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Abstract

In this short note, we shall discuss weighted g-Fock spaces, field operators and their vac-
uum distributions, which have strong connections with g-orthogonal polynomials including
discrete g-Hermite I polynomials. One can see that our general approach can treat not only
known examples scattered in [1][5][8][9][10][13], but also can involve non-trivial and interest-
ing examples, which were not referred in previous works [5][11]. This is a summary paper of
our paper [4].

1 Weighted ¢-Deformation

Let # be a complex Hilbert space equipped with the inner product (-,-) and norm || - ||, where
the inner product is linear on the right and conjugate linear on the left. Let Fg, () denote
the algebraic full Fock space over J2°,

Fin() = CQ & P #"n,

n=1

where Q denotes the vacuum vector. We note that elements of Fg, () are expressed as finite
linear combinations of the elementary vectors f; ® - --® f, € ™. We equip Fgn(#) with the
inner product

n

<f1®®fm,gl®®gn>0 = 5m,nH <fk‘).gk‘>a fkagk €A
k=1

For ¢ € (—1,1), define the g-symmetrization operator on " as

Pq(”) = Z ¢ g, n>1,
UGGn

Pq(o) = I 0, Pén) = I pen,

where we put 0° = 1 and #%° = CQ by convention, &,, denotes the n-th symmetric group of
permutations and ¢(o) means the number of inversion of a permutation o € &,, defined by

lo) =#{(i,j) | 1 <i<j<n, o@i)>0o(j)}
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Definition 1.1 ([11]). Let {7,}3%; be a sequence of strictly positive numbers and [r,]! :=
[T, 7. The 7T-weighted g-symmetrization operators on #®" and F(.¢), respectively, are
defined by

79 = PO, T =[m]\PM™, n>1,
T, = @Tq(n)'
n=0

Since Pq(n) and {7, }7° ; are a strictly positive operator and sequence, respectively, the 7-weighted
g-inner product is defined by

(1® @ fin, 01 @ & Gndgfrn} = Omnl{f1 @+ & fin, T (g1 &+ ® g o

Let F, (7,}(J€) denote the T-weighted (generalized) g-Fock space. In this paper, we do not take
completion. The 7-weighted ¢-creation operator bZ {Tn}( f) is defined as the usual left creation
operator and b (-, 1(f) is its adjoint with respect to (-, )q -}, that is, by (-1 = (b; {Tn})*.

Proposition 1.2. (1) The T-weighted q-annihilation operator b
vectors is given as follows:

b, () (f)2 =0, bq{Tn}(f)f1=T1<f mQ, fes,

Vv
by (i} ()L - @ fr) —Tan V1@ @[ ® @ fn, 1n>2

@.{m} acting on the elementary

v
where fr means that fi, should be deleted from the temsor product.
(2) The T-weighted q-creation and annihilation operators satisfy

b} (D) 1 (9) = aBNbE (L ()b gy (F) = (o 9)TNs1,  frg €,

where {3, = Tnt1/T}22, and operators By and T are defined as

oNQ =0, oN(i®-- Q@ fn) =ep(fi®--® fr), n>1,
v €{B,7}.

Corollary 1.3. Suppose 71 =1 and B, = Q > 0 forn > 1. The following commutation relation
holds:

b {Tn}(f)bq {Tn }(g) - qu;{Tn}(g)bq,{Tn}(f) = <f7 g>TN+1) f)g € H.

2 Examples

Let us begin with the following examples to proceed our discussion.

Example 2.1. Suppose 71 =1 and ¢ € (—1,1).

(1) @ = 1 implies 7, = 75 > 0, n > 2. If we set 79 = ¢, then one can get Tq(n) = t”_qu(n) and
the (q,t)w-Fock space in the sense of Wojakowski [12]. If we take ¢ = 0, one can derive the
t-free deformation done by Bozejko-Wysoczansky [9][10]. Moreover, if 7, = 1 for all n > 1, one
can recover the well-known ¢-Fock space of Bozejko-Speicher [8] (See also [7]).

(2) If Q = 52,5 € (0,1], then we have 7, = s2(=1) > 1. One can get Tq(n) = s”(”*l)Pq(n) and
the (g, s) py-Fock space by Bozejko-Yoshida [11]. The s-free deformation of Yoshida [13] can be



derived if ¢ = 0. Moreover, one can see that a limiting case of (¢, s)py as ¢ — 1 coincides with
the Q" -deformation of the Boson Fock space [1].

(3) The Boolean Fock space can be derived as a limiting case of the (0,¢)w-Fock space as t — 0
and also (0, s) py-Fock space as s — 0.

One can derive a further deformation from (2) in Example 2.1. We shall show the relationship
between Blitvi¢ [5] construction and ours.
Remark 2.2. In [6], Bozejko-Ejsmont-Hasebe constructed the («a, ¢)-Fock space, which is different
from the (g,t)-Fock space by Blitvi¢ [5]. In this note, the expression “{q,¢}” will be used to
refer a symbol “(g,t)” to avoid confusions with the («, ¢)-deformation.

In fact, if we replace s2 by t > 0 in (2) of Example 2.1, then we have 7, = "~ and [r,,]! = #(3)
(n)

for n > 1. In addition, if one considers the (g/t)-symmetrization operator Pq Jto which is strictly
positive for |¢| < ¢, then one can consider the weighted (g/t)-symmetrization operator in forms

of Tq(/z - (/2 and T(7) = (2 )P(7t), n > 1. From now on, we set

0 n
Qi = q/z, QY =T) n>1, |g <t,

Qu = DY),
n=0

which are called the {g, ¢ }-symmetrization operators on J#*™ and F (), respectively. An inner
product defined by

(1@ ® frn g1 ® @ gndat = Smn(f1 ® - @ frny Q) (g1 ® -+~ ® ga))o

is called the {g¢,t}-inner product, which is the (q/t,/t) gy-inner product. The free Fock space
equipped with this {g¢,¢}-inner product is called the {g,¢}-Fock space denoted by F+().
Therefore, we have seen the following propositions:

Proposition 2.3. Suppose ¢ € (—1,1), t € (0,1] and |q| < t. The (¢/t,V/t)py-Fock space is
equivalent to the {q,t}-Fock space in the sense of [5].

The {q, t}-creation operator a;t( f) is defined as the usual left creation operator and {q,t}-

annihilation operator aq.(f) as its adjoint with respect to (-,-)q+. By replacing ¢ by ¢/t and
setting Q@ = t, 7, = t"~! in Proposition 1.2 and Corollary 1.3, then one can get the following
proposition.

Proposition 2.4. (1) The {q,t}-annihilation operator a,; acting on the elementary vectors is
given as follows:

age(f)=0, agi(f)fr ={f, /1), [feH,
Qg (£) (1@ @ f2) t’“Z() Ffhe oo ey n22, (21

v
where fr means that fi, should be deleted from the tensor product.
(2) The {q,t}-creation and annihilation operators satisfy

aqyt(f)a;t(g) - qa;t(g)aq,t(f) = <fa g>tN) f’g € %)

where the operator tV is defined by



We would like to consider the spectral measure (vacuum distribution) of the {g¢, t}-Gaussian
(field) operator gq¢(f) on Fq () defined by

9ot (f) = al ,(f) + aga(f), fe 2,

with respect to the vacuum state (€2,-Q),;. Orthogonal polynomials play important roles to
compute a distribution of such a field operator with respect to the vacuum state. In [5], the
{q,t}-Hermite polynomials given by the recurrence relation,

H0($aqat) = 1) H1($aq7t) =,
$Hn($aQ7t) = Hn+1($aQat) + [n]q,tanl($;Qat)) n 2 1)

where [n]q; := t""![n],/; are mentioned. Note that [n], := [n]q1 = S 0o ¢ and [n]y, = ¢" 'n.

However, concrete densities of orthogonalizing measures are not mentioned except for a very
restricted case, 0 = ¢ < t. We have been seeking examples for ¢ # 0, which can be treated
within the {g, t}-deformation. In this paper, we shall present not only recognized examples, but
also unrecognized ones in [5][11] as follows.

Example 2.5. Let us consider the {gs?, s?}-deformation for ¢ € (—1,1),s € (0,1]. This defor-
mation is of interest and quite fruitful.

(I) The {gs?, s*}-Gaussian (field) operator is equal to the (g, s) py-Gaussian (field) operator.
The {q, s*}-deformation is different from the (g, s)py except for ¢ =0 or s = 1.

(II) In addition, the probability density for (g¢,s)py case is known for the following three
cases: (1)s=1, g€ (—1,1)in [7][8], (2) s € (0,1], ¢ = 0 in [5][13], and (3) s = v/]q|, |q| € (0,1).

The case (1) is obvious at this time and provides the (Roger’s continuous) ¢-Hermite poly-
nomials. Therefore, one can obtain the ¢-Gaussian operator ([7][8]).

In case (2), it is known that the {0,t}-Hermite polynomials are the t-Chebyshev II poly-
nomials (¢ = 0 < t < 1 and set t = s?) . The {0,1}-Gaussian measure is the semicircular
measure. If t # 1, the {0,¢}-Gaussian measure is known to be a discrete probability measure
with atoms at which are represented by the zeros of the t-Airy function (See [5] and references
cited therein). The {0,¢}-Gaussian (field) operator is the same as the (0, v/t) py-Gaussian (field)
operator, which is nothing but the s-free Gaussian (field) operator [13]. Moreover, the limiting
case s — 0 implies the Boolean Gauss (field) operator, whose distribution is (01 + 6_1). The
case (3) is not referred as a particular example in [5][11]. One can see that the {¢?, |¢|}-Hermite
polynomials are identified as a rescaled version of discrete |g|-Hermite I polynomials!. Let fq
denote the orthogonalizing measure? for the discrete g-Hermite I polynomials. Correspondingly,
the rescaled orthogonalizing measure of f, is given by D, J/ TPl lg| € (0,1), where D)

denotes the dilation of a probability measure p by Dyu(-) = u(-/A), X # 0. Moreover, the
{¢?, |q|}-Gaussian (field) operator coincides with the (g, \/|q|) py-Gaussian (field) operator.

(I1T) Furthermore, since the (g, s) gy-Fock space as ¢ — 1 coincides with the Q”-deformation
of the Boson Fock space mentioned in (2) of Example 2.1, a limiting case of the {gs?,s?}-
Gaussian (field) operator as ¢ — 1 agrees with the QV-deformation of the classical Gaussian
(field) operator [1]. It is our paper [4] which first points out this nontrivial relationship of
interest.
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Tt is known that the discrete g-Hermite I polynomials are a symmetric case of Al-Salam-Carlitz I polynomials.
In addition, the discrete g-Hermite I polynomials belong to the class IV of Brenke-Chihara polynomials. See [2][4]
and references therein.

2114 is expressed as an infinite sum of atoms on {0,+¢* : k=0,1,...}.
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