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1 Introduction

An action evolution is a pair (X, N) of processes X = (Xy)rez and N = (N )rez defined
on a probability space (2, F,P) satisfying the stochastic recursive equation

X, = N X1 P-as. forkeZ, (1.1)

where the observation X = (Xj)gez takes values in a measurable space V' which evolves
at each time being acted by the driving process N = (Ny)rez which is an iid random
mappings of V' into itself. Here N, X}, ; means the evaluation of a random mapping Ny
at Xj_1; we always write fv simply for the evaluation f(v). We may call X a two-sided
random orbit of the random dynamical system generated by the iid random mappings N.

Let us give a precise definition. Let ¥ be a measurable space consisting of mappings
from V to itself and let P(X) denote the set of probability measures on 3. For u € P(¥),
we call (X, N) a p-evolution if it satisfies (1.1) and Ny, at each time k£ has common law p
and is independent of the past F, ,;Xflv defined as

FXN = o(X;, Ny 1§ <k —1). (1.2)
It is obvious that (X, N) is a p-evolution if and only if the Markov property
P((Xi Vi) € - [ 7)) = (Xt Nia)i) as. for k€7 (1.3)
holds with the joint transition probability being given as
Q(@.9):) =n{fex:(fa.e}. (1.4)

Consider a p-evolution (X, N). Since for j < k we know that o(Ny, Ny_1,..., Njt1)
is independent of fjx = 0(X;,X;_1,...), the driving noise F := o(Ny, Nx_1,...) is
independent of the remote past noise F~_ = ﬂj .7-"]X. We sometimes encounter a third
noise, which we define as a sequence of random variables (Uy)rez such that

FXCcFNVFY Vo(Uy) as and o(Uy) C FOV as forkeZ (1.5)

holds with the three o-fields FY, F* _ and o(U,) being independent. Here, for o-fields

Fi1, Fa, ... we always write F1 Vo V- - - for o(FLUFU- -+ ). In addition, we can sometimes
find a reduced driving noise, which we define as a sequence of o-fields (G )rez such that

FX=GVvF* vo(U,) as and G CF) as forkeZ (1.6)
holds. The former identity of (1.6) will be called the resolution of the observation.



Iterating the equation (1.1), we have X = N ; X, with

NkJ = Nka_l"'Nj+1 (17)
for j < k, and thus we may expect in general that
Fc(F vFY) C]-"k <ﬂ]—"X> = FNvFX_. (1.8)
i<k i<k

?

This inclusion C, however, is false in general, or in other words, there may exist a non-
trivial third noise; see [6, (1) of Remark 1.4] for the famous errors by Kolmogorov and
Wiener. See also [2, Section 2.5] for related discussions.

In many results, the third noise is always a random variable with a uniform law on a
certain set which is not given a priori. We discuss several examples with proofs, for better
understanding the third noise problems.

2 Random translations on a torus

Let us consider the one-dimensional torus T = R/Z ~ [0,1), which is a compact com-
mutative group with respect to addition in T, or addition in R mod 1. For a probability
meausure 4 on T, we consider a p-evolution

Xk = Nk + Xk—l a.s. for k € Z, (21)

where X and N take values in T and we understand N, + X;_; as addition in T. Note
that FY C FX for all k € Z, since N, = X3 — Xj,_; in T (or in R mod 1).

The resolution problem itself originates from Yor [9] who did a thorough study about
this action evolution on a torus with inhomogeneous noise. His results were generalized to
action evolutions on general compact groups by Akahori—-Uenishi-Yano [1] and Hirayama—
Yano [3]; see also [8] for a survey of this topic.

Let us write uv € P(T) for the convolution of p and v € P(T):

_ / / La(e + y)u(de)v(dy). (2.2)
TxT

We equip P(T) with the topology of weak convergence; p1,, — p if and only if [ pdpu, —
[ ¢dp for all continuous function ¢ on T. We write we for the normalized Haar measure
on G if G is a compact group. We write wy for the uniform law on V if V is a finite set.
There is no confusion for finite groups.

Let us present some examples of Yor [9].

Example 2.1 (deterministic translation). Consider a p-evolution (X, N) with p = 4,
for a € T:

Xy =a+ X, as. forkeZ. (2.3)



Then the driving noise is trivial, i.e., ¥ = {0,Q} a.s. for k € Z, and we have
FX=F%_ as forkeZ, (2.4)

which gives the resolution of the observation and shows no third noise. In fact, since
X —ka= Xy 1 — (k—1)a as., we have X, = X+ ka a.s. for k € Z, which shows that
F¥=F%_ =0(Xy) as.

—0o0

Example 2.2 (lazy irrational translation). Consider a p-evolution (X, N) with u =
wyio,ay- We call it a lazy translation, because it sometimes stays (X, = Xj_1) or translates
(X = a+ Xy 1) according as N, = 0 or a. Suppose a ¢ Q. It then holds that the remote
past noise is trivial, i.e., FX_ = {0, Q} a.s. for k € Z, and that

FX=FVvo(Xy) as. forkeZ, (2.5)

where, for each k € Z, the X}, is independent of 7} and has uniform law on T; this gives
the resolution of the observation and shows that (Xj)kez is a third noise.

Let us prove this claim. Set Nj; = Ni + Ny_1 +---+ N,4; for j < k. Since X; =
Xi — Nij and N; = X; — X, for j < k, the identity (2.5) is obvious. Let us prove the
independence. We utilize the characters: x,,(z) = €™ for 2 € T and m € Z. By the

irrationality of a, we have ‘—HXQ’” (o)

< 1 for all m # 0, and hence we have

[t = [anteinta)) =(F22D) 0 toranym 20 (20)

2 n—o00

This shows " — wy by the theory of Fourier series. For B € F* | for any continuous

function ¢ on T, for k > j > [ and for A € o(Ny, Ny_1, ..., Nj+1), we have
E[lAlB(p(Xk)] :E[lAlBQO(Nk,j + NjJ + Xl)] (27)

=FE [1A13 /T O(Nij + 2+ Xl)uj"(dz)] (2.8)
B[ als [ elhontas)] 29)
—PAP(B) [ plawn(dz). (2.10)

T
since for any sequences {x,},{2},} C T we have &,, ;' ""8,, — wr as n — oo. This shows
that, for each k € Z, the X} has uniform law on T and that the three o-fields F}, FX_
and o(X}) are independent. By the identity (2.5), we have F~ _ C FN Vo (Xy) a.s. Since
the remote past noise F~_ is independent of FY V o(X}), we see that it is independent
of itself, which shows its triviality. The proof is now complete.

Example 2.3 (lazy rational translation). Consider a p-evolution (X, N) with u =
wio,e} fora=1/3 € T. Set H = {0, a,2a} and C = [0, a). Note that H is a subgroup of T
and C is isomorphic to the quotient set T/H. Define amapping T > 2z — (27, 2%) € HxC
so that z = 2T + 2¢ or in other words, if z = (n +t)a forn = 0,1,2 and ¢ € [0, 1), then



2 = na and 2% = ta. Let (X, N) be a p-evolution. It then holds that there exists a
C-valued random variable Z¢ such that X{ = Z¢ a.s. for k € Z. Moreover, we have the
decomposition

X;=-Npj+ X +7Zc as forj<k (2.11)
and the resolution of the observation
Fr=FVVvFE _vo(X{) as. forkeZ, (2.12)

where FX_ = 0(Z¢) as. and, for each k € Z, the X is independent of 7 v FX_ and
has uniform law on H; as a consequence (X/7);cz is a third noise.

Let us prove this claim. Since X = Nj, + X;_; and Ny € {0,a} C H, we have
X =N+ X2, XP=X{, as, (2.13)

which shows existence of Z¢(= X§) such that X = Z¢ a.s. for k € Z. Identity (2.11) is
now obvious. Since

. 1+ Xm(a) ”_} 1 (me3z)
[mtanrian) =(F2) {O ity 2.14)

we obtain p" — wy by the theory of Fourier series. For B € FX_ for any continuous
function ¢ on H, for | < j < k and for A € o(Ny, Ny_1, ..., Nj;1), we have

E[1al5p(Xi)] = Elalpe(Ne; + Njo + X")] — P(A)P(B)/ p(z)wr(dz), (2.15)
——00 H
in the same way as the previous example. This shows that, for each k € Z, the X has
uniform law on H and that the three o-fields F¥, FX _ and o(X}/?) are independent. By
(2.11), we obtain

FX=FYVvao(Zo)Vo(XF) as. forkeZ. (2.16)

From this identity we obtain FX_ C o(Z¢) V (FYN V o(X[)) a.s. By the independence of
FX_ and FY Vo(XF), we can deduce that F~X_ C 0(Z¢) a.s. (see [2, Section 2.2]). We
now obtain FX_ = o(Z¢) a.s. and thus the proof is complete.

Example 2.4 (lazy rational-irrational translation on a two-dimensional torus).
Let us consider the two-dimensional torus T? = T x T, which is also a compact commu-
tative group under componentwise addition. Consider a p-evolution with p = wi,0),(a,6)}
fora =1/3 and b ¢ Q. Set H = {(0,z), (a,z),(2a,z) : x € T} and C = {(ta,x) : t €
[0,1),2 € T} =[0,1/3) x T. Note that H is a subgroup of T and C' is isomorphic to the
quotient set T?/H. We can then deduce the same resolution of the observation by the
same argument as the previous example.



3 Finite-state action evolutions

For a finite set V' and for the set > of mappings of V into itself, we may consider the
action evolution

X, =N, X1 P-as. fork e Z, (31)

where X takes values in V and N does in . As we have some difficulty in obtaining
resolution of the observation, we would like to consider a multiparticle evolution. For

m € N, we understand that any mapping f : V — V operates x = (z!,...,2™) € V™
componentwise, i.e., fx = (fz!,..., fz™). We call (X, N) an m-particle pu-evolution if it
satisfies

X; = N X1 P-as. for k € Z, (3.2)

or in other words
X, =N, X, , Pas fork€Zandi=1,...,m, (3.3)

where X = (X}, )pez with X = (X}, ..., X") takes values in V™ and N = (N},)ez takes
values in ¥ with Ny at each time k£ having common law 4 and being independent of .7:2{_’];[.

Write S(p) = {f : p{f} > 0} for the support of p and write (S(n)) = U2, S(n)"

n=1
for the semigroup generated by S(u). For monoparticle action evolutions, Yano [7] has

proved that there is no third noise if and only if S(u) is sync, i.e., there exists g € (S(p))
such that #¢(V) = 1. Recently Ito-Sera—Yano [4] has obtained the resolution of the
observation for m,,-particle action evolution where m, = min{#g(V) : g € (S(u))}.

For u,v € P(X) and for A € P(V), we define
A= [ [1attgn@pvag, Acx. (3.4)
(u\) (B // Ig(fx)u(df)A(dx), BCV. (3.5)

We sometimes write pf simply for pdy, etc. Let us present an example of the main

theorem of Ito—Sera—Yano [4].

Example 3.1. Let V = {1,2,3,4}. We write [y', 4% v3, y*] for the mapping f of V into
itself such that fi = y® for i = 1,2, 3,4. Consider the three mappings:

F=102244, ¢g=[3,3,11, h=1I1,3,31]. (3.6)

Consider p1 = wid,f,g,ny, Where id denotes the identity mapping of V. It is obvious that
S(p) = {id, f, g, h} and that m, = 2.

(i) The unique minimal two-sided ideal K of (S(u)), which is called the kernel of (S(u)),
admits the Rees decomposition given as

:<{f7g7 h}) =LGR, L= {67 f}7 G = {679}7 R = {67 h}v (37)



where e := ¢g? = [1,1, 3,3] and the product mapping L x G x R > (a,b,c) — abc € K is
bijective. We denote its inverse by K 3 k — (kL k% k%) € L x G x R.

(ii) The convolution product of u satisfies
2 1 2 1
n L R L R
S ST S S R 3.8
P ntwan”, T = 0e 50y, T = g0+ S0 (3.8)

(iii) It is easy to see that the measure

1
3

1
3

1
6

1

A=
6

01,3) + 503,1) + =02,4) + =0(4,2) (3.9)

is a unique p-invariant probability (i.e., uA = A) on V2 = {(2',2?) € V2 : 2! # 2%}, Set
W, =S(A) ={(1,3),(3,1),(2,4), (4,2)} (C V), (3.10)

then we easily have the representations
W, =LG(1,3) and A =n"we(1,3). (3.11)

We now obtain that the product mapping L x G > (a,b) — ab(1,3) € W, is bijective.
We denote its inverse by W, 3 ¢ — (zl, %) € L x G.

(iv) Let us consider a stationary biparticle p-evolution (X, V) such that X has a common
law A. Then we have the factorization

X; = XHMS)T'US(1,3)  aus. for j <k (3.12)

with US = X¢ £ we, MY = XG(X¢ )" and MZ, = MEME |- MS,. Consequently,
we obtain the resolution of the observation

Fr =Gy Vvo(US) as with G =o(XF, M :j<k), (3.13)
where FX_ is trivial and the two o-fields F¥ (D G) and o(US) are independent.

Let us prove these claims.

(i) Let us write S = (S(u)). Since g?> = €? = e and ge = eg = g, the set G = {e, g} is a
group with e the unit element. Noting that

ef=he=ec, f*=fe=f gf=hg=hf=g, h®*=ch=h, (3.14)

we have so that LG R is a two-sided ideal of S. For any k € LGR, we have e € SkS so
that LGR is a minimal ideal. Uniqueness of a minimal ideal is a known fact (see, e.g., [5,
Theorem 2.12]). The injectivity of the product mapping L x G X R 3 (a,b,¢) — abc € K
is obvious because ef = he = e and G is a group.

(ii) From a known fact (see, e.g., [5, Theorem 2.2]), the set K of subsequential limits of
{un} is given either as [K = {n, un} with n = ntn® and pun = ntgn®| or as [K = {n} with



n = nfwen®], where n* = n{k* : k € K} and nt = n{k® : k € K}. If K = {n, un} were
the case, then it would follow that f = ff € S(u)S(n) = S(un) = LgR, which would
contradict the fact that f¢ = e. Hence we see that K = {n}, which shows pu" — 7. Let
nt = pd. + qd; with p=1—q € [0,1]. Since e = 4, we have un*we = n*wg. We have

1 1
' we = 11200 + (L + @)s + (L + a)dgtwa = {2+ p)de + (1 +q)ds wa,  (3.15)

which shows that n’ = %55 + ééf. By the same way we obtain nff = %56 + %5h.

(iii) Since e(1,3) = (1,3) and g(1, 3) = (3, 1), the group G acts on the two-point set {1, 3}
as permutations. Noting that f(1,3) = (2,4) and f(3,1) = (4,2), we have obtained the
injectivity of the product mapping L x G 3 (a,b) — ab(1,3) € W,,.

(iv) Let k € Z be fixed. Since X € S(A) = W, we can decompose it as X, = XFX (1, 3).
Since X = A = nfwe(1,3), we see that X2 and X¢ are independent and X¢ < we.

For j <k, since M7, = X{(X§)~!, we have
X; = XIXG(1,3) = XF(ME)T'X{(1,3)  as, (3.16)

which shows (3.12) and (3.13). We here omit the proof of the fact G C F}; see [4] for
the details.

Let us prove the independence of the two o-fields Y and o(X{). For j < k, let
A € 0(Ny, Ni_1,...,N;41) and let ¢ be a function on G. We now have

E[Lip(X9)] = E[1ap(MEXE)] = P(A) /G o(a)wo(da), (3.17)

since XJG is independent of (N, Nj_1, ..., N;41) and has uniform distribution on G. This
shows the desired independence.

References

[1] J. Akahori, C. Uenishi, and K. Yano. Stochastic equations on compact groups in discrete negative
time. Probab. Theory Related Fields, 140(3-4):569-593, 2008.

[2] L. Chaumont and M. Yor. Ezercises in probability. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, Cambridge, second edition, 2012. A guided tour from
measure theory to random processes, via conditioning.

[3] T. Hirayama and K. Yano. Extremal solutions for stochastic equations indexed by negative integers
and taking values in compact groups. Stochastic Process. Appl., 120(8):1404-1423, 2010.

[4] Y. Tto, T. Sera, and K. Yano. Resolution of sigma-fields for multiparticle finite-state action evolutions
with infinite past. Preprint, arXiv:2008.12407.

[5] A. Mukherjea and N. A. Tserpes. Measures on topological semigroups: convolution products and
random walks. Lecture Notes in Mathematics, Vol. 547. Springer-Verlag, Berlin-New York, 1976.

[6] R. van Handel. On the exchange of intersection and supremum of o-fields in filtering theory. Israel
J. Math., 192(2):763-784, 2012.



[7] K. Yano. Random walk in a finite directed graph subject to a road coloring. J. Theoret. Probab.,
26(1):259-283, 2013.

[8] K. Yano and M. Yor. Around Tsirelson’s equation, or: The evolution process may not explain
everything. Probab. Surv., 12:1-12, 2015.

[9] M. Yor. Tsirel’son’s equation in discrete time. Probab. Theory Related Fields, 91(2):135-152, 1992.



