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1 Introduction

For a given measurable dynamical system or measurable random dynamical system
over a probability space, the existence of an absolutely continuous finite or o-finite
infinite invariant measure (acim, for abbreviation) with respect to the reference mea-
sure is important and fundamental to analyze statistical properties of the system. See
[A97, ANV15, BB16, F69, F80, S95] and references therein. In [T1], the author gave
some necessary and sufficient conditions for the existence of a finite or o-finite acim for a
given system over a probability space (in terms of Markov operators). In this note, based
on [T2], we introduce a certain model of (annealed type) random dynamical systems and
estimate the density functions of their acim.

We recall definitions and notations which are needed in this note. Let (X, %, \) be
a probability space and T : X — X be a measurable and non-singular transformation
(i.e., T-'% C % and the pushforward measure A o T~! is absolutely continuous with
respect to A). Then a measure pu on (X, %) is called an acim for T provided that p
is absolutely continuous with respect to A and po T~! = p. p is called a finite (resp.
o-finite) acim when p is a finite (resp. o-finite) measure. Analogously, for an annealed
type random map we define an acim as follows. Let I be a non-empty and at most
countable set and 7; be a measurable and non-singular transformation from X into itself
for each i € I. For a given probability vector {p;}icr, a random iteration (of {T;}icr
with probabilities {p;}icr) {Ti,p:i : ¢ € I} is the Markov process given by the following
transition probability:

P(z,4) = 3 pila(Ti)
el
for M\-almost every x € X and any A € Z. Then a A-absolutely continuous finite (resp.
o-finite) measure p is called a finite (resp. o-finite) acim if u satisfies

p=> ppoT;y .
i€l



We also recall that a measure p is called ergodic if for any measurable set with P(x, E) =
1g(z) for p-almost every z € X we have either pu(E) = 0 or u(X \ F) = 0. For more
general cases of random dynamics including the case when [ is uncountable or position
dependent cases (i.e., p; is also a function of = € X)), we refer to [GB03, 112, 120] and
references therein.

Now we are addressed to define the model of our random dynamical systems on
the unit interval. Set arbitrary o > 0. We define the partition of X = [0, 1] into
20 ={Xn=(n+ 1)_1/0‘,71_1/0‘]}”21. Then we have A(X,,)/A(Xp+1) monotonically
decrease to 1 as n — oo where X is Lebesgue measure on X. Let I be a non-empty
countable set and for each 7 € I, J; be a non-empty subset of N. We consider a family
of transformations {7; : i € I} on X (see Figure 1 below for an example) which are
piecewise monotone and piecewise linear on the partition 2, satisfying

(a-1) For each i € I, T; |x,: Xn — X,—1, for any n > 2, monotonically increasing given
by

(n _ 1)—1/a _ n—l/a (n + 1)_1/O‘(n _ 1)—1/a —n2«

T I (@) = n=1/e — (n + 1)_1/6‘36 - n=te — (n+1)-Va 7

namely, all 7; are identical on X \ X7y;

(a-2) For each i € I, T; [x,: X1 — Uje 7, Xk, monotonically increasing and surjective
which is piecewise linear in the sense

2kesi M Xk)

T/
’X1 )\(Xl)

whenever the derivative can be defined.

We call a family of transformations {7; : ¢ € I} with the above conditions (a-1) and
(a-2) piecewise linear intermittent Markov maps (with the index {.J;}ier).

Then, for a given probability vector p; on I, we consider a random iteration of
piecewise linear intermittent Markov maps with uniformly contractive part such that

(b-1) {T; :i € I} is piecewise linear intermittent Markov maps;

(b-2) On Xj, the random iteration {7}, p; : ¢ € I'} is uniformly contractive on average:
> 1.
Z\ ’\Xl ZZ;@ A(Xk)

Remark 1.1. The requirement that I is countable is just for simplicity of notation. In
fact, we can define the model even when I is an uncountable set and p is a probability
measure on I. If I is uncountable then we integrate over I instead of summation over
I. See [T2] for more detail.
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Figure 1: A graph of T; for some ¢ € I of piecewise linear intermittent Markov maps.
For this T, we can see J; = {n € N:n > 3} since T; X1 = >3 Xn.

By the definition, random iterations of piecewise linear intermittent Markov maps
with uniformly contractive part do not satisfy expanding on average even if we remove
a small neighborhood of a common indifferent fixed point 0 in the sense [I20]. In the
next section we will see that this model always admits a finite/o-finite acim and show
the criterion whether an acim is finite or infinite. Moreover, under some mild condition,
the acim is conservative, ergodic and hence unique up to multiplicative constants.

2 Main Result

In this section, we show the existence of a o-finite acim for any random iteration of
piecewise linear intermittent Markov maps with uniformly contractive part defined in
the last section. For weakly expanding case (excluding the case like (b-2)), sufficient
conditions for the existence of a o-finite acim was already shown in [I120] via the inducing
scheme. The main result of this note is as follows.

Theorem 2.1. Any random iteration {T;,p; : i € I} of piecewise linear intermittent
Markov maps with uniformly contractive part, which satisfies (b-1) and (b-2), admits a
o-finite acim. The invariant density du/dX is given by the following formula:

. (2.1)
;é; EZJEL g;%;é;‘k
i>n

Consequently, (X)) < oo if and only if
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Remark 2.2. (i) The statements of Theorem 2.1 are still true when I is an uncountable
set and p is a probability on I, by replacing the summation by integration over I. See
Theorem 3.1 and Corollary 3.1 in [T2].

(ii) For the case of nonlinear random maps like LSV map or Manneville-Pomeau
map with uniformly contractive part, we also may be able to show the existence of o-finite
acims and to estimate its densities if the branches on Xy is linear in the sense (a-2).
Otherwise, it would be possible to estimate the invariant density under certain distortion
property on X1. That will be studied in the other paper.

The following corollary shows the uniqueness of the acim given in Theorem 2.1 under
mild condition.

Corollary 2.3. Suppose that #J; > 2 for each i € I with p; > 0. Then the acim p for
a random iteration {T;,p; : i € I} given by (2.1) is an ergodic measure. Consequently,
the acim p is unique up to multiplicative constant.

In the rest of this note, we give several examples of random iterations of piecewise
linear intermittent Markov maps with uniformly contractive part.

The first example is a random iteration of piecewise linear intermittent Markov maps
with “thin branches” which return to the indifferent fixed point. The o-finite acim of
the following example varies at o« = 1 from finite to infinite, which is same as the
deterministic case [Th80].

Example 2.4. Let « > 0, I = {1,2} and J; = {(10i)n : n > 1} fori € I. Set py = p
(and po = 1 —p). (See Figure 2 below for the corresponding map.) Then the random
iteration of piecewise linear intermittent Markov maps with uniformly contractive part
{T;;p; : i € I} has the unique ergodic o-finite acim p by Theorem 2.1. We also calculate
that pu(X) < oo if and only if « < 1, same as deterministic transformation case.
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Figure 2: A graph of 77 in Example 2.4



The next example is a random iteration which always admits a finite acim for any
« of the order of tangency at the indifferent fixed point, because all points will never
return to a neighborhood of the indifferent fixed point.

Example 2.5. Let o > 0, I C N and J; satisfy that \J;c; Ji is a finite set. Then, from
Theorem 2.1, for any probability vector {p;}icr, the random iteration of {T;;p; : i € I}
admits a finite acim. Further, the invariant density for this random iteration is bounded
above even around the point 0.

The following example also admits a finite acim, although many points of positive
measure will return to an enough small neighborhood of the indifferent fixed point with
positive probability.

Example 2.6. Leta >0, I =N and J; ={2,3,...,i+1} fori € I. See Figure 3 for the
maps {T; i € I}. If we put p; = 1/2% fori € I, then the random iteration {T;,p; : i € I}
admits the ergodic o-finite acim p by Theorem 2.1. We can also see u(X) < oo for any
a > 0. That is, the invariant measure p is always finite.
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Figure 3: A graph of transformations in Example 2.6 and 2.7 (infinitely many branches
on X correspond to T; |x,, @ € I, respectively)

We modify Example 2.6 and we show that the modified random dynamics admit
both finite and o-finite infinite acim depending on the parameter o > 0. The critical
point of « is different from the deterministic case.

Example 2.7. Let a > 0 and k > 2 a natural number. Set I =N and p; = 1/2. Then
we put J; = {2,3,...,2’“(”1)}. As the same way in Example 2.6, we have the ergodic
o-finite acim p for this random iteration. Furthermore we can calculate that p is finite
if and only if a < k/(k —1).

Remark 2.8. For random iterations of non-uniformly expanding maps as Example 2.7
and 2.9, the critical value of o where the invariant measure varies from finite to infinite



can be different from deterministic case ([Th80]). Similar example which is expanding on

average except a small neighborhood of an indifferent fixed point can be seen in Example
6.2 of [120].

In the last two examples, most of points will rarely return to the indifferent fixed
point 0 so that the acim hard to become infinite. Then, conversely, we will see that the
following example makes the acim tend to become an infinite measure.

Example 2.9. Let a > 0, I = N and k(i) > 2 increasing natural numbers of i € I.
We set J; = {j € N:j > k(i)}. Then for any probability vector {p;}icr, the ergodic
o-finite acim p for this random iteration satisfies that p is finite if and only if o < 1
and ", pik(i) < co. Thus, for example, if p; = 6/(i*7?) and k(i) = 2 + [{7] for some
v > 0, then u is finite if and only if « <1 and 0 < v < 1.
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Figure 4: A graph of transformations in Example 2.9 (infinitely many branches on X;
correspond to T; |x,, i € I, respectively)
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