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1 Introduction

This article gives a summary of [17]. Let Q@ C R™ (n > 3) be an exterior
Lipschitz domain in R™ (n > 3), i.e., the complement of a bounded Lipschitz
domain. We consider the Stokes resolvent problem in an exterior Lipschitz
domain with homogeneous Dirichlet boundary conditions

AMu—Au+Vr=f in €,

div (u) =0 in Q, (1.1)
u=20 on 0f),
where v = " (ug,...,u,): @ — C" and 7: Q — C are the unknown velocity

field and the pressure, respectively. Here, the right-hand side f is assumed
to be divergence free and LP-integrable for an appropriate number 1 < p <
oo and the resolvent parameter A is assumed to be contained in a sector
Y9:={z€C\ {0} | |arg(z)| < 0} with € € (0, ).

It is known that the results of the Helmholtz projection and the Stokes
operator in bounded Lipschitz domains are available only in a restricted set
of exponents p, which is quite different from the case of bounded smooth
domains. Indeed, Fabes, Méndez, and Mitrea [2] showed that the Helmholtz
decomposition of LP(D;C") exists whenever (3/2) —e < p < 3 + &, where
D is a bounded Lipschitz domain and ¢ is a positive number depending on
the Lipschitz character of D. They also showed that the range of p is sharp,
see [2, Thm. 12.2]. This result leaded to the following conjecture posed by
Taylor [14, Sec. 4].

Conjecture 1.1. For a given Lipschitz domain Q@ C R3 there exists ¢ =
£(2) > 0 such that the negative of the Stokes operator generates an analytic
semigroup, provided (3/2) —e <p <3 +e.
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Using the potential theory and a weak reversed Holder estimate, Shen [13]
obtained resolvent bounds for numbers p satisfying the condition

1 1 1
‘p 2

where ¢ is a number depending only on the dimension n, the opening angle 6,
and the Lipschitz character of €2. Notice that when € is a bounded smooth
domain, such a result was established for all p € (1, 00) in [5]. A corollary of
Shen’s result is that the negative of the Stokes operator generates a bounded
analytic semigroup, which gave an affirmative answer to Conjecture 1.1 in
the case of bounded Lipschitz domains. Recently, this result was extended
by Kustmann and Weis [9] and Tolksdorf [15]. In [9], a new criteria of the
H-calculus was given and the boundedness of H*°-calculus of the Stokes
Stokes operator was proved, which yields an investigation of the domain of
the square root of the Stokes operator as Wé’g(Q), see [15]. This character-
ization provides LP-L.? mapping properties of the Stokes semigroup and its
gradient with optimal decay. As an application of his result, the existence
of solutions to the three-dimensional Navier—Stokes equations in the criti-
cal space L°°(0, 00; L3(€)) was shown in terms of a maximal Li-regularity
approach.

Our interest is to consider the Stokes operator in the case of exterior
Lipschitz domains Q. If the boundary 0f2 is connected, it was shown by Lang
and Mendéz that the Helmholtz decomposition of LP(Q; C™) exists. More
precisely, they proved that the Helmholtz projection P defines a bounded
projection from LP(Q;C™) onto LE(Q) for 3/2 < p < 3. Here and in the
following, L5 (2) denotes the closure of

Coo(€)) :={p € CZ(CY) | div (p) = 0}

in LP(Q;C"). We will investigate the Stokes operator defined on L2(2) by
using a sesquilinear form, see [12, Ch. 4]. On LE(Q) for 1 < p < oo, the

Stokes operator A, is defined in two steps. First, we take the part of As in
LE(9), i.e.,

D(Ag\Lg(Q)) :={u € D(A2) NLE(Q) | A2u € TLE(Q)},

where As|1p(qyu is given by Asu for u in its domain. Notice that Aslip (o)
is densely defined because CZ5, () C D(Aszlir () and that it is closable.
Secondary, we define A, to be the closure of As|;p(q) in LE().

The purpose of this article is to study a family of operators {\(A +
Ap) ' }es, is R-bounded in £(L5(€)). Since R-boundedness implies uni-
form boundedness of the family of operators, this result yields that the



negative of the Stokes operator generates a bounded analytic semigroup on
LE(Q) for certain p.

2 Preliminaries

Let us first introduce the notion of exterior Lipschitz domains that is con-
sidered in this article.

Definition 2.1. Let D C R™ be a bounded Lipschitz domain, i.e., D is a
bounded, open, and connected set satisfying the following: For each xo € 95,
there exists a Lipschitz function ¢: R" ! — R, a coordinate system (', z,,),
and a radius » > 0 such that

By(xo)ND = {(2/,2,) € R" | 2, > ((2)} N B,(x0),
B, (29)NOD = {(2', x,) € R" | 2, = ((2')} N By(xo),
where B, (xo) denotes the ball with radius r centered at zy and 2’ :=

(21,...,2p—1). Then an exterior Lipschitz domain Q C R™ is the com-
plement of a bounded Lipschitz domain, i.e.,  := R™\ D.

Remark 2.2. The definition of exterior Lipschitz domains stated above
excludes the case of multi-connected domains, i.e., the presence of holes
inside the exterior domain. However, it should be possible to add holes by
employing the argument used in [11]. Notice that the rest of this article
works with holes appearing in the exterior domain.

2.1 Remark on the Helmholtz projection

Let £ C R™ be a domain and Py = be the Helmholtz projection on L?(Z; C")
that is the orthogonal projection onto L2(Z). Tt is wildly known that the
Helmholtz projection implies the orthogonal decomposition

L2(Z;C") = LZ(Z) @ Gy(2).
Here, for 1 < p < oo we write
Gp(5) == {Vg € LP(E:C") | g € L, (E)}-

For 1 < p < o0, we say that the Helmholtz decomposition of LP(Z; C") exists
if an algebraic and topological decomposition of the form

IP(5,C") = L5(5) @ Gp(E) (2.1)



exists. Then, the Helmholtz projection PP, = on LP(=Z;C") is defined as the
projection of L?(Z; C") onto L5 (Z). If 2 = R”, the Helmholtz decomposition
of LP(R™; C™) exists for all 1 < p < 0o, and the projection can be represented

by
_ExE ]
€ 1
where F denotes the Fourier transform and F~1! its inverse.

In the case = = D, where D C R" is a bounded Lipschitz domain, we
know the result by Fabes, Méndez, and Mitrea [2] who showed that there
exists ¢ = ¢(D) > 0 such that the Helmholtz decomposition of L?(D;C")
exists if p satisfy

Pygn i=F ! [1

1 1 1
Notice that the range of p is optimal, see [2, Thm. 12.2]. On the other
hand, if @ C R" is an exterior Lipschitz domain with connected boundary,
there is the result by Lang and Méndez [10, Thm. 6.1] who showed that the
Helmholtz decomposition of LP(2; C™) exists for all p satisfying
1 . (1 1 1

‘]—)—5 <mm{6+€’§_ﬁ}' (2.3)

We easily observe that the condition (2.3) is slightly stronger than (2.2).
For example, when n = 3, we deduce that (2.2) implies (3/2) —¢ < p < 3+¢
and that (2.3) implies 3/2 < p < 3. Here, it seems to be difficult to show the
existence of mild solutions to the three-dimensional Navier—Stokes equations
in the critical space L>°(0,T;L3()) based on the result due to Lang and
Méndez because we need information for p in the interval [3,3 + ¢) to prove
the existence of mild solutions, cf., [6,15,16] for the cases of the whole space
and bounded/smooth Lipschitz domains. However, by a slight modification
of the proof of Lang and Méndez, we can recover the interval (2.2) for
exterior domains 2 with connected boundary. In fact, Lang and Méndez
proved that the Helmholtz decomposition of LP(£2; C") exists if and only if
there exists a function 1 that solves the following Neumann problem:

Ay =0 in Q,
v-Vy=heB /P(0Q)  onaQ, (2.4)
Vi € LP(Q;C")

with h := v (u— VIg(div (u))), where IIg(div (u)) is the Newton potential
of div (u) extended by zero to R™. According to [10, Thm. 5.8], it holds

VYl cny < C”hHB;’;/p(aQ)



for all p that satisfy (2.2) but from [10, Cor. 2.3] it holds
[VIHq(div (v))||Lr iy < Cllullie@icn

for all p that satisfy n/(n—1) < p < n, where these conditions induce (2.3).
To get rid of the condition n/(n — 1) < p < n, we replace in the definition
of h the term VIIqdiv (u) by F1[(¢ @ €)|72F[U]], where U is the extension
of u to R™ by zero. Hence, the term h is given by h := v - (PprnU)|sq and
we obtain the estimate

||hHBp_,},/P(8Q) < CHUHLP(Q;C”)

for all 1 < p < co. Summing up, the Neumann problem (2.4) is uniquely
solvable for all p that satisfy (2.2) but only if 92 is connected. To generalize
this result into the case when 9f) is not connected, we decompose €2 into its

connected components
N
Q=0QU ( U Qk>

k=1
where (g is the unbounded connected component and Q. (kK = 1,...,N)
are bounded Lipschitz domains. From [2, Thm. 11.1], there exists ¢ > 0
such that the Helmholtz projection P, o, is bounded on L?(€2;; C") for all p

satisfying (2.2) and k =1,..., N. Then the Helmholtz projection on € can
be defined by

Prafl(@) = [Ppo Refl(z)  (z€Qk=0,...,N,feL’(Q;C")),

where Ry is the restriction operator of functions on €2 to €. Therefore,
we now arrive at the following proposition on he existence result of the
Helmholtz decomposition on exterior Lipschitz domains.

Proposition 2.3. Let Q C R™ be an exterior domain and p enjoy (2.2).
Then the Helmholtz decomposition (2.1) exists.

The details of the discussion in this section can be found in [17, Sec. 2.1].

2.2 Maximal regularity
Consider the abstract Cauchy problem:

{@u +Au=f on (0,00), (2.5)

u(0) = uyg,



where —A generates a bounded analytic semigroup on a Banach space X.
Here, f and wg are appropriate given data. The definition of the maximal
regularity can be read as follows.

Definition 2.4. Let 1 < s < oo, f € L(0,00; X), and up € (X, D(A))1-1/s,s-
An operator A is said to admit a maximal regularity if the system (2.5) has
a unique solution w, which is differential for almost every ¢ > 0, satisfies
u(t) € D(A) for almost every ¢ > 0, and

10ule o 00 + Al 00s3) < C(IFlLe(@oes) + luoll xpeay, .. )-

Here, D(A) and (X,D(A));_1/s,s denote the domain A and the real inter-
polation space, respectively.

According to Weis [19, Thm. 4.2], we know the characterization of the
maximal regularity of a closed operator A: D(A) C X — X on a Banach
space X. To this end, we introduce the concept of R-boundedness.

Definition 2.5. Let X and Y be Banach spaces. A family of operators
T C L(X,Y) is called R-bounded if there exists a positive constant C' such
that forany N e N, T; € T,z; € X (j=1,...,N) it holds

N N
> ()T > i)y
=1 j=1

Here, 7;(t) := sgn(sin(2/7t)) are the Rademacher-functions. Besides, the
infimum over all C' > 0 such that the inequality holds is said to be the
R-bound of T and will be denoted Rx_,yv{7}. Especially, if X =Y, we
simply write Rx{7T }.

(2.6)

<C
)

L2(0,1;Y L2(0,1;X)

Remark 2.6. It is known that R-boundedness of a family of operators
yields its uniform boundedness (take N = 1 in the above definition). If
X and Y are Hilbert spaces, then R-boundedness is equivalent to uniform
boundedness.

The following proposition was shown in [19, Thm. 4.2].

Proposition 2.7. Let X be a space of type UMD and let —A be the gen-
erator of a bounded analytic semigroup on X. The operator A has mazximal
reqularity if and only if there exists 6 € (7/2,7) such that a family of oper-
ators {\(A + A) ' }aex, is R-bounded in L(X).

Remark 2.8. It is known that LP-spaces for 1 < p < oo are type UMD.
Besides, all closed subspaces of UMD-spaces are type UMD. See, e.g., Am-
man [1, Thm. 4.5.2] for details.



3 Main results

The following two theorems are main results in this article, see also [17].

Theorem 3.1. There exists a positive constant € > 0 such that for all p
satisfying

L1 < ! + (3.1)
— +e¢ .

p 2

the Stokes operator A,, is closed and densely defined and admits mazimal reg-

ularity. Furthermore, — A, generates a bounded analytic semigroup {1'(t)}i>0

on LE(S). Here, ¢ only depends only on the dimension n, the opening angle
0, and quantities describing the Lipschitz geometry.

Theorem 3.2. For all 1 < p < q < oo that both satisfy (3.1), there exists a
constant C > 0 such that

n(l

n

1 mnel 1
IVT(#) fllragay < Ct 2 2% @ flp (>0, feLE(Q)).

Remark 3.3. As an application of Theorems 3.1 and 3.2, we can construct
a mild solution to the three-dimensional Navier-Stokes equations in the crit-
ical space L>°(0,T;L3(Q)) via an iteration scheme due to Giga [6]. Namely,
the three-dimensional Navier—Stokes equations admits local-in-time mild so-
lutions u € BC([0,Tp); L5 (Q)), and if the initial value is sufficiently small,
then the solution is global in time, i.e., Ty = 400. If one have an interest in
control of the gradient of the solution, one have to show gradient estimate
for the Stokes semigroup in L3, see, e.g., Kato [8]. Further details can be
found in [17, Thm. 1.3], see also Tolksdorf [16, Sec. 6.3].

4 Analysis on bounded Lipschitz domains

The proofs of Theorems 3.1 and 3.2 rely on the study of the Stokes resolvent
problem (1.1). More precisely, our task is to show that there exists a positive
constant C' such that

Ris@en {AA+ Ap)"Ppa | A€} < C

for some 0 € (7/2, 7). To show this estimate for large values of A\, we follow
the cut-off technique due to Geissert et al. [4] and construct a parametrix



of the resolvent problem in an exterior domain by using the solutions to
a problem on the whole space and to a problem on a bounded Lipschitz
domain. On the other hand, to deal with small values of A\, we employ
the compactness argument (essentially based on Fredholm theory), where
Iwashita’s proof [7] is extended. When we consider the resolvent bounds for
small values of A, we emphasize that the standard contradiction argument
will fail to use because the maximal regularity property requires a random-
ized version of the resolvent estimate due to the lack of compact embeddings
for vector-valued Lebesgue spaces.

Let us recall the results for the Stokes operator in bounded Lipschitz do-
mains. According to Shen [13], Kunstmann and Weis [9], and Tolksdorf [15],
we know the following result.

Proposition 4.1. Let D C R", n > 3, be a bounded Lipschitz domain and
0 € (0,7m). Then there exists a constant € > 0 depending only on n, 6, and
the Lipschitz character of D such that for all p € (1,00) satisfying

1 1
T-dl<m e (1)

it holds £9 C p(—Ap.p) and there exists a constant C > 0 such that
Rip(pemy—12(0) AN+ Ap0) Py | X € Xp} < C.

Besides, for all such p it holds D(A;’/g) = W(l)zg(D) and there exists a con-

stant C' > 0 such that
1/2
IVl pcny < CllAY Bz o)

for ue D(AV).

When we construct a parametrix of the resolvent problem in an exterior
domain, we use the following Bogovskii lemma to keep the divergence free
conditions.

Proposition 4.2. Let D C R™ (n > 2), be a bounded Lipschitz domain,
1 <p< oo, and k € N. Let Lj(D) := {F € LP(D) | [,Fdx = 0}.
Then there exists a continuous operator B: LP(D) — WyP(D;C") with
B € E(ng’p(D),WlSH’p(D;(C”)) such that div(Bg) = g for g € L§(D).
Furthermore, the operator B extends to a bounded operator from Wo_l’p(D)
to LP(D;C"™). Here, the space Wal’p(D) stands the dual space of WH¥' (D)
with (1/p) + (1/p') = 1. The operator B is called the Bogouvskii operator
defined on D.



To employ the cut-off technique due to Geissert et al. [4], it is crucial
to prove a decay estimate in A for the pressure term 7wy. The proof of the
following proposition can be found in [17, Prop. 4.3].

Proposition 4.3. Define the operator Py: L5(D) — LE(D) by P\f := m).
There exist positive constants e,C > 0 and 6 € (0,1) such that for all p
satisfying (4.1) and all numbers a satisfying

1 2
0<2a<1——- ifp> —,
- p fp_l—i—
0<2a<2 3+5 if p < 2

o} - = . —
- 14 p 140

it holds
Rizoy-m A Pr | A € X} < C.

The proof of Proposition 4.3 relies on mapping properties of the Helmholtz
projection on D and the following lemma, see [17, Lem. 3.3].

Lemma 4.4. Let D C R, n > 3, be a bounded Lipschitz domain and let
p € (1,00) satisfy (4.1). For all § € (0,7), o € (0,1), and g € [0,1/2] there
exists C' > 0 such that
RLP(D;cn)—mg(D){|/\’aA,l),_Da()‘ +A4,0) "By | A€ Tp} < C,
RLP(D;(C")—>L§(D){|)‘|BV()‘ +A4,0) "By | A€ e} < C.

5 Outline of the proofs of Theorems 3.1 and 3.2

In this last section, we give outline of the proofs of Theorems 3.1 and 3.2.
Before explaining the proofs, we first introduce the following convention for
€ and p.

Convention 5.1. Let £ > 0 be such that the assertions of Propositions 2.3
and 4.1 are satisfied for all p satisfying
1 1 1
p 2
Let us take R > 1 large such that Q¢ C Br(0) = {z € R" | |x| < R}.
Define
D :=0Qn BR+5(0),
Ki:={zxe€eQ|R<|z| < R+ 3},
Ky:={z€Q|R+2<|z|<R+5}.



Besides, we define cut-off functions ¢, n € C*(R™; [0, 1]) by

0 for|z|<R+1,
plr) =
1 for |z| > R+ 2,

1 for |z| < R+3,
n(x) =
0 for|z|>R+4.

For f € 15(Q) let f® be the zero extension of f to R™, while set fP =
nf — Ba((Vn) - f). Here, for £ = 1,2, the symbol B, denotes the Bogovskii
operator defined on K. Let (uf, g) and (uf, 7D) satisfy

Ml — Au +Vg=f%  inRY,
div (uf) =0 in R,
and
M — Au® + VPl =fP  inD,
div (uf) =0 in D,
uf =0 on 0D

respectively. Here, the pressure term g is given by Vg = (Id — P, grn) fF and
we normalize it to satisfy [ pgdz = 0. Define the operators Uy and Il by

Urf = pufl + (1= p)uf = Bi((Ve) - (uf —uf)),
ILf = (1= @)} + g,
respectively. Then we see that the pair (Uy f,II) f) enjoys the system
AN=A)Uyf+ VIL\f = (Id+ Ty f in €,
div (Uxf) =0 in Q,
Uxf=0 on Of)

in the sense of distributions. Here, the remainder term T is given by
T f = =2[(Ve) - V](u} — uf) = (Ap)(uf — uf)
+(Ve)g =) = (A= A)Bi((Vp) - (uff —uf)).

Notice that it is clear that for each f € LP(€;C") it holds supp (T)f) C K1
and T is a compact operator on LP(€);C™"). Concerning for the resolvent
bounds, we have the following lemmas.



Lemma 5.2. Let § € (0,7). Let ¢ and p € (1,00) be subject to Conven-
tion 5.1. There exists Ay > 1 such that for all X\ € Ly with || > A\« the

operator
Id + P, oTh: LE(Q) — L2(Q)

is invertible. Besides, Ay can be taken such that
Rizpy{d +PpaTy) ' | X € T, [A| > A} > 2.

Lemma 5.3. Let ¢ and p be subject to Convention 5.1 with p < n/2, 6 €
(0,7), and A\ > 0. Forall X € ¥y N By, (0) the operator Id+Ty: LP(Q2;C") —
LP(€; C™) is invertible and there exists a constant C > 0 such that

Riren{(Id+Ty)"" [ A€ TN By, (0)} > C.

We first assume ¢ and p are subject to Convention 5.1 with p < n/2.
Thanks to the Helmholtz decomposition, we write

f + T)\f =f+ ]P)p,QT)\f + (Id — PPQ)T)\f =: f + PPQT)\f + V(I))\f.

Then, Uy f and IIy f — @, f solve the Stoles resolvent problem with right-hand
side f 4+ P, T f. Thus, if A > A, we see that the functions

U= U)\(Id + ]Pp’QT)\)_l,
7= (Il — ®))(Id + Poq) ' f

are solutions to the Stokes resolvent problem with right-hand side f. On
the other hand, if |A\| < A, we observe that

u = Uy(Id + Ty) £,
7= \(Id + Ty) " f

are the solutions to the Stokes resolvent problem with right-hand side f.
Hence, there exists C' > 0 such that it holds

RLp(Q;Cn){)\()\ + Ap)_l]P)p,Q | AE 29} <C (5.1)

with p < n/2.

According to [16, Prop. 5.2.5], the resolvent estimate for the case p = 2
has been already known. Since uniform boundedness is equivalent to R-
boundedness if p = 2, we have (5.1) with p = 2. By the complex interpo-
lation, the estimate (5.1) is valid for all p < 2 subject to Convention 5.1.
Therefore, from the duality result due to Weis [19, Lem. 3.1], we obtain (5.1)
for all p with Convention 5.1. This yields Theorem 3.1. Finally, Theorem 3.2
follows from the interpolation theorem due to Voigt [18] and the Cauchy for-
mula. For further (rigorous) discussion, we refer to [17, Sec. 5].
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