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Abstract

This report concerns some resolvent estimates arising from the study of compressible flows with
free surfaces, which were obtain in the recent work [12]. In [12], the resolvent estimates of some
compressible model problem were established for general (bounded or unbounded) domains within
the framework of the maximal L, — L, regularity. For simplicity, we outline the whole strategy of
the proof in [12] for exterior domains in this report.

1 Introduction

1.1 Model problem

Consider the free boundary value problem of the compressible Navier-Stokes equations
in general domain €2, with taking the surface tension into account,

(0,p + div(pv) = 0 i J x{t}
t€]0,T
d,(pv) + Div(pv ® v) — DivT(v,p(p)) = pf in U O x {t},
t€]0,T
(1.1)
T(v,p(p))nrt —oHrn, = —pon,, Vr, =v-n, on U Iy x {t},
t€]0,T|
v=0 on Sx]0,T,
\ (p7 v, Qt)|t:0 - (poo + p07 Vo, Q)

where the stress tensor T (v, p) := S(v) — pll, S(u) := pD(u) + (v — p) diva I, D(v) ;5 =
Okv; + Ojug, J,k = 1,..., N, and the coefficients o, 1, v > 0. In addition, we also denote
Poo := limy 00 p(+, ) > 0. Furthermore, p = p(-) : Ry — R is a smooth pressure law,
Hr, is the mean curvature of the surface I'y for ¢ > 0, n. is the unit normal vector of I,
po is the given pressure of the atmosphere, and f is some given external force. Here we
call Vr, the normal velocity of I';. Moreover, S and I'; are disjoint for any ¢ > 0. In fact,
there is one typical case where (), is an infinite layer with the moving top surface I'; and
the fixed bottom S. Of course, if S = 0, i.e. lack of (1.1),, then €, may stand for some
bounded droplet, some exterior region or some half plane without the bottom.



To study (1.1), the key step is the linearization. By the so-called Lagrangian coordinates

X, (& 1) :zé—l—/o u(&, s)ds € Q, V&€ €4,

one can transfer (1.1) to the following model problem in the fixed initial (or reference)

domain €,
(O + v dive =d in  Qx]0, 7],
Y10pu — Div (S(u) — yonl) = F in  Qx]0, 7],
(S(u) — venl)nr, + o(m — Ap)hnr, =g on T'ox]0, T, (1.2)
Oh—u-nr, =k on Tyx]0,T7,
u=20 on Sx]0,T],
L (1,1, h)|i=0 = (po,v0,0) in €

where v, = 71(x) and v, = 72(x) are uniformly continuous functions defined on Q, mp,
stands for the unit normal vector field of I'y and Ap, is the standard Laplace-Beltrami
operator of I'y. Although the equations in (1.2) are in the fixed domain, the role of the
new variable h is to handle the variation of the I'; in (1.1). The linearization approach is
similar to the case of incompressible flows [9, 6], and we omit the details here. As (1.2) is
more or less a standard system in (2, we shall consider the solutions of (1.2) within the
classical maximal L, — L, regularity framework.

Let us give some comments on the property of the maximal regularity here, while the
interested reader may refer to [12, Sec. 1] for more detailed references on the compress-
ible flows. The maximal regularity is an important tool to understand the parabolic type
equations. In particular, for the classic viscous fluid dynamics, the momentum conserva-
tion law can be linearized to the second order parabolic equations. We ask that whether
the second order derivatives of the velocity fields are integrable with L, in time and L,
in space for (p,q) €]1,00[%, so long as such external forces are given. If so, we say such
equations admit the so-called the maximal L, — L, regularity. For instance, the maxi-
mal regularity property of the Stokes equations with respect to incompressible fluids are
studied in e.g. [10, 4] for the non-slip boundary conditions and in e.g. [5, 1, 8] for the
slip boundary conditions. For the compressible flow, the maximal regularity property of
the Lamé operators corresponding to compressible fluids is verified in e.g. [2, 3]. Let
us emphasize that the equations for the compressible flow are usually mixed with the
hyperbolic part and the parabolic part as in (1.1). The progress in [12] concerns the
maximal regularity property of the Lamé operator with surface tension term involved,
namely o > 0 in (1.2),.



1.2 Notations

Let us end up this part with some useful notations. L,(G) is the standard Lebesgue
space in the domain G C RY, and H;f(G) with £ € N and 1 < ¢ < oo stands for the
Sobolev space. In addition, the Besov space B; (G) for some k — 1 < s < k and for any
(p, q) €]1,00[* is defined by the real interpolation functor

B;p(G) = (L4(G), Hy(@))

s/k;p’
In particular, we write W7(G) = B; (G) for simplicity, and W, *(G) is the dual space of
Wi (G) for 0 <5 < 1 and the conjugate index ¢’ := q/(q — 1).

For any Banach spaces X, Y, the total of the bounded linear transformations from X to
Y is denoted by £(X;Y"). We also write £(X) for short if X =Y. In addition, Hol (A; X)
denotes the set of X valued mappings defined on some domain A C C.

For A = v +ir € C, the Laplace transform and its inverse are formulated by

£UMA):i/e‘“f@wtzfﬁéﬁﬁﬁﬂ@%

R

tww:%éﬁwm:wﬁ%mm,

where F; and F-! denote the Fourier transformation and its inverse. For any X valued
function f, we set A3 f(t) := L7 [NL[f](\)] for any s > 0. Then the Bessel potential
spaces are defined as follows,

H, Ry X) o= {f € L,(R; X) : e (A1) (1) € Lp(R; X)},
Hy o(R; X) :={feH, (R;X): f(t) =0 for t <0},

7,0

for any v > 0 and 1 < p < o0.

2 Main results

From now on, we assume that € is some exterior domain with the (compact) boundary
I'y only, and consider that

(O + i divu = d in QxR,,

Y10pu — Div (S(u) — yanll) = f in QxR,,

(S(u) — venl)nr, + o(m — Ar))hnr, =g  on I x Ry, (2.1)
Oh—u-nr, =k on Iy xR,
(7, u, h)|s=0 = (0,0,0) in Q.



Above there exist constants pi, ps, p3 such that

0<pr <mx)<ps, 0< () <py, Vazel, (2.2)
1V, V)l < ooy ps = max {pa, 2l nmra )
with N < r < oo. For the general domain € case, one may refer to [12] for more details.
Now, let us fix the functional spaces for the data (d, f,g,k) in (2.1). For any (p,q) €
11, 00[%, we say (d, f,g,k) € Fpgr (7> 0),if d, f, g and k fulfil that
de Lpyo(R;HYQ)), f € Lypqyo(R; Ly(Q)N),
g€ Ly o(Ry HHON) N HZ 0 (R L)), k € Lyso(R; W2 (D)),

7,0

with the quantity

I(d, £.9, k)| 7, =lle "d|l,@mio) + lle” " (F, A2, @Lq )
—yt —yt
+ He ! gHLp(KH(}(Q)) + He ! kHLP(R;WqQ‘l/q(FO)) < 0.
Next, we recall the smoothness of the domain and an auxiliary result proved in [7,

Theorem 2.1] on the Laplace-Beltrami operator.

Definition 2.1. We say that a connected open subset Q0 in RN (N > 2) is of class
uniform Wl for some integer m > 2 and 1 < r < oo. if and only if the boundary
08 is uniformly characterized by local W, i graph functions. That is, for any point
xo = (x(, xon) € 0N, one can choose a Cartesian coordinate system with origin xy and
coordinates y = (V',yy) == (Y1, -, Yy_1»Yy), @S well as positive constants o, B, K and

some Wi function h with 1All =177y (aryy < K such. that
T a0

{Wyy) h(y) =B <yy <h) Iy < a} =20 Ussn(xo),
{(ylv yN) Yy = h(?/)? |y/| < Oé} =00N Ua,ﬁ,h($0>,

where Ua gn(z0) == {(y,yy) 1 h(y') = B <yy <h(y)+ B, |y'| < o} and B, (z5) == {y' €
RN=L: |y — xp| < a}. Moreover, the choices of a, 3, K are independent of the location of

xo. 08 1s uniform whenever 0X) is compact.

Proposition 2.2. [7, Theorem 2.1] Let 0 < ¢ < /2, 1 < ¢,¢ = q/(g—1) < oo,
N <r < oo andr > max{q,q'}. For any uniform W2 boundary I' C OS2, there exists
a constant A\ = A (e,I") > 0, such that ¥, , is contained in the resolvent set p(Ar) of
Ar. That is, for any A € ¥, and f € Wq_l/q(F), the resolvent problem

A=Ap)u=f on T
admits a unique solution u € W,f_l/q(l“) possessing the estimates

||u||W(12_1/q(l") < CEyq77‘7F||f||Wq—1/q(F)-
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Then we can establish the property of the maximal L, — L, regularity for (2.1) as follows.

Theorem 2.3 (Maximal L, — L, regularity). Let 0 < ¢ < ©/2, o, u, v, p1, p2,p3 > 0,
1<q,¢d:=q/(g—1) <oo, N<r < oo andr > max{q,q'}. Assume that the exterior
domain € is of type W,?q’_l/r, m > A(e,Tg) by Proposition 2.2, and (2.2) is satisfied.
Then there exist constants 7o, C' > 0 such that the following assertions hold true. For any
(d,f.g,k) € Fp 40, (2.1) admits a unique solution

ne€H,  o(RHy(Q), ue€ LyoRHI(QY) NH,  o(R; Ly(Q)7),
h € Ly o(R;WEV9(0g)) N H, o (R; W2V(Ly)).

Moreover, we have
le™ (D, m) |y sz o) + lle™ By APV |1, iz () + el m200)

- H6‘”’°t8thHLP(R;Wi‘l/q(ro)) + He_whHLP(R;Wﬁ‘”q(Fo)) = Cld. 1.9, k)l|7,.0-,-

Similar to [12, Theorem 2.8|, the fundamental step to prove Theorem 2.3 is to study
the resolvent problem of (2.1),

M+ ndive =d in

7 Au — Div (S(u) — “/2771[) =F in €, (2.3)
(S(u) — 727711) nr, +o(m — Ar,)hnr, = G on I,

AMv—u-np, =K on TI.

To state the result of (2.3), we need some preparations. Firstly, we recall the definition
of R—boundedness and the Fourier multiplier theory proved by L. Weis in [11] for the

convenience.

Definition 2.4. Let X,Y be two Banach spaces and L(X;Y") be the collection of all
bounded linear operators from X to Y. We say that a family of bounded operators T C
L(X,Y) is R-bounded if for any N € N, T; € 7, x; € X and the Rademacher functions
r;(t) := sign(sin 2/7t) defined for t € [0,1], the following inequality holds,

N N
H E riTh; § i
=1 =1

Above the choice of C, depends only on p but not on N, Tj, x;, r; and 1 < j < N. The
smallest C,, is called R-bound of T, denoted by Ry (x.v)(T).

)=

< for some p € |1, 00].
Lp([0,1Y ) | |

Lp([0,1];X

Theorem 2.5 (Weis). Let X and Y be two UMD Banach spaces and 1 < p < oo. Let
M(-) be a mapping in C*(R\{0}; L(X;Y)) such that

RL(X;y)({(TE)T)ZM(T) ‘T E R\{O}}) <r, (£=0,1),
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with some constant 1, > 0. Then the multiplier operator Ty (o) == F~* [MF[@H for any

v € S(R; X) can be uniquely extended to a bounded linear operator from L,(R; X) into
L,(R;Y) with the bound

1T Hll (Lp(R;X);Lp(R;Y)) < CoxyTs.

Secondly, for any v, Ay > 0 and 0 < £ < 7/2, we introduce the sectors
S.i={z e C\{0}: |argz| <m—c}, T.n i={z€X.:|z] >N},
Aopo 1= {2 €50 (Re+ Boroy+@z (2 +e)°}

One may refer to the following graphs for ¥, 5, and A, ,,.

Sz Sz
A =l A
// \\\
= L2 4 \\
T .. \
—_ / S~ \
— - I/ ~ g A~
- o /
L e SN 7V > Rz ! € i Vo o Rz
P I | s /
gy N P
,”/” \\ e BT - /
s o /
N /
N 4
N p
(A) Yie,xo (B) As)\o

FIGURE 1. Sectorial regions X, », and A, ),

With above definitions and comments, our main result for the model problem (2.3) is
as follows.

Theorem 2.6. Let 0 <e <7w/2,0,pu,v>0,1<¢q,¢d :=q/(¢g—1) <oo, N <r < oo and
r > max{q,q'}. Assume that the exterior domain ) is of type W;Q’_l/r, m > \(e,To) by
Proposition 2.2, and (2.2) is satisfied. Set that

Xy(Q) = Hy(Q) x Ly(Q)V x Hy ()N x WZ=4(Ty),
X, (Q) i= HJ(Q) x Ly(Q)N x Ly()N x HI(Q)N x W 19(Ty).



For any (d, F, G, K) € X,(Q), there exist constants X, 7y, > 1 and operator families
P(A, Q) eHol( e £ (X ()5 Hl(ﬂ)))
A(/\,Q)EH01< eno; £( Xy (92); HF () )),
H(N Q) eHol( s £ (9); W H(Ty)) ),
Q)

such that (n,u,h) = (P(\, Q), A\, Q),
tion of (2.3). Moreover, we have

Ry e e) ({(TaT)f(AP(A, Q)) 1\ e AS,AO}) <1,
Ry e ) ({(TUT)Z()\j/QA()\, Q)A€ AE,AO}) <1y,
Ry (epani 17 0) ({(TaT)f(Aj'H(A, 0)) 1) e AMO}> <.

for .7’ =0,1, 7 =0,1,2, and 7 := S\. Above the choices of Ag and r, depend solely on

(d, F,\'\?G, G, K) is the unique solu-

the parameters €, o, m, u, v, q, v, N, p1, p2, p3 and 2.

By Theorem 2.6, we can also prove that the linearized model problem (1.2) is charac-
terized by a semigroup structure. Thus we consider the following homogeneous system

(O + 1 divu =0 in QxRy,

Y10pu — Div (S(u) — 7o) = 0 in QxR

(S(u) — yenl)nr, + o(m — Ap))hnr, =0  on Do x Ry, (2.4)
Oh —u-nr, =0 on Ty xRy,
L (7,1, h)|t=0 = (0, W0, ho) in €.

Note that the free boundary condition in (2.4) is equivalent to
(S(u)nFO)T|FO =0, S(u)nr,-nr, — v+ o(m— Ar,)h|r, =0, (2.5)

where f_:= f — (f - np,)nr, stands for the tangential component of f along I'y. Then

we set
X,(0) 1= HI(Q) x L(Q) x W24(ry),
D,(A) = {(777 w,h) € X,(Q) :u € HA(Q)N, h e Wi9(T,), (2.5) holds},
endowed with the norms
1,2 1) e = Wy + ey + [l
12,2, D) gy = [l gy + el mze) + (121l ya-rra gy -



Furthermore, define the linear operator

-7 divu
AU := |7 ' Div (S(u) — qnl) | for U := (n,u, h) € Dy(A),

u - nr,
and the following functional space by the real interpolation theory,

Dyp(Q) = (X,(2), Dy(A)) C Hy(Q) x Bi§~P(Q) x By, Ve /P(Ly),

1-1/p,p

with [|(n, w, 2)|lp, @) = [1nllay@) + llullg2a-1m o) + Al ga-1/0-1/0 ) - Thanks to above
settings, (2.4) can be regarded as the abstract Cauchy problem

U — AU =0 for t > 0, U|t:0 = (T](), Uy, ho),
whose resolvent problem is formulated as follows
AU — AU =F for A€ C and F = (d, f, k) € X,(Q).

Then we can furnish the following results from Theorem 2.6 and the standard semigroup
theory.

Theorem 2.7 (Generation of the C° semigroup). Let 0 < £ < 7/2, o, p, v, p1, pa, p3 > 0,
1<q,qd :=¢q/(g—1) <oo, N<r < oo andr > max{q,q'}. Assume that the exterior
domain Q is of type W32 m > A\(g,Ty) by Proposition 2.2, and (2.2) is satisfied. Denote
that Ug := (1o, wo, ho). Then there exist positive constants o, C' such that the following
assertions hold true.

1. The operator A generates a C° semigroup {T(t)}i>0 in X,(Q), which is analytic.
Moreover, we have

1U 0 + t(10:U 2,00 + U llp,a)) < Ce|[Up|lIx, 0,
10:U | %,0) + U lIp,ay < Ce™ ([ Uollp, (),
with U := T (t)U.
2. For any Uy € D, ,(2), (2.4) admits a unique solution
e (n,u, h) € Hy (Ry; X4(Q) N L, (Ry;Dy(A)),
satisfying the estimates

€770, (n, w, h)|| 1,2, + e (0, w, W)L, @, Dy ) < Cll(m0, o, 7o), (-



3 Boundary estimates

To obtain the resolvent (or elliptic type) estimates in Theorem 2.6, we observe that
(2.3) can be reduced to some generalized model problem. More precisely, let us introduce
some parameter ¢ fulfilling |(| < (y and either of the following cases

(Cly¢c=X1% (C2)¢ceX.andRC<0; (C3) RNC>0.

Then set that

Aoy, for (C1),
Topoc =4 {AeC:RA> |& \|JA| RA> N} for (C2), (3.1)
{AeC:RX> N} for (C3).
For A € I'. ,.¢, we consider the model problem
Av — 71 ' Div (S(v) + ¢z divol) = f in Q,
(S(’u) + (3 div 'vI[) nr, +o(m — Ar,)hnr, =g on T, (3.2)
AMv—v-np, =k on Iy,

where 7, and 3 are uniformly continuous functions on €2 such that

0<p<m@) <py, 0<y(x)<ps, V2 [(Vn,Vu)li <p  (3.3)

for some constants py, p2, ps > 0 and N < r < co. Note that (3.2) under the assumption
(C1) can be derived from (2.3) by eliminating 7.

Theorem 3.1. Let 0 <e < 7/2, o,pu,v>0,1<qg<oo, N<r<ooandr > q. Assume
that the exterior domain € is of type W,?g’_l/r, m > A\ (e,Tg) by Proposition 2.2, and (3.3)
is satisfied. Set that

Y,

q

() 1= Ly(@)Y x HNOQ)Y x HA(Q), y(Q) i= Ly(2)" x Y,(9).
For any (f,g,k) € Y,(Q), there exist constants Mo, 7, > 1 and operator families
Ao(A, ) € Hol (T, i (V) HE)Y) ).

Ho(,2) € Hol Ty i £(V(Q); HI(2)) )

such that (v, h) = (Ag(X, Q), Ho(X, Q) (f,\/?g,g,k) is a solutions of (3.2). Moreover,
we have

o
Ry (yari-sion) ({(raT) (M2 Ag(M, Q) - A € T, M}) <1,

Rc(yq(m;HS‘j’(m) <{(787)£(Ajl%<)" )A€ Lo, <}> =T



for£,7 =0,1, 7 =0,1,2, and 7 := I\. Above the constants g and 7, depend solely on
g, 0, m, U, v, CO’ q, T, Na P1y P2, P3 and €.

It is nor hard to see that Theorem 2.6 is immediate from Theorem 3.1. The complicated
part of the proof of Theorem 3.1 is the boundary estimate as (3.2) is elliptic type system.
The idea for the boundary estimates is very classical. Firstly, we state the model problem
in the half space via the technique from Fourier analysis. Then we review the bent half
space case which characterizes the behaviour of the boundary points on I'y. Finally, one
can conclude Theorem 3.1 by the boundary estimates and interior estimates, which we
will omit. The interested reader may refer to the last part of [12] for more details.

3.1 Model problem in the half space

In [12], we consider the following model problem in RY,

M — 7' Div (S(u) + (3 divul) = F in RY,
(S(w) + (ysdivul)ng + o(m — A')hmg =G on Ry, (3.4)
A —u-ny=K on R,

where R) := {z = (¢/,z,) € RN : 2, = 0}, ng := (0,...,0,—1)" and A’ := Zjvz_ll 9.

On R, the Laplace-Beltrami operator degenerates to the classical operator A’. Moreover,
the parameter ¢ and the constants 7, 3 fulfil the conditions

1< Co, 0<p1<m<p2 0<v3<p3 (3.5)

for some py, pa, p3 > 0. Then recalling the definition of I'; ), ¢ in (3.1), our main result for
(3.4) reads:

Theorem 3.2. [12, Theorem 3.1] Assume that 0 < ¢ < w/2, o,m,pu,v >0, 1 < g < 00
and (3.5) is satisfied. Set that

Y (RY) i= L(RY)Y x HIRY)Y x HARY), D,(RY) = L(RY)Y x Y, (RY)
For any (F,G,K) € Y,(RY), there exist constants Ao, 7, > 1 and operator families
Ao(ARY) € Hol (T i £(,(RY): HE(RY)Y) ).
Ho(A RY) € Hol (T ¢ £((RY); HIRY))),
such that (u, h) :== (Ag(A,RY), Ho(\, RY)) (F,\2G, G, K) is a solution of (3.4). More-

over, we have

Ry (3 e 60%) ({Gon (V240 RY)) s A € T }) <o

Rﬁ(yq(Rf);Hg_jl(Rf)) ({(T@T)Z(AJ’HQ(/\,Rf)) A€ FE,)\O,C}) <7y,
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fort,7 =0,1, j =0,1,2, and 7 := S\. Above the choices of \g and r, depend solely on
g, 0,m, i, v, q, N’ CO’ P1, P2, P3-

3.2 Model problem in the bent half space

To describe the result for the bent half space, we need to introduce some notations on
the domains. Let ® be a C'! diffeomorphism from Rév onto RY and &' be the inverse of
®. Assume that

Ve (€)= A+BE) = [ay] +[b5(0)] .

Ay =V, () |scae) = A_+B_(§) = [%}NX]V + [Bij(f)]

NxN '

for some constant orthogonal matrices A and A_. Moreover, denote 2} := ®(RY) and
[, =90, = ®(R)'). Then T, is characterized by the equation (P !)y(z) = 0, and the
unit outer normal n to ['y is given by

n (@(f)) _ ey _ (fol)]_vl)(q)(f)) _ (C_llN +bin(€),...,ann +5NN(E))T
+ |eZpmo| ‘(fob]—vl)(q:(g))‘ (Ej\,:l (C_le N Z_?Nj(é))2>l/2 ;

with ng = (0,...,0,—1)7.

For such T'; characterized by H3(R") mapping, we consider the following model prob-

lem,
A — 77 ' Div (S(v) + ¢z divol) = f in Q,
S(w)ny + (yzdiveny +o(m—Ap, )hn, =g on I, (3.6)
M—v-n, =k on [',.

In (3.6), v; and 73 are uniformly continuous functions on €, and there exist some con-
stants 7,75 such that

0</)1 S’Yl(x%f/}qu% 0<73('r>7%§p37 V$E§+, (37>
Yo lhe = Falleon <M <1, > (IVAlliaa,) < CMa,
a=1,3 a=1,3

for some constants p1, pa, p3 > 0. The main result for (3.6) reads:

Theorem 3.3. [12, Theorem 4.1] Let 0 < ¢ < 7w/2, o,m,pu,v,(p > 0, 1 < ¢ < o0,
N <r < oo and r > q. Assume that (3.7) is satisfied. For Q. given above, we set that

Yo(Q4) 1= Ly(Q4)Y x H;(Q+)N X H (), Voly) = Ly(Q)N x Y (Qy).

11



Then for any (f,g,k) € Y,(§1y), there exist constants Ao, 1, > 1 and operator families

Ao(X, 94) € Hol (T 63 £(D5(24); H2(Q)Y) ).
Ho(\, Q) € Hol (FE,M; L(V,(Q); Hg(m))),

such that (v, h) = (Ag(A, 1), Ho(X, Q4)) (f, A\%g, g, k) is a solution of (3.6). Moreover,
we have

for£,7 =0,1, 7 =0,1,2, and 7 := I\. Above the constants g and 7, depend solely on
g, 0, M, W, V,q, T, N7 COa P1, P2, P3-
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