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1 Introduction

The present article is a summary of the paper [13]. We refer the reader to [13]| for more
details and full proofs.

In [11, 12], Milnor defined a family of isotopy invariants of classical links in the 3-sphere,
called Milnor fi-invariants. Given an n-component classical link L, the Milnor number
ur(I) € Z of L is specified by a finite sequence I of indices in {1,...,n}. This integer
is only well-defined up to a certain indeterminacy Ay (1), i.e. the residue class 7, (I) of
pr(I) modulo Ap(l) is an invariant of L. It is shown in [12, Theorem 8| that fi, (1)
is invariant under link-homotopy when the sequence I has no repeated indices. Here,
link-homotopy is an equivalence relation generated by self-crossing changes and isotopies
(cf. [11]). In [6], Habegger and Lin defined Milnor numbers for classical string links in the
3-ball, and proved that they are integer-valued invariants. In this sense, Milnor numbers
are suitable for classical string links rather than classical links. These numbers for classical
string links are called Milnor p-invariants.

The notion of welded links, introduced by Fenn, Rimanyi, and Rourke in [5], is a
diagrammatic generalization of classical links in the 3-sphere. It naturally yields the
notion of welded string links. Welded (string) links are generalized (string) link diagrams
considered up to an extended set of Reidemeister moves. The aim of this article is to give
an extension of Milnor zi-invariants to welded links in a combinatorial way:.

In [4], Dye and Kauffman first tried to extend Milnor link-homotopy fi-invariants to
welded links. Kotorii pointed out in [7, Remark 4.6] that the extension of Dye and
Kauffman is incorrect. In fact, there exists a classical link having two different values of
the Dye-Kauffman’s 7z. Hence the Dye-Kauffman’s 7z is not well-defined even for classical
links (see Remark 6.5).

A successful extension is due to Kravchenko and Polyak in [8]. Using Gauss dia-
grams, they extended Milnor link-homotopy p-invariants to welded tangles, which are
slight generalizations of welded string links. In [7], Kotorii gave an extension of Milnor
link-homotopy p-invariants to welded links via the theory of nanowords introduced by



Turaev in [15]. Both extensions are combinatorial, but they are restricted to the case of
link-homotopy invariants.

In [1], Audoux, Bellingeri, Meilhan and Wagner defined a 4-dimensional version of
Milnor p-invariants. Combining this version of Milnor p-invariants with the Tube map,
they extended Milnor isotopy p-invariants to welded string links. Here, the Tube map is
a map from welded string links to ribbon 2-dimensional string links in the 4-ball (cf. [16,
14]). Recently, Chrisman in [3] defined Milnor fi-invariants for welded links with similar
ingredients as in [1], and proved that they are welded concordance invariants. While
Milnor invariants for welded objects are given in [1, 3|, their approaches are topological.
The authors believe that it is important to consider a combinatorial approach, since the
advantage of welded objects is that they are combinatorial.

In [12], Milnor gave an algorithm to compute f-invariants for a classical link based on
its diagram. This algorithm can be applied to generalized link diagrams. By the result of
Chrisman in [3], the values given by the algorithm are invariants of welded links. Hence,
it is theoretically possible to prove that the values are invariant under welded isotopies,
from a diagrammatic point of view. In this article, we actually give such a diagrammatic
proof. Our approach is purely combinatorial, self contained, and different from [8, 7, 1, 3].

2 Preliminaries

For an integer n > 1, an n-component virtual link diagram is the image of an immersion
of n ordered and oriented circles into the plane, whose singularities are only transverse
double points. Such double points are divided into classical crossings and virtual crossings
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classical crossing virtual crossing
Figure 2.1: Two types of double points

Welded Reidemeister moves consist of Reidemeister moves R1-R3, virtual moves V1-
V4 and the over-crossings commute move OC as shown in Figure 2.2. A welded isotopy
is a finite sequence of welded Reidemeister moves, and an n-component welded link is
an equivalence class of n-component virtual link diagrams under welded isotopy. We
emphasize that all virtual link diagrams and welded links are ordered and oriented.

Let D be an n-component virtual link diagram. Put a base point p; on some arc of
each ith component, which is disjoint from all crossings of D (1 < i < n). A base point
system of D is an ordered n-tuple p = (p1,...,pn) of base points on D. We denote by
(D, p) a virtual link diagram D with a base point system p. The classical under-crossings
of D and base points p1,...,p, divide D into a finite number of segments possibly with
classical over-crossings and virtual crossings. We call such a segment an arc of (D, p).

As shown in Figure 2.3, let a;; be the outgoing arc from the base point p;, and let
@2, . . ., Gim,;+1 be the other arcs of the ¢th component in turn with respect to the orienta-
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Figure 2.2: Welded Reidemeister moves

tion, where m; + 1 is the number of arcs of the ith component of (D,p) (1 <i<n). In
the figure, u;; € {ay} denotes the arc which separates a;; and a;;41. Let g;; € {£1} be
the sign of the crossing among a,;, u;; and a;;41, and we put

€1, ,Ei2 Eij

Vij = Uiy WUgg™ ** - Uy

for 1 < 7 < m;. We call the word v;; a partial longitude of (D, p).

a;1 Ajj+41 Ajmy,

- —

Dbi

Us1 U52 Usj Uim,;

Figure 2.3: A schematic illustration of the ith component

Let A = {ay,...,a,) be the free group of rank n, and let A be the free group on the

set {a;;} of arcs. For an integer ¢ > 1, a sequence of homomorphisms
Ng = ng(D,p) : A — A
associated with (D, p) is defined inductively by
m(ai;) = ai,
Ngt1(ain) = o, and gy (ai;) = ng(vyt aing(vij—1) (2 <j <my+1).

Note that our definition of 7, is very similar to the original one in [12], but they are not
the same because, in [12], a;1 U a;m,+1 is a single arc. In Section 3, we investigate virtual
link diagrams with base point systems up to local moves relative base point system. The
difference of the definition of arcs is essential for Theorem 3.1, see Remark 6.6.

Let Z{(Xy,...,X,)) be the ring of formal power series in non-commutative variables
Xq,..., X, with integer coefficients. The Magnus expansion is a homomorphism

E:A—Z{(Xy,...,X,))



defined, for 1 < i <n, by
E(a;))=1+X; and E(o;)=1-X;+X? - X34....

Remark 2.1 ([9, Corollary 5.7]). Let ¢ > 1 be an integer and A, the ¢th term of the
lower central series of A. For z € A,, we have E(z) = 1 + (terms of degree > q).

For each 1 <17 < n, let w; be the sum of the signs of all classical self-crossings of the
ith component of (D,p). We call the word l; = a;;"" vy, the ith preferred longitude of

(D,p).

Definition 2.2. For a sequence j ... jsi (1 < s < q) of indices in {1,...,n}, the Milnor

number ugg’p) (J1...7s%) of (D, p) is the coeflicient of X, --- X, in E(ny(L;)).

Remark 2.3. For 1 < s < ¢, we have ,ug(g p)(j1 o Jst) = ugq;;;(jl...jsi). Therefore,

by taking the integer ¢ sufficiently large, we may ignore ¢ and denote ,ugp) (j1...7st) by

p(p,p)(J1---Jsi). In the rest of this article, ¢ is assumed to be a sufficiently large integer.

3 Milnor numbers and welded isotopy relative base point sys-
tem

A local move relative base point system is a local move on a virtual link diagram with a
base point system such that it keeps the positions of base points. A w-isotopy is a finite
sequence of welded Reidemeister moves relative base point system and a local move as
shown in Figure 3.1. We emphasize that in a W-isotopy, we do not allow to use two local
moves as shown in Figure 3.2. We call the two local moves base-change moves.

4_%% - H%_k
Figure 3.1: A base point passing through a virtual crossing

Figure 3.2: Base-change moves

The following theorem gives the invariance of Milnor numbers under w-isotopy.
Theorem 3.1. Let (D,p) and (D', p’) be virtual link diagrams with base point systems.
If (D,p) and (D', p’) are w-isotopic, then pppy(I) = o py(I) for any sequence I.

Let [; and I} be the ith preferred longitudes of (D, p) and (D', p’), respectively (1 < i <
n). To show Theorem 3.1, we observe the difference between n,(D, p)(l;) and n,(D’, p’)(1})
under w-isotopy.



Proposition 3.2. If (D,p) and (D', p’) are w-isotopic, then n,(D,p)(l;) = n, (D', p')(1})
(mod A,).

We admit this proposition and prove that it implies Theorem 3.1.
Proof of Theorem 3.1. By Proposition 3.2, we have

1g(D, ) (l;) = (D', p)(l})  (mod Ay).
This together with Remark 2.1 implies that

E(n,(D,p)(l;)) — E(ny(D',p")(I})) = (terms of degree > q).

Hence, by definition, ppp)(J1---Jsi) = o p) (1 -- - jsi) for any sequence jj ... jsi with
s <q. O

Example 3.3. Consider the 3-component link diagram D and its base point system
P = (p1,p2, p3) in the left of Figure 3.3. Let a;; be the arcs of (D, p). Since l; = ag,ls =
ag (a11ass), and I3 = ay;'as, by definition we have

773(11) = (g,

, S B B s | -1 —1, -1
3(l2) = g arag o] g aeay T tnayag g Qe ag,

n3(l3) = ay tay tasay.
By a direct computation, we have
Emns(h)) =14 Xo,

E(ns3(ls)) = 1+ X1 + (terms of degree > 3),
E(T]3<l3)) =1- Xng -+ XgXl + (terms of degree 2 3)

Hence it follows that

e (21) =1, ppp)(12) =1, wpp)(123) = =1, and ppp)(213) =1,

and that j(p p)(/) = 0 for any sequence I with length < 3 except for 21, 12,123, and 213.
Consider another base point system p’ = (p), ph, p5) of D in the right of Figure 3.3.
Then we have I} = agy, Iy = o (an2a11), and I3 = ayy as1, and hence

7]3(l1) = Qu, 7]3@2) =0, and 773(13) =1L

This implies that

,M(D,p/)(Ql) =1 and M(D,p/)(12) = 1,
and that pp (/) = 0 for any sequence I with length < 3 except for 21 and 12. Therefore,
by Theorem 3.1, (D, p) and (D, p’) are not W-isotopic.
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Figure 3.3: A 3-component link diagram D with different base point systems p = (p1,p2,p3) and p’ =
(P}, P2 P5)

4 Change of base point system

In this section, we fix an n-component virtual link diagram D, and observe behavior of
ny(l;) under a change of base point system for D (Theorem 4.3).

An arc of D is a segment along D which goes from a classical under-crossing to the
next one, where classical over-crossings and virtual crossings are ignored. We emphasize
that the definition of arcs of D is slightly different from that of arcs of (D, p). For each
1 <7 < n, we choose one arc of the ¢th component and denote it by a;;. Let a;o, ..., aim,
be the other arcs of the 7th component in turn with respect to the orientation, where m;
denotes the number of arcs of the ith component. Throughout this section, we fix these
arcs G, . . ., Ay, for D.

Given a base point system p = (p1,...,p,) of D, let p(i) denote the integer of the
second subscript of the arc containing p; (1 < ¢ < n). Consider the virtual link diagram
D with a base point system p = (p1,...,p,). For each ith component of (D, p), the base
point p; divides the arc a;p;) of D into two arcs. We assign the labels bP and aip(iy to the
two arcs of (D, p) as shown in Figure 4.1. The labels of the other arcs of (D, p) are the
same as those of the corresponding arcs of D.

Gip(i)-1 Gip(i) Gip(i)+1 aip(i)-1| b @ip(i) | @ip(i)+1
Di
D (D,p)
Figure 4.1:

In this setting, the homomorphism 7,(D,p) associated with (D, p) is described as
follows. We put nP = n,(D,p) for short. The domain of 7P is the free group A on

{a;;} U {bP}. The homomorphism 7P from A into A is given inductively by

ny (aij) = au, my(07) = i,
77§+1<aip(i)) = Qy, 77(I1)+1<aij) = ﬁé’((vfj_l)_l)am?(vfj_l) (4 # p(i)),

and 71 (07) = 0§ (Vi) -0) e} (V) -1),



where

Eip(i)  €ip(i)+1 Eij . .
Uip(s) Lip()+1 * " Uij (p(i) < j < my),

ip(i), Sip(i)+1  Cimg, €1 Eij . N
Uin(i) Yip(i)+1 " Yim,; Wil Uy (1<j<p(i)—1),

and vy = vy, . Furthermore, the ith preferred longitude If of (D, p) is given by

—w;

P _
l; =a; ()v p(i)—1"

We now define a word AP € A (1 <i <n) by

o QU gyt (G) # 1),
U (p(i) = 1),

and a sequence of homomorphisms ¢P : A — A by

&Y (i) = oy and
PP (i) = ny (WD) 1 (AD) 1) (¢>2).

Notice that the homomorphism ¢P sends each «; to some conjugate element.

A semi-arc of D is a segment along D which goes from a classical under-/over-crossing
to the next one, where virtual crossings are ignored. Let P be the set of base point
systems of D. Let Py C P be the set of all (py,...,p,) € P such that each p; lies on a
semi-arc which starts at a classical under-crossing. We denote by p. = (p},...,p:) € Py
the base point system such that each p; lies on the arc a;;. For the homomorphism 7P
associated with (D, p.), partlal longitudes v, and preferred longitudes P of (D, p.), we
simply put n, = 7P, vy = vy, and [; = I7".

Let MP be the normal closure of {qbp([al,nq( ) 1 <i<n}inAandlet M, =
[Ipep, MP. Notice that M, =[] (Mp*)

lj’

PEPy
Proposition 4.1. Let py € Py. For any 1 <1 < n,
My (17°) = 65" (g (A7) LAT®))  (mod AgMpe).
Proposition 4.2. Let p € P, and py € Py with po(k) = p(k) (1 < k < n). For any
1<i<n, nP(I7) = nPo(I7°) (mod A MPe).
Combining Propositions 4.1 and 4.2, the following is obtained immediately.

Theorem 4.3. Let p € P, and py € Py with po(k) =p(k) (1 <k <n). Foranyl <i<
n, (IP) = 68 (W) 71AP)) (mod A MP?). Hemee nP(IP) = ¢80 (ny(AP*) " :AP))
(mod A M,).

5 Milnor numbers and welded isotopy

Let D be an n-component virtual link diagram of a welded link L, and p a base point
system of D. As shown in Example 3.3, the Milnor number ji(pp)(/) depends on the
choice of p. Hence it is not an invariant of the welded link L. On the other hand, we



show in this section that pp p)(/) modulo a certain indeterminacy is an invariant of L
(Theorem 5.1).

For a sequence i .. .4, of indices in {1,...,n}, the indeterminacy App)(ii .. 1) of
(D, p) is the greatest common divisor of all pyppy(ji-..Js), where jy...j, 2 < s <)
is obtained from 7;...%, by removing at least one index and permuting the remaining
indices cyclicly. In particular, we set A(p py(i1i2) = 0.

Theorem 5.1. Let D and D' be virtual diagrams of a welded link. Let p and p’ be base
point systems of D and D', respectively. Then ppp)(I) = pprpy(I) (mod Apppy (1))
and Appy(I) = A pn (1) for any sequence 1.

This theorem guarantees the well-definedness of the following definition.

Definition 5.2. Let L be an n-component welded link. For a sequence I of indices in
{1,...,n}, the Milnor fi-invariant Ji; (1) of L is the residue class of ppp)(/) modulo
Ap,p)(I) for any virtual diagram D of L and any base point system p of D.

Remark 5.3. The Milnor z-invariant of welded links, defined above, coincides with the
extension of Chrisman in [3| for any sequence. In particular, for classical links, the
invariant coincides with the original one in [12].

In the remainder of this section, we fix D and its arcs a;; (1 < i < n,1 < j <
m;), and use the same notation as in Section 4. In this setting, the Milnor number
t(D,p)(J1 - - - Jst) of (D, p) is given by the coefficient of X, --- X in E(nP(I?)). For short,
we put ip(1) = pp,p) () and Ap(I) = Appy(I). In particular, we put () = pp,p.(I)
and A(I) = A(D7p*)<[)'

For each 1 <i < n, we define a subset D; of Z{(X},...,X,)) to be

{ZV(j1~~js)Xj X, V(jl...js)EO (mod A(j1...751)) (s<q), }

v(ji...Js) €Z (s >q).

Lemma 5.4 (cf. [12, (12)—(15) on page 292]). Let x,y € A andp € P. Foranyl <i <n,
the following hold.

(1) Blan(l)z) — E(ny(1s)) € D
(2) E(0F(14(1:))) = E(1g(ls)) € D
(3) If v =y (mod A,M,), then E(x) — E(y) € D;.

We admit this lemma and prove that it, together with Theorem 4.3, implies the fol-
lowing proposition.

Proposition 5.5. For any p € P, the following hold.
(1) pp(I) = p(I) (mod A(I)) for any sequence I.
(2) Ap(I) = A(I) for any sequence I.

Proof. (1) For any 1 <i < n, it is enough to show that

E(ng(I7)) — E(ny(li)) =0 (mod D).



Let pg € Py with po(k) = p(k) (1 < k <n). By Theorem 4.3, we have
My (UF) = 05 (ng(AP*) 1 1iA?)) - (mod AgM,).
Put z = ¢P°(n,(A°)) € A. Then by Lemma 5.4 it follows that
EMmy (7)) — En(l)) = Bz 95 (ng(li))x) — E(n(l)  (mod D;)
= E( ¢ (n(li))x) — Bz 'y(ls)z)  (mod D;)

= B ) (E(6§ (n (1)) — E(ng(L:))) E(x)
= 0 (mod D).

Since we may assume that ¢ is sufficiently large,

MP(jl . .737’) - M(jl . .737’) =0 (mod A(.]1 i ]37'))

for any sequence 7 ... jgi.

(2) This is proved by induction on the length k of I. For k = 2, we have A,(I) =
A(I) = 0 by definition. Assume that k& > 2. Let J1(I) (resp. J>1(I)) be the set of all
sequences obtained from I by removing exactly one index (resp. at least one index) and
permuting the remaining indices cyclicly. For any J € J;(I), we have Ay (J) = A(J) by
the induction hypothesis. Then it follows that

Ap(l) = ged{pp(J) | J € Ta()}

= ged | U (oD} Ulp(I) | ' € Toa(I)})

JeJi(I)

= ged | |J (DY U{ap()})

JeJi(I)

= ged | |J (m(D}ufaw)})
JeJi(I)
By (1) we have pp(J) = p(J) (mod A(J)). This implies that Ap (1) = A(]). O

Proof of Theorem 5.1. Since (D,p) and (D’,p’) are related by W-isotopies and base-
change moves in Figure 3.2, this follows from Theorem 3.1 and Proposition 5.5. (]

6 Self-crossing virtualization

A self-crossing virtualization is a local move on virtual link diagrams as shown in Fig-
ure 6.1, which replaces a classical crossing involving two strands of a single component
with a virtual one. In this section, we show the following theorem as a generalization of
[12, Theorem §|.
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Figure 6.1: Self-crossing virtualization

Theorem 6.1. Let L and L' be welded links, and let D and D' be virtual link diagrams
of L and L', respectively. If D and D’ are related by a finite sequence of self-crossing
virtualizations and welded isotopies, then Ti; (I) = T, (I) for any non-repeated sequence I.

Remark 6.2. In [2], Audoux and Meilhan proved that two virtual link diagrams are
related by a finite sequence of self-crossing virtualizations and welded isotopies if and
only if they have equivalent reduced peripheral systems. This result together with Theo-
rem 6.1 implies that for welded links, the reduced peripheral system determines Milnor
ni-invariants for non-repeated sequences.

Let (D, p) be an n-component virtual link diagram with a base point system, and let
a; (1 <i<mn,1<j<m;+1) be the arcs of (D,p) as given in Section 2. Recall that
A= {a,...,a,) denotes the free group of rank n, and A denotes the free group on {a;;}.
For 1 <k <n,let A" = (ay,... ap_1, 41, ..., ) be the free group of rank n — 1. We
define a homomorphism p, : A — A® by

. a5 (Z?é ]f),
) = {1 (i = k),

and denote by n(k) = nék)(D, p) the composition pj on, : A — A®).

Let R be the normal closure of {[oy, g vuig] | g € A,1 < i < n} in A, and let R
be the normal closure of {[ay, g7 aug] | g € AW 1 < i # k < n} in A®. Note that
[97 g, h t;h] € R for any g, h € A. In particular, n,([aS,, al]) € R for any s,t and any

e,0 € {£1}. Let Aék) be the gth term of the lower central series of A®),

Proposition 6.3. Let (D, p) and (D', p’) be n-component virtual link diagrams with base
point systems. For an integer k € {1,...,n}, let Iy and [}, be the kth preferred longitudes
of (D,p) and (D', p"), respectively. If (D,p) and (D',p’) are related by a self-crossing
virtualization, then n((lk)(D, p)(lx) = n((lk)(D’, p’)(l},) (mod A(gk)R(k)),

For a sequence j ... jsi (1 < s < q) of indicesin {1,...,n}, we denote by ME%’ ;)( ... Jst)
the coefficient of X, --- Xj, in E(n(gk)(li)). By Remark 2.3, we have
k) - , 1k .
s ;)>) (J1---Jsi) = /LEqu) "G+ i)
Furthermore, if the sequence 7; ... js involves the index k, then ,ug‘fj’k))(jl Jsi) = 0. On
the other hand, if j; ... js does not involve k, then ,uED I))) (J1...Js1) = ,ugqg ) (j1 JJst) (=

Wp,p)(J1 - - - Jst)).



Theorem 6.4. Let (D, p) and (D', p’) be virtual link diagrams with base point systems. If
(D,p) and (D', p’) are related by a self-crossing virtualization, then pp (1) = o p (1)
for any non-repeated sequence I.

Proof. Let k be the last index of a non-repeated sequence I. Then we may put [ =
Jk. Since J does not involve k, we have ppp)(Jk) = ug%]fg)(l]k) and p(prpny(Jk) =

ME%]’C,L’)(JIQ)' To complete the proof, we will show that ug%];)))(Jk) = 1% (JE).

(D',p’)
For z € A((Jk)R(k), we put

E(zx) =14 v(ji-..j)X; - Xj..

By Proposition 6.3, it is enough to show that v(j; . .. js) = 0 for any non-repeated sequence
J1...Js With s < q.

If x € A((Jk), then we have v(j;...j;) = 0 by Remark 2.1. If # € R®, then we only
need to consider the case z = [0y, g ;9] (9 € AW, 1 <i# k <n). Then it follows that

E(x)—1 = E([a;,9 " oug]) — 1
(E(cig 'oug) — E(g 'augey)) E(o; g T tg).

Here we observe that

E(aig " aug) — E(g~ augoy)
=1+ X)E(g H(1+ X,)E(g) — E(g )1+ X,)E(g9)(1 + X;)
= X,E(97")XiE(9) — E(g7") XiE(9) X

This implies that each term of F(x) — 1 contains X; at least twice. Hence we have
v(j1...7Js) = 0 for any non-repeated sequence jj ... js. O

Proof of Theorem 6.1. Let p and p’ be base point systems of D and D', respectively.
Then (D, p) and (D', p’) are related by a finite sequence of self-crossing virtualizations,
w-isotopies and base-change moves. If (D,p) and (D’,p’) are related by a self-crossing
virtualization, then by Theorem 6.4 jup p)(I) = pupr pry(I) for any non-repeated sequence
I. This implies that Appy(I) = A pn(L). If (D,p) and (D', p’) are related by a w-
isotopy or base-change moves, then it follows from Theorems 3.1 and 5.1 that ypp)(1) =
worpy(I) (mod Appy(1)) and App)(1) = Aprpy(I). This completes the proof. O

Remark 6.5. Tt is suggested in [7, 1] that Dye and Kauffman in [4] failed to define
Milnor-type “invariants”. We clarify why Dye and Kauffman’s construction/definition is
incorrect. In [4], Dye and Kauffman defined a residue class mP¥ of Milnor numbers p
for virtual link diagrams with base point systems. Their construction follows Milnor’s
original work [12] but a different indeterminacy AP¥(j;...j,4), which is defined as the
greatest common divisor of all u(ky ... ksi), where ky ... kg is a proper “subset” of j; ... j;,
see [4, page 945|. (Here, “subset” should rather be “subsequence”.) We stress that
APK(jy ... j,i) is determined by Milnor numbers for sequences with the last index 4. It is
stated in [4, Section 4] that 77°¥ does not depend on the choice of base point system, and
moreover that it is an invariant of virtual links. However, this is wrong. More precisely,



71P% is not well-defined even for classical link diagrams. In the following, we will show

that 7°X does depend on both Reidemeister moves and the choice of base point system:
Let (D,p), (D,p’) and (D', p) be the 3-component link diagrams as in Figure 6.2. (We
remark that the definition of arcs of a diagram in [4] coincides with the original one
in [12].) Note that (D,p) and (D,p’) have the same diagram and different base point
systems, and that (D, p) and (D', p) are related by a single R1 move relative base point
system. Let [,{" and I” be the 3rd longitudes of (D, p), (D,p’) and (D', p), respectively.
Then by the definition of 7, in [12, 4], n3(1) = a5 "oy gy, 93(I") = 13(1") = 1, and hence
E(ns(l)) = 1+ XoX1 — X1Xs + (terms of degree > 3) and E(ns(l")) = E(ns(l")) = 1.
Since AGK,(123) = ged (11(p,p)(13), ipp)(23)) = 0, we have figh 1 (123) = —1, while
T (123) = 7D (123) = 0.

’
ail a22 ail P>
/\ /’\am
P1 az1 < P3 P < D3
az\/ P2 azz\ / 422
asy azy
(D7 p) (D> p/)
ail

p1 a21 < b3
asg b2

az1

(D',p)

Figure 6.2:

Remark 6.6. In Remark 6.5, for the original definition of arcs in [12], we see that
wn,p)(123) # i p)(123), while (D,p) and (D', p) are related by a single R1 move
relative base point system. This implies that Theorem 3.1 does not hold for the original
definition of arcs.

7 Welded string links

In the previous sections, we have studied Milnor invariants of welded links. Now we
address the case of welded string links.

Fix n distinct points 0 < x; < -+ < z,, < 1 in the unit interval [0, 1]. Let [0, 1]1,...,[0, 1],
be n copies of [0,1]. An n-component virtual string link diagram is the image of an im-

mersion
n

| ][0, — [0,1] x [0, 1]

i=1



such that the image of each [0, 1]; runs from (x;,0) to (x;, 1), and the singularities are only
classical and virtual crossings. The n-component virtual string link diagram {x1, ..., x,} X
[0,1] in [0, 1] x [0, 1] is called the trivial n-component string link diagram. An n-component
welded string link is an equivalence class of n-component virtual string link diagrams under
welded isotopy.

Let m : [0,1] x [0,1] — [0,1] be the projection onto the first coordinate. Given
an n-component virtual string link diagram S, an n-component virtual link diagram
with a base point system is uniquely obtained by identifying points on the boundary of
[0,1] x [0, 1] with their images under the projection w. We denote it by (Dg, pg), where
ps = (m(x1,0),...,7(xs,0)) = (7(z1,1),...,7(x,,1)). We see that if two virtual string
link diagrams S and S’ are welded isotopic, then (Dg, ps) and (Dg, pg:) are w-isotopic.

For a sequence [ of indices in {1,...,n}, the Milnor number ps(I) of S is defined to
be p(pg,ps)({). Theorem 3.1 implies the following directly.

Corollary 7.1. Let S and S’ be virtual diagrams of a welded string link. Then pug(I) =
ws (1) for any sequence I.

Combining Theorems 3.1 and 6.4, the following result is obtained immediately.

Corollary 7.2 ([10, Lemma 9.1)). If two virtual string link diagrams S and S’ are related
by a finite sequence of self-crossing virtualizations and welded isotopies, then ps(I) =
ws (I) for any non-repeated sequence I.

Remark 7.3. The converse of Corollary 7.2 is also true. In fact, it is shown in [1, 10]
that Milnor numbers for non-repeated sequences classify virtual string link diagrams up
to self-crossing virtualizations and welded isotopies.

We conclude this article with a classification result of virtual link diagrams with base
point systems up to an equivalence relation generated by self-crossing virtualizations and
Ww-isotopies.

Theorem 7.4. Let (D,p) and (D', p’) be virtual link diagrams with base point systems.
Then the following are equivalent.

(1) (D,p) and (D', p’) are related by a finite sequence of self-crossing virtualizations and
w-1sotopies.

(2) up,pyI) = o py(I) for any non-repeated sequence 1.

Proof. (1) = (2): This follows from Theorems 3.1 and 6.4 directly.

(2) = (1): For a small disk ¢ which is disjoint from (D, p) (or (D’,p’)), by applying
VR2 relative base point system and the local move in Figure 3.1 repeatedly, we can deform
(D,p) (or (D', p)) such that the intersection between the disk ¢ and the deformed diagram
is the trivial string link diagram whose each component contains the base point. Hence,
D\ 6 and D"\ ¢ can be regarded as string link diagrams S and S’, respectively. Since
(Dg,ps) and (Dg, ps) are W-isotopic to (D, p) and (D', p’), respectively, it follows from
Theorem 3.1 that

ps(I) = pop () and  ps(I) = pp py(I)



for any non-repeated sequence I. Hence we have ug(I) = pg (1) by assumption. Then,
by Remark 7.3, S and S’ are related by a finite sequence of self-crossing virtualizations
and welded isotopies. This implies that (Dg,ps) and (Dg,pgs/) are related by a finite
sequence of self-crossing virtualizations and W-isotopies. O

Remark 7.5. By Theorem 7.4, the two virtual link diagrams with base point systems
(D,p) and (D, p’) given in Example 3.3 are not related by a finite sequence of self-crossing
virtualizations and W-isotopies.
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