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ABSTRACT. We discuss a recent progress [28] concerning Strichartz es-
timates for Schrodinger equations with real-valued slowly decaying pos-
itive potentials. Our admissible class of potentials particularly includes
the positive Coulomb potential in three and higher space dimensions.

1. INTRODUCTION

This is a survey article based on a recent result [28] of the author concern-
ing the (global-in-time) Strichartz estimates for the Schrodinger equation:

ipu(t,x) = Hu(t,z) + F(t,z), teR, x € R"; ul=o = uo (1.1)
where ug = up(x) and F = F(t,x) are given data and
H=-A+V(x)

is a Schrodinger operator with A being the Laplacian and V' (z) being a real-
valued potential decaying at infinity. A typical example we have in mind is
the repulsive Coulomb potential and its smooth approximation of the forms

V(z)=Zlz|™ or Z{z) "
where Z > 0, p € (0,2) and (z) = /1 + |z|2.

The Strichartz estimate is a family of space-time inequalities for the so-
lution u = u(t, z) to (1.1) of the form

g S Tuolls + 1F Ty o (12)
where (pj,q;), j = 1,2, satisfy the following admissible condition:

pg>2, 2/p=n(l/2-1/q), (n,p,q) # (2,2,00). (1.3)

Here L = LY(R"), L} = LP(R), IV LL = LP(R; LY(R™)) and p' = p/(p—1) is
the Holder conjugate of p. The special case with (p1,q1) = (p2, ¢2) = (2, %)
in dimension n > 3 is called the (double) endpoint estimate. Note that the
endpoint estimate, combined with the trivial one for (p1,q1) = (p2,q2) =
(00, 2) and the complex interpolation, implies (1.2) for all admissible pairs.

Before stating the main result, we first give a brief summary of the existing

literature. The Strichartz estimate (1.2) for the free case H = —A has been
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established by [38, 14, 40, 23] and is known to be one of fundamental tools
in the study of the nonlinear Schrédinger equation (NLS):

i0pu 4 Au = AulPu.

We refer to the textbook [39] for applications to NLS. Since then, the
Strichartz estimate has been extensively studied by many authors and ex-
tended to various settings. In particular, if n > 3 and the real-valued po-
tential V satisfies the very short-range condition

Ve L"2(R")

and H = —A + V has neither zero eigenvalue nor zero resonance (see [27,
Section 2] for the definition of zero resonance under the condition V € L™/?),
then the continuous part P.(H )u of the solution u to (1.1) satisfies (1.2) for
all admissible pairs ([34, 15, 2, 27]). Note that, in case of the point-wisely
decaying potential

V()| < (2)7,

the above very short-range condition corresponds to the condition p > 2. In
contrast with the very short-range case, there is a counterexample if p < 2.
Precisely, it wad proved in [16] that if V € C3(R™ \ {0};R) satisfies

V(x) = [z[7*U0), 0=x/lz|, pel0,2),

and U has a non-degenerate minimum point so that }gmﬂ U = 0 then, for any

admissible pair, (global-in-time) Strichartz estimates cannot hold in general.
In the critical case V() = O((x)~?), the Strichartz estimate is also known to
hold under some repulsive conditions and smallness of the negative part V_
of the potential. A typical example satisfying such conditions is the inverse-
square potential V(z) = a|z|~2 with the subcritical constant a > —%
(see [8, 9, 3, 26] and references therein). It is worth noting that there is no

existing positive result for the slowly decaying case
[V(@)] ~(z)™", pne(0,2)

The Strichartz estimates have been also extensively established for more
general operators than the Schrodinger operator with a scalar potential on
the Euclidean space, e.g.,

e Schrodinger operator with short-range magnetic potentials ([13, 25]);

e Laplace-Beltrami operator on the asymptotically conic or hyperbolic
manifolds under the nontrapping or moderate trapping conditions
([25, 19, 11, 4]);

e Schrodinger operator on a star graph or tree ([17, 1]);

e Fractional and higher-order Schrédinger operators or more general

elliptic operators ([24, 18, 29, 30]).
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2. MAIN RESULT

Now we state the main results in the paper [28].

Theorem 2.1 (Smooth potential). Let n > 2 and u € (0,2). Suppose that

V' is a real-valued smooth function satisfying the following conditions:

(H1) |00V (z)| < Co(1 + |z|)~# 1ol on R™ for any multi index o;
(H2) V(z) > Ci(1 + |z|)™* on R™ with some Cy > 0;

(H3) —x - VV(x) > Co(1 + |x|)™H for |x| > Ry with some Ca, Ry > 0.

Then the solution u to (1.1) satisfies (1.2) for any admissible pairs.

A typical example of V satisfying the above (H1)—(H3) is
V(z)=Z{xz)", Z>N0.

Theorem 2.2 (Singular potential). Let n > 3, Z > 0 and p € (0,2).

Suppose that Vg € C*°(R"™; R) satisfies

00V ()] < Ca(1 + |z|)~t7Hlel,

Let V(z) = —A+ Z|z| * 4+ eVs(x). Then there exists ex = ex(Z, pu, Vg) > 0
such that for all € € [0,e4), the solution u to (1.1) satisfies (1.2) for any

admissible pairs.

Remark 2.3. We give some remarks on these theorems:

e In both cases of Theorems 2.1 and 2.2, H is purely absolutely con-

tinuous and P.(H) = Id.

One can choose €, = min(Z/My, pZ/M;) in Theorem 2.2, where
My = |[|x*(2 - V) Vs || poo-

These theorems do not contradict with the counterexample due to
[16] in the previous section. Indeed, both of conditions (H1)-(H3)
and conditions in Theorem 2.2 do not intersect with one for the
counterexample.

The restriction n > 3 on the space dimension in Theorem 2.2 is due
to the use of the following L?L2-estimate with a singular weight

Ix(@) || 72 34 g | L gasny < Clluollp2n

for a smooth approximation V of the potential V in Theorem 2.2,
where V satisfies (H1)~(H3) and y € C§°(R"). This estimate imme-
diately follows from the endpoint Strichartz estimate in Theorem 2.1
and Holder’s inequality if n > 3 since x(z)|z|~*/2 € L", but this is
not the case if n = 2 since the endpoint Strichartz estimate cannot
hold in two space dimensions. However, such a restriction seems to
be not essential. it would be interesting to investigate whether The-
orem 2.2 (with p > 2) also holds in two space dimensions or not. It
is also an interesting question if Theorem 2.1 holds in the one space

dimension in which case our proof does not work.
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We conclude this section with a simple application of the above theorems
to nonlinear scattering theory. Let n > 3 and V satisfy the assumption in
Theorem 2.1 or 2.2. Consider the mass-critical NLS with the potential V:

(0 + A — VYo =olo[*™v, (t,2) eRxR"; v|i—g = vo. (2.1)

Corollary 2.4. Let 0 € R. Then for any vy € L? with sufficiently small
L%-norm ||lvo||;2 < 1, (2.1) admits a unique global mild solution

v € C(R; L*(R™)) N L>H4/(RY™),

Moreover, if 1 < pu < 2 then there exist unique vy € L? such that

itA

Jim[[o(t) = ¢ 2 =0

if 0 < pu < 1 then there exist unique v+ € L? such that

—iS(t,D)

lim [jv(t) —e vl 2 =0,

t—+oo
where S(t, D) = F~1S8(t,€)F is a Fourier multiplier by an approvimate so-
lution to the Hamilton-Jacobi equation

S(t,€) = [¢* + V(VeS(t.€)).

The unique existence of the global solution v and the scattering of v to
a linear solution e~*#7. can be proved by a standard method (see [39])
by means of Theorems 2.1 and 2.2. If y4 > 1 then V is of short-range type

—itH7oy itA

and the scattering of the linear solution e v+ to a free solution e~ v4 is

nothing but the asymptotic completeness of the wave operator

s-lim etheztA
t—=oo

which is well-known (see [33]). When p € (0,1) the above modified scat-
tering result follows from the asymptotic completeness of the modified wave
operator

itH ,—iS(t,D)

s-lim e
t—+o0

(see e.g. [12]).

3. OUTLINE OF THE PROOF

In this section we give an outline of the proof of Theorem 2.1. We use
a similar method based on the microlocal analysis as that in [4] where the
Strichartz estimates on the long-range asymptotically conic manifold was
studied. We may consider the homogeneous estimate only, namely we let
F =0 and hence u = e~y for simplicity. Let 2* = 2n/(n — 2).

Step 1: Energy localization. Since V. € Li and V > 0, the kernel

loc
e—tH( —tH

x,y) of the semi-group e satisfies the Gaussian upper bound

0 <e t(z,y) <eP(z,y) < (47rt)”/267|z*y|2/(4t), t>0 (3.1)
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(see [35]). Then an abstract theorem due to [10] implies that the following
square function estimate holds:

i 2
llgzrz < (3 NF@TH)ul sz )

JEZ

1/2

where {f(277)\)},ez is a dyadic partition of unity on (0,00), that is f €
CPR),0< f<1,suppf C(1/2,2) and

d 27N =1, A>o0.

JEZ
Hence the proof is reduced to proving following energy localized estimate
leOW2H)ull 22 S lluollp2, A >0, (32)

where ¢ € C§°(R) with supp¢ € (0,00) and the implicit constant should
be independent of A. In what follows, we shall focus on the low energy case
A € (0,1] since the high energy case A > 1 can be handled similarly.

Step 2: Reduction to a semiclassical problem. Next task is to approximate
the energy localization ¢(A~2H) by a pseudodifferential operator (PDO).
For each A > 0, it can be shown by using Helffer—Sjostrand formula [20]

o) = — [ S0 -2 L)
(with @ being an almost analytic extension of ¢) and a microlocal parametrix
construction of the resolvent (A\™2H —z)~! that p(A\"2H) is a PDO Op(a) =
a(\, z, D) with the principal symbol a = p(A72|£]? + V(2)). However, since
”8€GHL§3 ~ AL, the operator norm || Op(a)l|f2_, 12 may blow up as A \, 0
in genefal. Hence this rough observation cannot be used to show the above
uniform estimate (3.2) in the low energy case A € (0, 1].

In order to overcome such a difficulty, we first decompose the energy
localized p(A"2H) into two regions {\|z| < 1} and {\|z| > 1}:

e(A\?H)u = o(AH) (X{/\\:c|§1} + X{)\|x|21}>uv

where Y4 is a smooth cut-off function supported near A and x4 = 1 on A.
In the compact region {\|x| < 1}, we use Bernstein’s inequality

leO2H) 1212 S A

(which follows from (3.1) thanks to an abstract theorem by [10]) to deduce
the desired Strichartz estimate for the first term go()\_QH)X{MﬂSl}u from
the following weighted L? L2-estimate

-1
(=) UHLng S lluoll 2,

where we have used the bound A < min(1, |2|~!). Then such a weighted
L?L2-estimate follows from the uniform resolvent estimate proved by [32]

under the conditions (H1)—(H3) and Kato’s smooth perturbation theory [22].
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In the non-compact region {\|z| > 1}, we approximate ©(A™2H)x {x[z|>1}
by a suitable rescaled pseudodifferential operator

D) Op(a*)*D}

modulo an error term, where Dy f(z) = N2 f(Az) is the usual dilation and
the leading term of a(z, £) is given by

@ (@,€) = o (JKF + V@) xgupen (@), V@) =272V (A )

and the error term can be handled by a similar argument as that for the
compact part. Let us now introduce the semiclassical parameter h by

h= X1 e (0, 1],

where recall that we have assumed p € (0,2). By rescaling, the main term
D Op(a*)*Die " then can be written in the form

D Op(a*)*Die ™™ = Dy, Opy(ap) e N DY, | (3.3)
where Hj, is a semiclassical Schrodinger operator given by
Hy = —h?A+ Vi(z), Vi(z) = A2V (A i)

and Opy(ap) = ap(z, hD) is a semiclassical PDO with the symbol aj sup-
ported in

{(2,6) e R™ | 2] > 1, 1/4 < [¢]” + Vi(z) < 4},
The main advantage to introduce the parameter h is that, since V}, obeys
Vi(@)] S O 4 Ja) ™ < ()™

for |z| > 1 uniformly in A (and hence in h), aj, belongs to the symbol class
Sx) HE) %, (x) 2da? + (€) 2d¢?) uniformly in h € (0, 1], namely they
satisfy, for any N > 0, «, 3,

|8§‘8§ah(az,£)| < Cogn () 1ol(g) V18

uniformly in A € (0,1]. Therefore, we can use the semiclassical analysis
to handle the operator (3.3). Then, by virtue of a scaling argument, the
problem is reduced to showing the following semiclassical Strichartz estimate

[ Oph(ah)*f%‘“Hh/hl/)oHLng* S h_l/QHZ/)O”Lg (3.4)

with the implicit constant being independent of h € (0, 1].

Step 3: Semiclassical Strichartz estimate. In order to obtain (3.4), we
further decompose the support of the symbol a; into the compact part
{1 < |z| < 2R} and non-compact part {|z| > R} for sufficiently large R

com

(which is independent of h): aj, = a5°™ + a7°, where

supp a;”™ C suppap N {1 < |z| < 2R},

supp aj” C supp ay N {|z| > R}.
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For the compact part, we employ a similar idea as that in [37] which yields
that the desired Strichartz estimate can be deduced from the semiclassical
dispersive estimate

10py (af™) e 0/ Opy (™) |y pe S 1172, [t < to, (3.5)

for sufficiently small ¢y < 1 (independent of h), and the local smoothing
estimate of the form

10Dy (af?™) e 1/ gy 2 S ol - (3.6)

(3.5) can be proved by using the semiclassical WKB parametrix construction
of e~®#n/h Op, (a°™) and the stationary phase method (see e.g. [41]), while
one can prove (3.6) by using a semiclassical version of Mourre’s theory ([31]).

To deal with the non-compact part aj°, we decompose a}° into the outgo-
ing part a?{ and incoming part a, . Thanks to the abstract TT*-argument
by [23], it suffices to show the following long-time dispersive estimate

| Opu(a) e /" Opy (0 s e S 60, £ 0.

— L ~

To this end, we essentially follow the idea of [6]. The main ingredient in the
proof is the construction of the semiclassical Isozaki-Kitada (IK) parametrix
of ¢ *Hr/h Op, (a;f) whose main term is given by

Ja-(cﬁ-)eithAJf-:-(d-i-)*?

where J;"(w), which is called the IK modifier, is a semiclassical Fourier
integral operator with a time-independent phase function

St &) =w-£+0((0)'")
and the amplitudes ¢ and d* are supported in some outgoing regions. The
dispersive estimate for the main part of the IK parametrix of the form

1 0Py (@) " Ty (D) B T ) |y e S IR[TV2, E 0,

—LP ~

then can be proved by using the standard stationary phase method, while
several microlocal propagation estimates will be used in order to deal with
the error term. Since the calculation is rather involved, we omit the details
(see [28, Subsection 3.1]). To prove such propagation estimates, we employ
the local decay estimate for the propagator e~ @Hn/h Oph(af) which can be
obtained by means of the semiclassical version studied again by [31] of the
multiple commutator method of [21].
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