem 1.1.1 ([AHY, Cha1y]). Every p-adic MZV is a p-adic integer. Moreover, fix an
admissible index s € IN'; then for all but finitely many primes p, the p-adic valuation of p-adic
MZVs is greater or equal to the weight wt(s).
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1.2. Multizeta values in positive characteristic. In what follows, we recall the basic
setting of function fields in positive characteristic. For the purpose of this article, our
basic arithmetic object is the polynomial ring A := F;[0], where [, is the finite field of
q elements with characteristic p and 6 is a variable. The field of fraction of A is denoted
by k := IF;(6) and the completion of k at the infinite place is denoted by ke. For a finite
place v, we set k; to be the completion of k at v. Throughout this article, we fix an
algebraic closure k together with fixed embeddings into Cs and C, respectively, where
Co is the completion of a fixed algebraic closure of ko and C, is the completion of a
fixed algebraic closure of k.

The function field analogue of real-valued MZVs is defined by Thakur in [To4], gener-
alizing Carlitz zeta values [Ca35]. For any index s = (sq,...,s,) € IN’, the co-adic MZV
is defined by the series
(1.2.1) Ca(s) = E% € kX,

Al al
where (ay,...,ar) € A" with a; monic and degya; strictly decreasing. Since there are
no natural orders on the set of monic polynomials in A, the non-vanishing property of
co-adic MZVs is nontrivial although the classical real-valued counterparts are immediate
consequence from the defining series. This non-vanishing property was proved in [Tog].

Inspired by Furusho’s p-adic MZVs, Chang and Mishiba considered the Carlitz mul-
tiple star polylogarithms, abbreviated as CMSPLs, as follows

11 ir
At

(1.2.2) Lif(z1,...,2) = ), —s——u
° I51... L?r

=20 =0 iy

€ kﬂzll e /ZI”]]/

where 5 = (s1,...,5,) € N’, Ly:=1and L; := (8 — 7) --- (8 — 87 ) for i > 1. It is known
by [C14, Thm. 5.5.2], [CM1gb, Thm. 5.2.5] that any cc-adic MZV can be written as a k-
linear combinations of CMSPLs at some precise integral points with explicit coefficients.
Let v be a fixed finite place of k and we write Li}(zy,...,2;), for the v-adic function
defined by the same series, but regarded v-adically. Then Li;(zy,...,z:), converges on
a small region inside C}, but does not be defined at arbitrary integral point. Chang and
Mishiba [CM19a, Prop. 4.1.1] used the logarithmic interpretation of CMSPLs to do the
analytic continuation of CMSPLs v-adically and then defined v-adic MZVs in [CM19b,
Def. 6.1.1] by using the same k-linear combinations of CMSPLs. We refer the reader to
Definition 2.3.2 for details.

Inspired by Theorem 1.1.1, it is natural to ask the integrality question of v-adic MZVs.
Recently, the author establishes a function field analogue of Theorem 1.1.1 and in this
article we give a survey on this result as well as the essential ideas of the proof.

1.3. Overview. In Section 2, we first briefly review Anderson’s theory of t-modules [A86].
Then we recall Chang-Mishiba’s construction of v-adic MZVs [CM1gb]. In Section 3, we
state a function field analogue of Theorem 1.1.1 [Chen2o, Thm. 4.2.1] and then sketch
the main strategy of the proof.
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2. REVIEWS OF CHARACTERISTIC p MULTIZETA VALUES

2.1. Anderson’s t-modules. In this section, we quickly review the theory of t-modules
introduced by Anderson [A86]. Let L/k be a field extension and T be the Frobenius g-th
power operator
T:=(x+—x7):L— L.
This T-action naturally extends to matrices by componentwise action. Let L[t] be the
non-commutative polynomial ring generated by T subject to the relation
T = a7 for a € L.

For any d-dimensional additive algebraic group G? ;1 defined over L, one may iden-

tify the ring of F,-linear endomorphism of G 1 with Maty(L[t]). We then define the
operator
d:= () _aT — ag) : Maty(L[1]) — Maty(L).
i>0
The definition of -modules is given as follows.

Definition 2.1.1. Let d € N. A d-dimensional t-module over L is a pair G = (G /1, 0), where
p : Fy[t] = Mat,(L[7])
is an Fy-linear ring homomorphism so that dpy — 014 is a nilpotent matrix.

The exponential function of G is an [F4-linear power series of the form
expg = Iz + ZQiTi, Q; € Mat,(L).
i>1
It is the unique power series satisfying the property that
expe 00p, = Pa 0 exp; for all a € Fylt].
The logarithm of G denoted by log, is defined to be the formal inverse of exp. It is a
IF;-linear power series of the form
log. == I; + ZPiTi, P; € Maty(L),
i>1
satisfy that
log- 0p, = dp, o log; for all a € Fyt].

2.2. Formulae for co-adic MZVs. In what follows, we introduce the connection between
MZVs and CMSPLs in positive characteristic. Recall the MZVs are defined in (1.2.1) and
the CMSPLs are defined in (1.2.2). Chang and Mishiba proved the following theorem
[CM1gb], generalizing the result of Anderson and Thakur [AT9o] in the case r = 1.

Theorem 2.2.1 ([C14, Thm. 5.5.2], [CM1gb, Thm. 5.2.5]). For any depth r € IN and any
index s = (sq,...,5,) € IN", there are explicit tuples s, € INP() with wt(s;) = wt(s),
dep(s;) < dep(s) = r, explicit coefficients c, € k and integral vectors u, € AP0 s that

éA(S) = ;Cg . Li;(ug).
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2.3. Chang-Mishiba’s v-adic multizeta values. In what follows, we collect Chang and
Mishiba’s results on the logarithmic interpretation of CMSPLs and its v-adic analytic
continuation.

Theorem 2.3.1 (cf. [CM19a, Thm. 3.3.3], [CM19a, Thm. 4.1.1]). We set | - |, to be the normal-
ized v-adic absolute value so that |v|, = g~ 98 °. For any depthr € N, index s = (s1,...,5;) €
IN"and u = (uy,...,uy) € %r, the following assertions hold.

(1) I lur]o < 1and [ujl, <1 for 2 < j <'r, then there exists an explicit t-module Gs,y de-
fined over k and an explicit vector vsy € Gg (k) such that (—1)" 1. Lify (. un)o
appears in the wt(s)-th coordinate of logs_ (Vsu).

(2) If [ujlo < 1for 1 < j <r, then there exists a(t) € IF,[t], depending on s and u, such
that logcsu(pa (Vsu)) converges v-adically, where Ggy, Vsu are the same as (1) and p,
is the image of a(t) under the associated IF;-linear ring homomorphism p of the t-module
Gsu-

Theorem 2.3.1 implies that the following definition makes sense.

Definition 2.3.2 (cf. [CM19a, Def. 4.1.2], [CM19b, Def. 6.1.1]). For any depth r € IN, index
s=(s1,...,5) € N'and (uq,...,u,) € K, we define the following:
(1) If lujlo <1 for 1 < j<r. Let Gsu and vsu be given in Theorem 2.3.1. Let a(t) € TF,[t]
satisfy that logg_ (pa(Vsu)) converges v-adically. We define the v-adic Carlitz multiple
star logarithm Liésr,...,sl) (Uy, ..., U1)y to be the value

(=1
a(0)

(2) Let ¢y, sy and uy be given in Theorem 2.2.1. We define the v-adic MZV
Za(s)o := ) co- Ly, (up)o.
L

x wt(s)-th coordinate of logs_ (0a(Vsu))-

Remark 2.3.3. Theorem 2.3.1 guarantees the existence of a(t) € IF,[t] in Definition 2.3.2.
Moreover, Definition 2.3.2 is independent of the choices of a(t) € F,[t]. We refer the
reader to [CM19a, Rem. 4.1.3] for details.

3. INTEGRALITY OF U-ADIC MULTIZETA VALUES

The aim of this section is to state a function field analogue of Theorem 1.1.1 and give
a sketch of the ideas of the proof.

3.1. Statement and example.

Theorem 3.1.1 ([Chen2o, Thm. 4.2.1]). Fix a monic irreducible polynomial v of A. Let s =
(s1,---,8r) € N, g, ;= #(A/vA), Ay be the valuation ring of k, and ord,(-) be the associated
valuation of k,. If we set

Bu,o = min{gy —n-w},

then we have
wt(s) — dep(s) — ht(s)

qo —1

ordy(a(5)v) > Bwi(s),o —

In particular,
Ca(s)y € Ao if g > wi(s).
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We provide a non-integral example when the restriction in the theorem is omitted.
The example was found by using the computer algebra system SageMath. The author is
grateful to Yoshinori Mishiba for providing the example.

Example 3.1.2. Consider ¢ =2, v =6 and s = (4,1). In this case, we have
Ca(4,1)e = Lify1y(1,1)p + Lif5 (1)e.

We will provide a strategy on calculation of v-adic CMSPLs in the next section. Consequently,
we obtain

Ca(4,1)p =072+ 0%+ 0(67) & Ap.
See [Chenzo, Ex. 4.2.3] for details.

3.2. Sketch of the proof. In what follows, we provide the key ingredients of proof of
Theorem 3.1.1. Let w € IN and

Swp :={Lij(u)y | r €N, s € N", wt(s) =w, ue A"}

We define %, , to be the k-vector space spanned by elements in Sy, . When wt(s) = w,
it is clear that
gA(5)U € Lup-
Due to the v-adic analytic continuation, some elements in Sy, do not coincide with the
original power series expansion and thus it is not easy to study linear combinations of
elements in Sy, even though we have already known the explicit coefficients.
Consider the subset of Sy, which is defined by

S = {Lif(u)y | r €N, s € N', wt(s) = w, u € vA x A™1} C Sy

Let 314(,03 C Zuw,» be the k-vector subspace spanned by elements in 55?, 2, Since the el-

()

ements in Sy, coincide with the original power series expansion, we can estimate the

(0)

v-adic valuation of elements in S, ;. Consequently, we are able to study v-adic valuation

(0)

of elements in .%}, ; if the coefficients are explicitly described.

Therefore, to prove Theorem 3.1.1 it suffices to show that {4(s), € .L”w?v. In fact, we
can prove more about it.

Theorem 3.2.1 (cf. [Chenzo, Cor. 3.2.11]). We adopt the same notations as above. Then

gw?g - gw,zw
Moreover, let
By :=min{gq), —n-w}.
n>0

Then
ordy(Li; (u)y) > By for every Lii(u)y € Sw .
In particular,
Lij(u)y € Ay if go > wi(s).

The key idea of the proof comes from certain kind of algebraic functional equations
of CMSPLs arising from the logarithmic interpretation [Chenzo, Thm. 3.2.9]. More pre-
cisely, we adopt some techniques in [ATgo] to improve [CM19a, Prop. 3.2.1] about the
explicit formula for the certain entries of the coefficient matrix of logarithms of iterated
extensions of Carlitz tensor powers, which is a generalization of [Pp, Cor.4.1.5] in the
case r = 1. Consequently, we derive the following
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Proposition 3.2.2 ([Chenz2o, Prop. 3.2.2]). Let 5 := (s1,...,5:) € N, w:= (uy,...,u) €
(k) , dm = sm+---+sp,d:=dy+---+d,, and let Ggy be the t-module given in Theo-
rem 2.3.1. If we write
logGsu = ZP,-Ti, Py =14,
' i>0
and put
wt(s)-th row of P := (Y, -+, Y2, where Y~ € k% for 1 <m < r.

If we set

<i> __ <i> <i>
Y " = md o Y

then for 1 < j < dy we have

. 0 — g7 )d1—j
(3-23) i = o=

dq
L;
and form > 2,1 < j < d,, we have
uqil uqimfl
<i> _ m—1 INdy—] 1 7 " Ym—
(3.2.4) Ypi = (=1)"7H(O — 07 ) Y, R ———
Oéilg"'gim71<iLi1 T l.m,1 Ll

To introduce the strategy of the proof of Theorem 3.1.1, we define the Carlitz difference
operators A1, which acts on f € k[z;1...,z/] by

(8 )z ,2¢) = f(0z1,20,...,2¢) — Of (21, ..., 2¢).
A simple application of binomial theorem derives the following
Lemma 3.2.5. Let A§:=A1 o---0 Aq be the j-fold composition of the Carlitz difference operator.
Then we have
, j ; )
(A]1 Iz, 2r) = E(—l)e (é) fo(GJ_Ezl,zz, AR
=0

foreach f € k[z1...,z].

On the other hand, if we have an [F;-linear power series in the variable z;

00 .
f(z1,...,2r) = Zciz‘f €klzi...,z],
i=0

where ¢; € k[z,...,z:]. Then we have
(Ajl f) (le ¢ v ;Zr) = ZCZ[Z]]Ztli A
=0

Since Lij is [F;-multilinear, the observations above combined with Proposition 3.2.2 lead
to the desired result in Theorem 3.2.1. We refer the reader to [Chen2o, Thm. 3.2.9] for
details.

Instead of giving detailed proof, we give an example [Chenzo, Ex. 3.2.12].
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Example 3.2.6. Considerr =1, v =0, u € Aand s € IN. In this case, we have

Lij (u)o = 53 1_ ; (Lig(esu +ul — u), +Sfi(—1)f+k (Ifc) 6% i ( (j) Gs_ku)v> .

j=1k=0

In particular, if s = p® for some £ € Z~, then

: 1 .
Li;(u)y = ] LiZ (6°u + ul — u)y.

3.3. Some remarks. We now describe an application of p-adic integrality Theorem 1.1.1,
which is given in [AHY]. Consider the Q-algebra

o= (]z/vz)/(@z/pz)
p p

where p runs over all prime numbers. Kaneko and Zagier defined the finite multiple zeta
values by

Qd(sl, ce ,S,») = (C{Qg(sl, ce /Sr)p)p € of
where the p-th component {/(sy,...,s;)p is defined by the following truncated sum

s; mod p € Z/pZ.
;

51, ..
p>ny>->n,>0 nq h

For any weight w € IN with w > 2, we consider the Q-vector space 3;‘{ which is spanned
by all finite multiple zeta values of weight w and the Q-vector space 3, which is spanned
by all real-valued multiple zeta values of weight w. We further set 3¢ := Q and 37 := {0}.
The following is the celebrated dimension conjecture of Zagier:

Conjecture 3.3.1 (Zagier). The following equality holds
1
1-X2-X3 &=
Kaneko and Zagier predict the following assertions:
Conjecture 3.3.2 (Kaneko-Zagier). For each w > 2, if we set dy, := dimg 34, then we have
dimg 37 = dy — dy_2.

As an application of Theorem 1.1.1, Akagi, Hirose and Yasuda combine with a special
case of Jarossay’s result [J18, (0.3.8)] to establish the upper bound for dimg 3;‘2{ .

Theorem 3.3.3 ([AHY]). For each w > 2, we have dimg 37 <dy—dy_o.
Now let us turn back to the function field side. Consider the k-algebra

= ([[A/0A)/ (D A/vA)

where v runs over all monic irreducible polynomials of A. An analogue of Kaneko-
Zagier’s finite multiple zeta values over function fields is defined by

Cot (51, ,8r) == (Ceg (51, -+, 51)0)o € G
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where the v-th component édk(sl, ...,Sr)v is defined by the following truncated sum

! s; mod v € A/vA.
;

s]‘ . ..
deg, v>degg a1 >--->degg a,>0 i a

For any weight w € IN, we consider the k-vector space 35k spanned by all finite MZVs
of weight w and the k-vector space 3/ spanned by all Thakur’s co-adic MZVs of weight
w. In [To18], Todd discovered some linear relations among the same weight co-adic
MZVs and he predicted the following dimension conjecture.

Conjecture 3.3.4 (Todd). We have

2w-1 ifl1<w<yg,
dimy 34 = P | ifw=q,
Y1 dim32 . ifw>q.

There is a natural question arsing: can we apply Theorem 3.1.1 to prove the analogue
of Theorem 3.3.3 in our setting of the function field? At present this question is still
unclear and we will work this problem in a future project.
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