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1 Introduction

We consider the stationary Navier-Stokes equations in R™, n > 3;

—Au+u-Vu+Vr=f inzxzeR"

(SNS)
V-u=0 1inzeR",

where v = u(x) = (ui(x),uz(x),...,u,(z)) and 7 = w(z) denote the unknown velocity
vector and the unknown pressure of the fluid at the point x € R", respectively, while
f = flx) = (fi(x), fo(x),..., fu(z)) is the given external force. For this stationary
problem, there have been various studies on existence, uniqueness, and regularity of weak
and strong solutions to (SNS). For example, Leray[8] and Ladyzhenskaya[7] proved the
existence of solutions to (SNS), and later on, Heywood[5] constructed the solution of (SNS)
as a limit of solutions of the non-stationary Navier-Stokes equations. Then Secchi[10]
investigated existence and regularity of solutions to (SNS) in L™ N LP, p > n.

In this study, we focus on the well-posedness problem on (SNS). Let us first define the

notions of well-posedness and ill-posedness of (SNS):

Definition 1.1. Let (D, - ||p) and (S,|| - ||s) be two Banach spaces (Here D and S
indirectly denote the spaces of data (external forces) and of solutions, respectively). We
say that (SNS) is well-posed from D to S if there exists € > 0 such that

(i) For any f € Bp(e), there exist a solution uw € S of (SNS),

(ii) There exists 6 = 0(g) > 0 such that if a solution given by (i) belongs to Bg(0), then
it 1S a unique one,

(iii) The map f € (Bp(e),|| - |lp) — u € (Bs(9),|| - ||s), which is well-defined by (i) and
(i), is continuous,



where Bp(s) ={f € D; ||f|lp < e} and Bs(n) ={u € S; |ju|ls < 0}. In addition, (SNS)
is ill-posed from D to S if (SNS) is not well-posed from D to S.

It seems to be an important problem to find more general spaces D and S where (SNS)
is well-posed from D to S.

As for this problem, Cunanan-Okabe-Tsutsui[4] and Kaneko-Kozono-Shimizu[6] re-
cently showed that (SNS) is well-posed from D = B,;SJF% to S = PB;;JF% foralll <p<mn
and 1 < ¢ < oo, where P is the Leray projection. Moreover, in the case p = n, we can
easily show that (SNS) is also well-posed from D = Bn‘j to S = PL™ when 1 < ¢ < 2.
These spaces D and S are scaling invariant for the external force f and the velocity u in
(SNS) respectively. Hence, it seems to be important to investigate whether or not (SNS)
is well-posed from D = Bp_,?r% to S = PB;;J% even when n < p < oo and 1 < ¢ < o0,
and when p =n and 2 < ¢ < .

Our purpose is to prove that if n < p < 00,1 < g<oo,and if p =n, 2 < ¢ < o0,
then (SNS) is dll-posed from D = Bp_,?% to S = PBp_,qH% in the sense that the solution
map f € D — u € § is, even if it exists, not continuous. More precisely, under such a
condition, there exists a sequence {fn } yen of external forces with fy — 0 in D such that
there exists a unique solution uy € PL"™ of (SNS) for each fy, which never converges
to zero in S (actually, even in Bo_o{oo). Our result makes it clear that the well-posedness
and ill-posedness can be divided between the case (p,q) € [1,n) x [1,00] and the case
(p,q) € {n} x (2,00] U (n,o0] x [1, 00|, respectively.

For the proof of our theorem, we construct such a sequence of external forces according
to that of initial data proposed by Bourgain-Pavlovi¢[3] and Yoneda[l1] with some modifi-
cations. In fact, we make use of some properties of trigonometric functions, and show the
norm inflation of the second approximation of solutions in B;O%OO. Based on the method of
Bejenaru-Tao[1] showing the ill-posedness of the quadratic non-linear Schrédinger equa-
tion, we prove the uniquely existence of a sequence {uy}yen € PL™ of solutions corre-

sponding to {fn}xen, which never converges to zero in B! .

2 Result

First of all, we should prepare definitions and properties of the Littlewood-Paley de-
composition and the homogeneous Besov spaces.

We denote by S the space of rapidly decreasing functions, and S’ denotes the dual space
of &, which is called the space of tempered distributions. We define Sy to be the space of



all ¢ € § such that

/n x%p(z)dr =0

for any multi-indices «, and define S as the dual space of Sy. It is known that S is a
closed subspace of S, and that there holds the topological isomorphism

Sy=8'/P,

where &’ /P denotes the quotient space with the polynomials space P.
Let us introduce the Littlewood-Paley decomposition of functions. First, we take ¢ € S
such that

0sosi sl = {eery j<ld<2l. Yoeio-16£0.

2
JEZ
Then, we define a family {¢;},., C S of functions as
$i(6) = 9(277¢), jEL, (2)

where f = Ff denotes the Fourier transform of f defined by f (&) = fon f(x)e ™ dx. We
should note here that

supp(¢;) = 1€ € R, 2771 < ¢ < 2771} (3)
Associated with {gpj}jez above, we define the homogeneous Besov spaces B;q by

= {res/P: Iflls,, <}

for s e R, 1 < p,q < oo with the norms

1

(Zjea@les  fl)7) " a < oc,
supjez (27°]1; * fllp), q =00

/]

Ss p—
BP,q

It is known that this definition is independent of choice of a function ¢ satisfying (1). As
for the homogeneous Besov spaces, there hold some embedding properties as below:

B;lh‘_)B;tp ‘SGR?lSpSOOvlS(hSCIQSOO, (4)
Bsi =Bz, 1<q<o0, —00<sy<s <oo, 1<p <ps< oo, (5)

with s; — n/p; = s9 — n/ps.

In addition, the Riesz potential (—A)3 f = F-1(|€]*f(€)) (o € R) gives an isomorphism
from B;;a onto B;yq for any s e R, 1 <p,q § oo, which implies that
1205 Fllgy = 1 Flgpre- (6)



The above properties (4), (5) and (6) will be often used implicitly in what follows.

Now let us return to the problem on (SNS). First, we rewrite (SNS) to the generalized
form so that we can treat it easily. We introduce the Leray projection P : LP — [P =
{feCy;, V- f= O}H‘HLP. We should note here that in R™, P is defined as a matrix-valued
operator P = (Pji)1<jk<n With Pji = 65+ R; Ry, where R; = %(—A)_%, j=1,2...,n
denotes the Riesz transform. By applying P to (SNS), we obtain

—Au+ P(u-Vu) = Pf,

implied by P(Vr) =0 and Pu = u, since V - u = 0. Hence, the solution u of (SNS) can
be expressed as
u=Lf+ B(u,u), (rSNS)

where Lf = (—A)"'Pf and B(u,v) = —(=A)"'P(u- Vv).
As for the well-posedness of (rSNS) (or (SNS)) in homogeneous Besov spaces, the fol-
lowing previous result is well-known:

Proposition 2.1. (Cunanan-Okabe-Tsutsui[4], Kaneko-Kozono-Shimizu[6])
Let n > 3. Suppose that 1 < p < n and 1 < q < oco. Then (rSNS) is well-posed from
— +7

By " to PByg ”

n

Remark 2.2.  We should note here that the space B;;SJF" (1 < p,g < ) for the
external force f and the space B, ;+% for the solution u are both scaling invariant with
respect to (SNS), respectively. Moreover, it is seen from the embedding (5) that if p; < p,
then we see Bpl?);pl > By, ;E and By, ;pn s By, ;”T;.

For the case p = n and 1 < ¢ < 2, it is still unknown whether or not (rSNS) is well-posed
from B; 3 to PBqu. However, by extending the solution space to PL"™, we can show the
following;:

Proposition 2.3. (Well-posedness when p = n and 1 < ¢ < 2) Let n > 3. Then
(rSNS) is well-posed from B 2to PL" if 1< q<2.

Indeed, we can prove Proposition 2.1 and Proposition 2.3 by showing the quantitatively

well-posedness of (rSNS) defined as follows, which is one of sufficient conditions of the
well-posedness defined in Definition 1.1:

Definition 2.4.  Let (D,|| - ||p) and (S,|| - ||s) be two Banach spaces. We call that



(rSNS) is quantitatively well-posed from D to S if there hold two estimates as follows:
ILflls < Cllfllp, VfeD,
|B(u,v)|ls < Cllullsl|vlls, Vu,v€S.

Actually, we can see the boundedness of L by that of P (or Riesz transforms) in homo-
geneous Besov spaces. We can also see the boundedness of B by using the Hoélder type
estimate of function products deduced by the Bony’s paraproduct formula (for Proposi-
tion 2.3, it suffices to use the Holder inequality). For the detail, see [6].

Our main result now reads:

Theorem 2.5. (Main theorem) Let n > 3. Suppose that D and D are two spaces
with D < D as either (1) or (2):

n

(1) D= B3 ﬁ:Bp_jJr” withn < p < oo and 1 < g < o0,

n,1»

(2) D=DB;2, D= B2 with2 < q < cc.

n,27 n,q
Let £,0 > 0 be constants appeared in Definition 1.1 which guarantee the well-posedness of
(rSNS) from D to PL", and take 0 < n < e arbitrarily. Then the solution map

feBom) |- lp) = uwe (Brm(d) |- lp2.)

is discontinuous, where (Bu(n). | - Ilp) and (Bpun(8), | - | 1) denote the ball By(n)
equipped with the D topology and Bpn(8) with the Bo_ol,oo topology, respectively. In other
words, (rSNS) is ill-posed from D to PBO_O{OO.

Remark 2.6. Suppose that D and D are as the above theorem. We now arbitrarily
choose a sequence {gy } yen such that supycy [[gn||p < €. Then by Proposition 2.3, there
exists a unique solution vy € PL"™ for each gy. In addition, if gy — 0 in D, then we
see vy — 0 in PL™ by the well-posedness (continuity of the solution map). Theorem 2.5
means, however, that the weaker convergence gy — 0 in D cannot sufficiently guarantee

vn — 0 even in the weakest scaling invariant norm B_'_.

3 Proof of the main theorem

In order to prove Theorem 2.5, we make use of the well-posed theory proposed by
Bejenaru-Tao[1] as below:



Proposition 3.1. (Bejenaru-Tao[1]) Suppose that (rSNS) is quantitatively well-posed
from D to S. We now define the nonlinear maps A, : D — S forn € N by

Alf = Lf7
Anf = Zk,lZI,k—l—l:n B(Acf, Aif), n>2.
(1) Each A, f belongs to S and there exists a constant C > 0 such that
14 flls < CPIfll, ¥neN.

Moreover, there ezists a constant € > 0 such that if f € Bp(e), then there exists a unique
solution uw € S of (rSNS), which is expressed asu =" A,f.

(2) Suppose that D and S are given other norms || - || and || - || g, respectively, which
are weaker than D and S in the sense that

1l < Cllifllo, ulls < Cllulls.

Assume that the solution map f +— wu is continuous from (Bp(e), || - || 5) to (Bs(6),] - |l5)-
Then for each n, A, : D — S is also continuous from (Bp(e),| - || 5) to (Bs(d), |

Proposition 3.1 means that if at least one of A,, is discontinuous, then (rSNS) is ill-posed
from D to S. By this proposition and Proposition 2.3, it suffices to show the following
lemma in order to prove Theorem 2.5:

Lemma 3.2. Let n > 3. Suppose that D and D are two spaces with D < D as either
(1) or (2) of Theorem 2.5, and n > 0 is a constant given in that theorem. Then there
exists a sequence {fn}nen of external forces and a constant C' = C(n) > 0 satisfying the
following (i), (ii) and (iii):

(i) supyen [ fnllo <,

(ii) | fnllp — 0 as N — oo,

(111) ianeN ||A2(fN)HBo_oloo = ianeN HB(L]CN, LfN)HBgol,oo > (.

Proof of Lemma 3.2. We first take ¢ € S as

supp(¥) = {€ € R™; [¢| < 1}, ¢(€) > 0in {€ € R™|¢] < 1},

and we define

\W,ﬂ = (_A) {1/}1’; Cos(mxl)} » J=23 meN,

6



where 1, = ‘977’” Using this function, we construct {fx}nen differently in the case (1)
J

and (2) of Theorem 2.5.

Step 1. The case (1): D= B2, D = B;j+p withn <p <oo and 1 < g < oo.

n,l’

n

We define a parametrized vector-valued function as
oot = Mea U — e A >0, M > 100,

where e; = (0,1,0,...0) and e3 = (0,0,1,...,0) are unit vectors along =, and z3, re-
spectively. This function is inspired by a initial data sequence proposed by Bourgain-
Pavlovi¢[3]. It is clearly seen that V - g = 0 and hence Pgy = gaar. Therefore, we
have

Lo = (—A) gam = Acos(Mxy){eathe, () — estha, ()}
Now let us consider the estimate of gy . We recall {¢;},ez in the definition of Besov
spaces (see (1)-(3)). Since
L. - 5 ,
Flipe,; cos(Mx1)](§) = —57{7-{1/)(5 — Mey) +¢p(E+ Mey)}, j=2,3,

we see that there exist at most three indices j € Z such that ¢; *x Lgy pr # 0. Indeed, such
indices must satisfy

{CeRY 2T < <PMIN{EeR M —1< ¢ < M+1} #£0,

ie., (M —1)/2 <2 <2(M +1). Therefore, we obtain the estimates

losarllo = lorarllsz = (=2 ganllse
= > ey * Laawllen
JEZ
< CA. (7)
and
loxaallp = lganll -sv < I(=D) " ganall 103
g p,1
= D> 2T x Lyl
JEL
< CAM "% =0 as M — co. (8)
for any M > 100, implied by —1+n/p < 0. Here we have used the Young inequality, the
equality
sl = 112" @0(27) [ = llpollzr, Vi € Z, (9)
and the estimate
ILgamllze < CIVY|lp, YA >0, VM > 100, 1 < Vp < oo. (10)



We next calculate B(Lgx s, Lgaar). It is seen that

1 1
(Lgxnr) - V(Lga) = 5)\2(62@1 + e3Ps) + 5)\2(62@1 cos(2Mxy) + e3Py cos(2M z4))

= Il + IQ,
(a+8)
where ¢xgx§ = Z%Txéfw and
(I)l = /l/}xg/l/}xgl‘g - /‘/}:1:2(‘1/}9337 (I)Z = _/L/)Ig/g/)xg + /L/)Iz/l/)xza?g' (11)
Since
supp (1) C supp(y * ) C {€ € R [¢] < 2},
we see that

[(=A)'PLlga, = sup 27| x (=A) ' PLl= > CN >0

JEZL,j<2

for some constant C' > 0. On the other hand, it is seen that
supp(ly) C supp((1) % 1) (- £ 2Me;)) C {€ € R";2M — 2 < |€] < 2M + 2},
which yields p; * ((—A)~"'PIL) = 0 for any j < 2. Therefore, we obtain the estimate that

IB(Lgaar: Laan)lze, = sup2 ey« (<A) P + )1
J

sup 27y % (~A) " PI |1
JEZL,j<2

> ON (12)

Y

for any M > 100.
Now for given 7 > 0, we can fix A\ = X\ so that supy;>g9 |gre,mllp < 7 from (7). In
addition, from (8) and (12), we see that a sequence {fx }nen defined by

N = @oN+100, N=1,2.3,...

satisfies (i), (ii), and (iii) of Lemma 3.2. This proves Lemma 3.2 in the case (1) of Theorem
2.5.

Step 2. The case (2): D = B3, D= DB;2 with 2 < q < cc.

ngq
We define another parametrized vector-valued function as

®)

P = Zk’ 2{62 k2
VI k 10

— e WA}, A>0, M > 100,



where I'(M) = ZQJ: 10 k1. This function is inspired by a initial data sequence proposed
by Yoneda[ll]. As similar to gy s, we see that V - hy yr = 0 and

M
A ! 2
= k™2 cos(2% m1){eathy, (1) — esthy, (1)}

VI (M) k;o ’ ’
Let us consider the estimate of hy p,. By a similar way to Step 1, we see that for each £,
there exist at most three indices j € Z such that @, * (1, cos(2¥°x1)) # 0 (I = 2,3), which
must satisfy (28 —1)/2 < 2/ < 2(2¥° + 1). Moreover, the set {2¥"},510 is so discrete that

we see

Lhyy = (—=A) " hyu

{J € Z; pj % (y, cos(2M21)) # 0} N {j € Zi p; # (1, cos(2%1)) # 0} =

for any ki, ko > 10 with k; # ky. Hence we obtain the estimate

Ihaallpzz = I1(=2)" Pl
1

= {Z lipj * (—A)_lhA,MHan}

JEZ

M 1

- ol

M) i

CA. q=2,
< 13
- CA 2 < g < 0. (13)

/T(M)’
Here we have used the Young inequality, (9), and (10). Since I'(M) — oo as M — oo, we
see from (13) that

1l gz =0 as M — oo, if 2 < g < oo. (14)
We next calculate B(Lhy ar, Lhy ar). It is seen that

(Lhyar) - V(Lhy )

2 2 M

A
= ?(62@1 + e3Ps) + ST (A) (e2®y + e3Ds) ]Z;) EL cos(2k2+1x1)

)\2
Farap T et) g 0 Kb eos((2 42 )m) ¢ cos(2 ~2)m)
10<k,I<M
kAl
= Jl + J2 + J3,



where ®; and @, are as (11). Since the above coefficients 21, 28 4 21 and |28* — 2V

are large enough, we see
@ x (—A) T P(J + o) = @+ (—A) T PTy, Vi <2,
Hence, by a similar way to the argument on I; and I, in Step 1, we obtain
IB(Lhyas Lhaa) s = (=) Pyl s > CN2 > 0. (15)

Now for given > 0, we can fix A = Ag so that supy/>190 [|Pre,mll g0, <7 from (13). In
addition, from (14) and (15), we sec that a sequence {fy}nyen defined by

v = hagni100, N=1,2,3,...
satisfies
: i vllgo =01 < i | -1 > CON.
jsvlg\’] ||fNHBgy2 <, ]\}gﬂoo ||fNHBg’q 0if 2 < ¢ < oo, ]{frg\] HB(LfN’LfN)HBoJ,w > O\

This proves Lemma 3.2 in the case (2) of Theorem 2.5, and hence the proof of Lemma

3.2 is completed.
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