REFINED POINTWISE ESTIMATES FOR A 1D VISCOUS COMPRESSIBLE FLOW
AND THE LONG-TIME BEHAVIOR OF A POINT MASS

KAI KOIKE

ABSTRACT. We present results on the long-time behavior of a point mass moving in a 1D viscous
compressible fluid. In a previous work, we showed that the velocity V(z) of the point mass decays at
least as =3/, In this note, we give a necessary and sufficient condition on the initial data for the decay
rate 3/2 to be optimal. This result is obtained as a corollary to refined pointwise estimates for solutions
to the barotropic compressible Navier—Stokes equations. This note is a résumé of the preprint [3] with
some numerical results added. Our intention is to explain, in a concise manner, the core idea behind the
somewhat lengthy calculations given there.

CONTENTS
1. Introduction 1
2. Main theorem: Refined pointwise estimates of solutions 4
3. Idea of the proof 9
4. Numerical validation of mathematical results 15
Appendix A. Power-law exponent estimation methods with sequence acceleration 21
References 24

1. INTRODUCTION

Phenomena arising from interaction of moving solids with fluid flows are studied intensively by many
mathematicians. One of the reasons why such problems attract mathematicians is because coupling
of equations of motion for fluid and solid creates new phenomena and impetuses for development of
new theories.

In this note, we consider the motion of a point mass in a viscous compressible fluid. In a previous
work [4], we showed that the velocity V(z) of the point mass decays at least as r~3/2. Here, we give a
simple necessary and sufficient condition on the initial data for the optimality of the decay rate 3/2.

In the rest of this section, we explain the formulation of the problem. Then, in Section 2, we state
the main theorem and discuss its consequences. The idea of the proof is explained in Section 3. Here,
we tried to reveal the scaffolding of the proof rather than to explain the proof in detail; for the detail, we
refer to [3]. Finally, we report in Section 4 some numerical simulations related to the main theorem.

1.1. Point mass motion in a viscous compressible fluid: Formulation. Let us imagine an infinitely
long channel in which a fluid is filled; the channel is then separated into two chambers by a movable
piston (see Figure 1). Although the figure is multi-dimensional, we stress here that we consider a
one-dimensional problem: we assume that the fluid variables, i.e., the density p and the velocity field
U only depend on the spatial coordinate X whose axis is parallel to the channel walls (the hatched



regions in Figure 1) and the time variable . We also neglect the thickness of the piston. Hence,
if we project the system onto the X-axis, we can regard the piston as a point mass moving in a
one-dimensional flow. This justifies the title of this note. The word used depends on the authors: For
example, in [9], the solid is called a piston, and in [10], it is called a point mass (or a point particle).

We assume that the fluid is viscous, compressible, and barotropic. Here, barotropic means that the
pressure P of the fluid is a function only of the density p, thatis, P = P(p). The barotropic assumption
is valid, for example, if either the temperature or the entropy remains almost constant (isothermal or
isentropic flows). This assumption is usually not so realistic but is assumed here for simplicity. As for
the point mass, we assume that its motion is governed by Newton’s second law.
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FIGURE 1. A movable piston separates an infinite channel into two semi-infinite cham-
bers in which two fluids of the same kind flow.

With these assumptions, we can write down the equations describing the motion of the fluid and
the point mass:

pi + (pU)x =0, X eR\{h()}. 1 >0,
(pU);+ (pU?) _+ P(p)x = vUxx. X e R\{h()}, t > 0,
D YURD*, 1) =UG) 7, 1) = V(0), t>0,
mV'(t) = [[-P(p) + vUx | (h(2), 1), t>0,
1(0) = ho, V(0) = Vo; p(X.0) = pop(X), U(X,0) = Up(X). X €R\{ho}.

Here, p = p(X,t) and U = U(X, t) are the density and the velocity of the fluid, and v > Oand P = P(p)
are the viscosity and the pressure; & = h(t) and V = V(t) = h’(¢) are the position and the velocity
of the point mass, and m is its mass. Hereafter, we set m = 1 for simplicity. The double brackets
[f](X,¢) are defined by [ f (X, 1) := f(X*,¢) — f(X™,1), where f(X*,¢) = limy_x+ f(Y,).! The
first two equations are the one-dimensional barotropic compressible Navier—Stokes equations; the third
equations are the boundary conditions for the Navier—Stokes equations, which say that the fluid does
not penetrate through the point mass. The fourth equation is Newton’s second law; the right-hand side
is the net fluid force on the point mass. The final set of equations are the initial conditions.

The equations above are posed in a time-dependent domain R\{/4(¢)}. For ease of mathematical
analysis, we transform the domain into a time-independent one. To do so, we introduce the Lagrangian

Nimy_,x+ and limy_,x- denote the limit from the right and the left, respectively.



mass coordinate. Fix x € R, := R\{0} and ¢t > 0, and let X = X (x, t) be the solution to

X(x,1)
X = / (X', 1) dX'.
h(t)

Here, p is the solution to (1). We assume that p(x,#) > pg for some pg > 0. Then the equation above
is uniquely solvable and determines a one-to-one map

R. x> X(x,t) € R\{h(t)}.

The Lagrangian mass coordinate is this variable x. We also change the dependent variables as follows:

1
v(x,t) = m, u(x,t) =U(X(x,t),t), p)=~P (;) .
Using the first equation in (1), we can show that
X X
@) oX(x,t) _ - 90X _

v,
ox ot
With these in mind, we can check that (1) is equivalent to

vy —uy =0, xeR,t>0,
u,+p(v)x:v(u—x) , x€R,, t>0,
UV /x
3) u(0%,1) = u(07,1) = V(1), t>0,
V'(t) = [[—p(v) + vu /0] (1), t>0,
V(0) = Vp; v(x,0) = vg(x), u(x,0) =ug(x), xe€R,.

Here, [ f](¢) :== f(0*,¢) — (07, ¢) and

vo(x) = ——

po(X(x,0))’
We note that (3) does not contain A (z), but we can recover it by A(t) = hg + /Ol V(s) ds.

up(x) = Up(X(x,0)).

1.2. Long-time behavior of the point mass: Question of optimality. In this note, we focus our
attention on the long-time behavior of the point mass velocity V(¢). In a previous work [4], we showed
the decay estimate V(1) = O(r~3/2). For a special class of initial data, we even showed that this rate
3/2 is optimal, that is, no faster decay estimates hold. However, we could not treat general initial data.
To enable this is the purpose of the present work.

The main tool we used to prove the decay estimate V(¢) = O(t=3/?) is the method of pointwise
estimates developed in [7, 11]. This method, through a detailed analysis of the fundamental solution to
the linearized problem, allows us to prove pointwise estimates of solutions to quasilinear hyperbolic-
parabolic systems including the barotropic compressible Navier—Stokes equations. Here, the term
pointwise means that we obtain inequalities of the form |f(x, )| < ¢(x,t), where f is an unknown
and ¢ is an explicit function. Although their works treat the Cauchy problem, we can also analyze
initial-boundary value problems by using the Fourier—Laplace transform technique developed in [5, 6].
These methods are applied, for example, to analyze half-space problems of the barotropic compressible
Navier—Stokes equations [2]. And in [4], we applied these methods to the free-boundary value
problem (3) to show V(¢) = O(+=3/2).



The necessity to prove pointwise estimates comes from the fact that the L*-norm of (v — 1,u),
where (v, u, V) is the solution to (3), decays as ~'/2 in general. This only implies V() = O(~1/?),
which is far from optimal. By studying the spatial structure of the solution by the method of pointwise
estimates, we can show that the solution decays much faster, at least as t3/2 around x = 0, and this
implies V(¢) = u(0*,1) = O(t~3/?). Physically, this faster decay around the location of the point mass
is due to the compressibility of the fluid, which takes away the r~!/2 decaying parts of the solution
away from the point mass as sound waves; in contrast, for the fluid governed by viscous Burgers’
equation, the point mass velocity V(r) only decays as r~1/2 since this fluid lacks compressibility [10].
We also note that the rate 3/2 comes from the nonlinearity of the Navier—Stokes equations and that
V(1) decays exponentially fast if we neglect the nonlinearity.

To tackle the problem of optimality, we refine the pointwise estimates obtained in [4]. Previously,
asin [7, 11], we considered an approximation of the solution to (3) by diffusion waves — self-similar
solutions to generalized Burgers’ equations — and obtained error bounds of this approximation in a
pointwise manner. Diffusion waves, which decay as =2 in the L®-norm, provide a leading order
approximation of the solution in the L®-sense because the approximation error decays at least as /4
in the L*-norm. However, diffusion waves cannot give the leading order asymptotics of the solution
around x = 0 since the diffusion waves decay exponentially fast there. Then, in order to understand
the long-time behavior of V(¢) = u(0*,¢) more precisely, a natural question is to find out a leading
order approximation of the solution around x = 0; we define such waves and dub them bi-diffusion
waves. This is the line of thought we pursue, and we shall explain this in the next section.

2. MAIN THEOREM: REFINED POINTWISE ESTIMATES OF SOLUTIONS

In this section, we state the theorem on refined pointwise estimates of the solution to (3). Then,
from this theorem, we deduce corollaries on the decay rate of V(¢). To state the theorem, we start with
some preliminaries.

First, we note that the first two equations in (3), the barotropic compressible Navier—Stokes equations,
can be written in vector form as follows:

0
4) ut+Aux:Buxx+(Nx),
where
_[v-1 (0 -1 {00 _ ooy ov—l
(5) u—( y ) A_(—c2 0), B—(O v)’ N=-p)+p(l)-c(v-1)-v Uy.

Here, ¢ > 0 is the speed of sound for the state (v,u) = (1,0) defined by ¢? = —p’(1); for ¢ to be
well-defined, we assume that p’(1) < 0.2 The matrix A has two eigenvalues A; = ¢ and A2 = —c; as
right and left eigenvector of A corresponding to A;, we can take r; and /; defined by

B 2c -1 B 2c 1
”“p"u)(c)’ 2 (c)

2We consider small solutions around the state (v, u, V) = (1,0, 0). The reference volume can be any v = v, > 0, but we
set this to unity for simplicity.




and

h:fﬁjpllky b:plbo Uﬂ.

Here and in what follows, we assume that p” (1) # 0. We then define u; (i = 1, 2) as components of u
with respect to the basis (r1, r2), that is,

(6) U = uiry + usry.

ll (I‘ ; ) _ 10
we can calculate u; by

(7) u; = l,-u.

Taking into account the relation

We next define diffusion waves. First, let us write down the i-th component of (4) obtained by
multiplying /; to it:

(8) wis + iy = ;B (7”1 7”2) Zl) + Nix = g(ul + U2)xx + Nix,
2 XX
where
(0} _p’(D)
©) M—Lﬁ—4&N.

We note that N; in fact does not depend on i; we add this subscript just to distinguish N; from N. By
Taylor’s theorem, we see that
_prw? 2 3 _ 1 2 3
Ni==-—5-=-1"+0(o—1| )+0((v=Duxl) = =5 (mur+u2)”+0(jo— 1) +O(|(v - D).
Now, let i/ = 3 —i (1’ = 2 and 2" = 1) and neglect terms involving u;; and terms of the order of
O(|v—1]?) and O(](v — 1)uy|) in (8); then we obtain, writing 6; instead of u;,
2

0:
(10) 8t0,~ +/1i0x0i + 8x (3’) = 5(939,‘, xeR,t>0.

In this way, we find a connection between the barotropic Navier—Stokes equations and the generalized
Burgers equation (10). Moreover, from the conservation laws

/oou(x,t) dx +V(t) :/Oouo(x) dx + V), /oo(v—l)(x,t) dx:/m(vo—l)(x) dx,

we see that

(1D OOM'(Xf)dx+l' 0= Oou'(x)dx+l- 0) = m,
—ool’ lv(t)__oo 0i IV() = M;

where

1)0—1
M0i=li( o )



Taking this into account, we impose
(12) lim1 0;(x,t) = M;6(x),
1——

where & (x) is the Dirac delta function. Note that the limit is lim,_,_; and not lim,_,¢; this is because
we don’t want 6; to have singularity at + = 0. By the Cole-Hopf transformation, we can solve (10)
and (12) explicitly:
, -1
0;(x,t) = L (e% - 1) e_% Vr+ (e% - 1)/ e dy
VR0 23

We see from the formula above that ; propagates with speed A; and spreads like solutions to a diffusion
equation; hence we call 6; the i-th diffusion wave with mass M;.

Our next task is to define bi-diffusion waves. It requires some detailed calculations to understand
the motivation behind their definitions, so we postpone the explanation to Section 3 and give the
definitions right away. Let & be the solution to the following variable coeflicient inhomogeneous
convective heat equation:

62
(13) O,€i + A;0cE; + 0,(0;€;) + O« (?l) = gﬁffi, xeR,t>0
with
(14) &(x,0)=0, xeR.

Here, we remind that i’ = 3 —i. We call & the i-th bi-diffusion wave with mass pair (M1, M3). In
Figure 2, we show graphs of &;. The figure visually explains the reason why we call it a bi-diffusion
wave.
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FIGURE 2. In this figure, we set ¢ = 1, v = 1, and (M1, M3) = (1,1). The dotted and solid
line represent &1 at time ¢ = 50 and ¢ = 100, respectively. We can see that the wave spreads in
both directions although the right part is more dominant.



We add few more notations to state the theorem. First, let

and

(15)

Yrpa(x t:47) = [(x = (e +1)* + (1 + D] 775,
P(x,1540) =[x = (e + D[+ (0 + 1]V,

Ti(x’ t) = '707/4()(:’ L /11) + l;(x’ L /11")'

An important property of ¥; is that ¥;(0,1) = O(+~"/*) (note that 7/4 > 3/2). We also have
W (A2, 1) = O(+~7/8) and W; (-1, 1) = O(+~°/*). Secondly, let

Cilv.u) = =p(0) +v=",

I/t2

v X
Co(v,u) = —p'(v)uy + — (—p(v)+vu—) —v—2.
v U /xx Y

We note that if (v, u, V) is the solution to (3), then Co(v, u) = 9,C1 (v, u). Next, we introduce

(16)

) = [andy i@ = [ ).

(o)

Finally, let [ /] := f£(0%) — £(07) and denote by || - ||x (k € N) the Sobolev H*(R,)-norm.
Our main theorem reads as follows.

Theorem 2.1. Letvy—1,ug € H5(R,) and Vy € R. Assume that they satisfy the following compatibility
conditions:

up(0%) =Vo,  Ci(vo, u0)x(0F) = [Ci(vo, u0) ],  C2(vo, u0)x(0%) = [Ca(vo, uo)]-

Under these assumptions, there exist 6o, C > 0 such that if

a7 5:=Z[||uo,||6+sup (bl + 1)t ()1} + 50p { (bl + 1) (g0 + g ()|

< 0o,

then the unique global-in-time solution (v, u, V) to (3) satisfies the pointwise estimates

(18)

|(ui = 0; =& = yr0:0r) (x,1)| < CoWi(x,1) (x €R,, 1 20;i=1,2),

where i’ =3 —iandy; = (—1)'v/(4c).

We add some remarks.

(i) We have not mentioned any result on the existence of solutions; for this, see [3, Theorem 2.1].

(i) The decay rates of functions appearing in (18) are as follows: (I) In the O(1)-neighborhood

of x = A;t, we have 0;(x,t) = O(t™1/?), &(x,1) = O(173/%), 8,0, (x,1) = O(e™"/), and
W, (x,7) = O(+~7/%). (II) In the O(1)-neighborhood of x = 0, we have 6;(x,7) = O(e™"/©),
&i(x, 1) = 0(t732), 8,0i(x,1) = O(e™/€), and ¥;(x,1) = O~ 7/*). I In the-O(1)
neighborhood of x = 1,1, we have 6;(x, 1) = O(e™"/€), &(x,1) = O(t7Y), 8c0y (x,1) = O(t™Y),
and W;(x,7) = O(r°/%). Hence, around x = 1,1, the leading order term is 6;, and the second
order term is &;; around x = 0, the leading order term is &;; around x = At the leading order
terms are &; and y;0,0;.

(iii) In the previous work [4], we obtained pointwise estimates for u; — 6;. From (iii) above, we

then lose the information on the leading order asymptotics of V() = u(0*, 7).



By Theorem 2.1, we have
2 2

+ o, 2C
p,,(l) (I/tl +I/t2)(0 ’t) = p”(].)

From this, we obtain two Corollaries on the long-time behavior of V().

Corollary 2.1. Define M; by (11) and assume that (M1 + M3) (M — Ms) # 0, that is,

/_Oo(vo—l)(x) dx]- /_oouo(x) dx + V)

Then under the assumptions of Theorem 2.1, there exist 6o > 0, C > 1, and T'(6) > 0 such that if (17)
holds, then the solution (v, u,V) to (3) satisfies

CUM2 — M2|(t +1)7/2 < sgn(M? = MHV (1) (t = T(6)).

V(t) = u(0%,1) = (&1+&)(0,1) + O™,

# 0.

In particular, this implies
CUMZ M2+ )32 < V()| (r 2 T(5)).
Corollary 2.2. Define M; by (11) and assume that (M + M3)(My — M3) = 0, that is,

[[oo(vo— 1)(x) dx] . [[oouo(x) dx +Vj

Then under the assumptions of Theorem 2.1, there exist 6o, C > 0 such that if (17) holds, then the
solution (v,u,V) to (3) satisfies

=0.

V()| < Cs(t+1)"7* (¢t >0).
Again, we add some remarks.

(i) From the two Corollaries above, we can conclude that the condition (M1 +Ms)(M1—M>) # 0is
a necessarily and sufficient condition for the optimality of the decay estimate V(t) = O(t‘3/ 2).
When (M + M3) (M — M3) # 0, we can even predict that the final sign of V(1) is M12 — M22.

(i) By (2), we can check that

/_ (0 - 1)(x) dx = - / " (oo - 1)(X) dX, / " o(x) dx = / " (polo) (X) dX.

Therefore, the condition (M7 + M3)(M1 — M2) # 0 means that the initial perturbations of the
density and the momentum are both non-zero.

(iii) To deduce the corollaries above from Theorem 2.1, we need to analyze the long-time behavior
of &(0,t). Corollary 2.1 is not so difficult to prove. On the other hand, the proof of
Corollary 2.2 is not so straightforward and requires some care.

(iv) We can also ask whether the decay estimate V(r) = O(r~7/%) is optimal under the constraint
(My + M3)(M; — Ms) = 0. We have not proved this mathematically. However, this seems to
be true. See Section 4 for a numerical evidence.

We can also obtain similar results for the Cauchy problem:
vy —uy =0, xeR, >0,

Uy

(19) ur+p)y=v (7) , xeR,t>0,
v(x,0) =vp(x), u(x,0) =up(x), xeR.



Theorem 2.2. Let vy — 1,ug € HS(R), and define M; by

(20) M; = /Oouo,-(x) dx

instead of (11). Under this setting, there exist 6o, C > 0 such that if

2
@1 6= Z[||uo,-||6+sup{(|x|+1>7/4|uo,-<x>|}+sup{(|x|+1>5/4<|ua,-<—x>|+|ua,-<x>|>} < 8o,
i=1

xeR x>0

then the unique global-in-time solution (v, u) to (19) satisfies the pointwise estimates
|(u; = 0; = & —yr0:0i) (x, 1) < Co¥i(x,1) (x €R,120;i=1,2),
where i’ =3 —iandy; = (=1)'v/(4c).

Corollary 2.3. Define M; by (20) and assume that (M + Ms) (M — Ms) # 0, that is,

[/_:(vo -1)(x) dx] . /_: uo(x) dx

Then under the assumptions of Theorem 2.2, there exist 6o > 0, C > 1, and T'(6) > 0 such that if (21)
holds, then the solution (v, u) to (19) satisfies

CYM? - M2|(1 + 1) < sgn(M? = MHu(0,1) (t = T(6)).

# 0.

In particular, this implies

CUM? — M2t + )32 < u(0,1)| (1 2 T(6)).

Corollary 2.4. Define M; by (20) and assume that (M + M3) (M — Ms) = 0, that is,

[/_m(vo— 1)(x) dx] . [[muo(x) dx] =0.

Then under the assumptions of Theorem 2.2, there exist 6o, C > 0 such that if (21) holds, then the
solution (v, u) to (19) satisfies

u(0,1)| < C5(t+1)""* (¢ > 0).

3. IDEA OF THE PROOF

In this section, we explain the idea of the proof of Theorem 2.2 for the Cauchy problem; combining
the techniques developed in [4], we can prove Theorem 2.1 in a similar manner. We shall explain the
idea of the proof somewhat heuristically rather than to show the details of the calculations; the focal
point of our exposition is to explain the origin of the bi-diffusion wave &;.

The proof starts by writing an integral equation for the solution to (19) in terms of the fundamental
solution to the linearized problem.



3.1. Integral equation. We define the fundamental solution G = G(x,t) € R?*? to the linearized
problem of (19) by

0 -1 00
a,G+(_C2 O)GxG:(O V)afG, xeR, t>0,

G(x,0) =6(x) ((1) (1)) , x €R,

where 6 (x) is the Dirac delta function. Then, by applying Duhamel’s principle to (4), we obtain the
following.

Proposition 3.1. The solution (v, u) to (19) satisfies the following integral equation:

" oo = [“eann (" oy

T 0
+/O /_ooG(x—y,t—s)(Nx)(y,s)dyds,

To write down the corresponding integral equation for u; defined by (7), we introduce
gi =1,G (r1 r2) .

Then, by multiplying /; to (22) and using

B o L e[ e o [

@ wen= [“at-nn (o [ [ at- a0l G dvas

3.2. Pointwise estimates of the fundamental solution. To analyze (23), we need the pointwise
estimates of the fundamental solution G proved in [8]. First, define G* = G*(x, 1) € R?*? by

1 Geen? (1 -1 1 een? (1L
G* X, ) = ————e¢ vt <l + e i cl.
(1) 2(2mvr) 12 (_C 1 ) 2(2mvt)1/2 (c 1)
Then, for any integer k > 0, the following pointwise estimates hold [8, Theorem 1.3]:
G (x,1) - 05G*(x,1)

(22)

S (-1 0 U 21 0 2 &
_yot [T gkl i = 2N sk "
1 (2rve)1/2 ( 0 1) Y20 Qrv)t/2\ 0 1 ¢ ]Z=:0 (x)Q;(1)
(24) 2 1 1
.- Xoct 1 - + x+e)? (1 2
= O()(r+ 1) (—c 1C)+0(1)(t+1)_1/2t‘k_2le_% (c i)

k+2 (x—ct)2 (x+ct)2
+O()(t+ 1) V2T (e- T )

Here, v; = (—1)'v/(4c), O(1) denotes a scalar function f(x, ) satisfying | f(x, )| < C, 9 (x) is the
k-th derivative of the Dirac delta function, and Q; = Q;(¢) is a 2 X 2 polynomial matrix. Additionally,

10



we have

10 0o -1
Q0:(0 0)’ le(_ﬁ 0)

04

For small 7, we rather use the following pointwise estimates obtained in [11]:

ct 4+ e Cr

2 k 1
(25) |65G (x,1) - 85G* (x,1) — e Z s*N(x)Q; (1] < C(t+1)721

kel ( _G=en? _ (xren?
7 e
Jj=0

We note that in the previous work [4], we only used (25); in the present work, we also need (24).
We finally note that if we set

g =1LG" (rl 7‘2),

then we have

v (g 0) == (1 0), g (0 g) = —— e E (0 1)
817 (gll ) - (27rvt)1/26 ( )’ 89 = ( g22) - (27rvt)1/26 :

3.3. Origin of ¢; and y;/0,6;: A heuristic argument. Our aim here is to find an appropriate function
w; = w;(x, t) such that, if we set

Ui = uj — w,
then the following pointwise estimates hold:
(26) lv;(x,1)] < CoPi(x,t) (xeR,t>0;i=1,2).

It turns out that w; = 6; + &; +v;0,0;» will do the work. Here, we try to heuristically justify this choice,
thus revealing the origin of &; and y;»0,6;,. This, we hope, helps the reader go through the detailed but
somewhat long calculations in [3].

We first try the choice w; = 6;, and hence v; = u; — ;. Such initial guess is not absurd. In fact,
as we mentioned earlier, neglecting terms involving u;; and higher order terms in (8) leads to (10).
Now, since (24) implies that the leading order asymptotics of g; is given by g, we approximate (23)
as follows:

ui(x,t)~/_ g?(x—y,t)(zg;) (y)dy+/0[ gi(x—y,t—ys) (%) (y,s) dyds

o] t o0
_ / &G = v, g (y) dy + /0 / ¢5(r = vy £ = 5)Nia (v, 5) dyds.

Here and in what follows, without giving a precise definition, we write f ~ g if the long-time behavior
of f and g are similar. Since 6; satisfies the integral equation

(27)

92

@ o= [ gi-y000.0d- [ [ -y (5) (v.5) dyds.
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we obtain

o 1) ~ / ¢ ¢ = v 1) (1t = 07) (v, 0) dy

(o)

t (o5 92
+/ / g;(x =y, t—ys) (Ni + ?l) (y,s) dyds.
0 J-oo

For the term related to the initial data, we note that, by (10), (12), and (20),

/Oo(u,' - 05)()6, 0) dx =0

(29)

Therefore, the anti-derivative f_ xoo (u; —6;)(y,0) dy of (u; —6;)(x,0) decays at spatially infinity.3 Then,
we can gain time decay by integration by parts since d,g’; decays faster than g.. For the term related
to N;, by (5), (6), and (9), we have

~ //(1)2 5 3
N;=- W=D+ 0(v-11") + O(|(v = Dux|)
as| 2
(30) ~ ( ) (v-1)7%= ‘5(—91 — 01+ 602 + 1)
1 9 1 1 9
~ —591 - 592 + (—91 + 02)1)1 + (91 - 02)1)2 - 5(—1)1 + 1)2) .
Here, we neglected 6165 since it decays exponentially fast. Hence, we have
0 1, 1 2
N; + ? ~ _501" + (—91 + 92)1)1 + (91 — 92)1)2 - 5(—01 + 1)2) .

Let us set aside for the moment the terms involving v;. Then, the nonlinear term in (29) is principally

(31) Gi(x, 1) = - // gii(x — y,t—S)( )(y,S)dyds

It turns out, however, that this term cannot be bounded by the right-hand side of (26). Therefore, the
choice w; = 6; is not enough.

From the analysis above, we improve our guess by taking w; = 6; + {;. Setting v; = u; — 6; — {;, we
have, by (27), (28), and (31),

o 1) ~ / g0 = v.1) (s = 6,) (7, 0) dy

02+ 03
/ / gi(x =y, t=5)|N (y,s) dyds.

(32)

3The use of this anti-derivative explains the reason why we needed to introduce ug;; see (16).
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Similar to (30), we have

” 12 1
N; ~ -2 (2) (0=1)% = —==(=01 = {1 = v1 + O3 + {2 +12)°
8c 2
Lo 1o
= —591 - 592 — 0181 — 6282

1 1
—§ﬁ—§ﬁ+&®+mﬁ+ﬁ%+&&

1
+ (=01 = {1+ 02+ vy + (01 + 1 — 02 — o)vo — 5(—01 +02)”.
Hence, we have

0% + 63 1 2
Nit ===~ =010 = 020+ (=01 =+ 02+ L)1 + (01 + (1 = 02 = )op — (o1 +02)™

Here, we neglected terms that are less important than 6;{;. Again, let us set aside for the moment the
terms involving v;. Then, the nonlinear term in (32) is principally the sum of

(33) nfl) (x,1) = —/O / 8 (x =y, t —5)(0,4i)c(y,s) dyds

and

—/O [ 8i(x =y, t —5)(0i i) (v, 5) dyds.

However, the latter term is less important compared to nfl); to show this, we need to make use of the
differential equation satisfied by ¢; (see (35) below and [3, Lemma C.1]). For nfl), it turns out that
it cannot be bounded by the right-hand side of (26). Therefore, the choice w; = 6; + {; is again not
enough.

We now repeat the argument above with the choice w; = 6; + {; + nfl). Then, we find that we need

to add

t (]
1P (x,1) = - /O / gi(x=y,t—s) (Hinfl) )x (v, 5) dyds
(1)

i

(n)

to w;, that is, we upgrade the guesstow; = 6; + {; +n. + 7752). Repeating this, we come to define n;

inductively by

t (o)
(34) %m@J%=—[:/‘gﬂx—%tﬂﬂ@mVJ»J%@dwh (n>2).

and setw; = 6; + & + 222, 71" By (31), (33), and (34), we see that ¢; and " satisfy

2
{,-(x, 0) =0, x € R,

92/ 4 2
(35) at{,- +/l,~8x§,- + 0y L= §6x li, x€ R, >0,

thfl) +/1if9x77,-(1) +0,(0;) = %afn.(”, xeR,t>0,

1

" (x,0) =0, xeR

13



and

o™ + ;0" +a( “1ﬁ zﬁ(ﬂ XxeR, >0,

7™ (x,0) = 0, xeR

(n)

for n > 2. Summing these up, we see that &; :== {; + 3 ; n, " satisfies

6>
08 + ;0. 5; + GX(Q,-E,-) + 0, (?l) = gaffl, xeR,t>0,

Zi(x,0) =0, x €R.

Hence, by (13) and (14), we conclude that &; = &;.
We are almost done. But we also need to add y; 0,6, to w;. This can be explained as follows.
By (24), the right-hand side of (23) contains

00 _<x—21,»;t>2
w [ asmral o
oY (x=yr (1=9))2
e
/ / (27rv(t—s))1/2 Ci (x;)x (. ) dyds,
where

Ci=1 (_01 ?) (r1 rz) = (5i2 5i1) .

Here, 6, is the Kronecker delta. As we saw in (30), N; contains the quadratic term —9?, /2. There-
fore, (36) contains

(x=2;1)2 (x=247 (1-9))

[eS] a e~ 2wt - 2v(t—s) 92
V) [ = () dys.

It is not difficult to see that this term is well approximated by y;:0,0;,. This explains the choice
w; = 0; + & + virOxbj.

3.4. Estimates of the nonlinear terms. We now explain the final step of the proof. We set v; =
— (6; + & + yir0,0;7). Since we already have the integral equations for u;, 8;, and &;, we can write
down an integral equation for v;.
What we now do is this. We set
2
P(1) = 3 sup [, )¥iC5) e

=1 O<s<t

Here, ¥; is defined by (15) and | - | is the L*(R,)-norm.# We then have
loi(x, )] < P(0)¥i(x,1) (xeR2>0;1=1,2).

41t should be noted that we do not know a priori that P(¢) is finite, but we do not go into this problem here.
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Using this, we estimate all the terms appearing in the integral equation for v; to show
P(t) < CS+C(§+P(1)* (t=0).

Here, ¢ is defined by (21) and C is a positive constant independent of . From this, by a standard
argument, it follows that if § is sufficiently small, there exists a positive constant C” independent of ¢
such that P(¢) < C’6 for all + > 0. We then conclude that

lvi(x,1)] < P(£)¥;(x,1) < C'"¥;(x,1) (xe€R,r>0;i=1,2),

which is what we wanted to prove.

Now, it remains to bound numerous convolutions of functions appearing in the integral equation for
v;. The required calculations are long, and these are done in [3]. We omitted this core calculations,
but we now at least know the heart of the proof.

4. NUMERICAL VALIDATION OF MATHEMATICAL RESULTS

In this section, we present numerical simulations that support the results in Section 2. To avoid
difficulties related to the treatment of the boundary, we consider the Cauchy problem (19) with the
ideal gas law p(v) = 1/v and numerically validate Corollaries 2.3 and 2.4. In this section, we set
v=1.

4.1. Pseudospectral scheme. We use a pseudospectral method (cf. [1]) to numerically simulate (19).
We describe the scheme below.

Since (19) is posed on the whole space R, we take L > 0 large enough and consider instead the
following equations:

v, —u, =0, xe(-L,L), t>0,
37 J us+ p(v), = (MTX)X’ xe(-L,L), t>0,

v(=L,t) =v(L,t), u(=L,t) =u(L,t), t>0,

v(x,0) =vg(x), u(x,0) = ug(x), xe (=L, L).

Here, we impose periodic boundary conditions, and we expect that if L is large enough, the solution
to (37) should give an approximation of the solution to (19); the effect of the finiteness of the domain
should be assessed by varying L in a certain range.> Moreover, to make the domain L-independent,
we change the variables as follows:

y:%x’ 5(y’t) :U(.x,t), ﬁ(y’t):”(x’t)
Then, after replacing the symbols (v, i) by (v, u), (37) becomes

v —apuy =0, y € (-m,m),t>0,
_ 2 (Y
ur+arp()y =a; (—| . ye (—-m,mn),t>0,
(38) 3 U7y
v(—m,t) =v(m,t), u(-n,t) =u(m,t), t>0,
v(y,0) =vo(y/ar), u(y,0) =uo(y/ar), ye (-nn),

SWhen we consider initial data localized around the origin, L = 2¢T = 2T is usually large enough (7 is the maximum
simulation time).
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where a; = /L.
Spectral methods use discrete Fourier transforms to approximate solutions to differential equations.
In our case, this means that we seek an approximation of the solution (v, u) to (38) in the form
1 n/2-1 1 n/2-1
(9 == ) D Oep(V=Tky). W"(n=~ 3 (D80 exp(V=Tky)
k=—n/2 k==n/2
with sufficiently large n (an even positive integer). The task now is to determine the Fourier coefficients
{03 (2), u (1)} properly so that (v", u") approximately satisfies (37). Concerning the initial condition,
we use the following fact: if we set
n/2-1

1
V(1) = 0" (pj.1) = = Z 0! (1) exp(2aN—1jk/n), j=0,1,...,n—1,
n
k=—n/2
n/2—-1
n n ]' ~N . .
uj(t) =u"(yj,t) =~ Z up(t)exp(2nV-1jk/n), j=0,1,...,n-1,
n
k=—n/2
where
[ —n/2
yj =217 i :
n
then we have
n-1 n—1
0 (1) = Z v;-’(t) exp(=2nV=1jk/n), (1) = Z u;f(t) exp(—2aV-1jk/n).6
=0 j=0
Hence, it is natural to set
n—1 n—1
0 (0) = Z vo(y;) exp(=2aV=1jk/n), up(0) = > uo(y;)exp(=2aV-1jk/n).
j=0 J=0

Concerning the differential equations, we have an issue: functions of the form (39) cannot, in general,
satisfy the first two equations in (37) due to the nonlinear terms. This is because

un
(0) P0u0) = =aup() )+ 5] (1)
contains modes of wave number k outside {-n/2,-n/2+1,...,n/2 — 1}. However,
1 n/2-1
Fp(v) =~ > (=D F(0) exp(V=Tky)
k=—n/2

with

n—1
F,’:(t) = Z F'(yj,t) exp(—2nV=1jk/n)
j=0

After computing {0} (¢), i (1)}, we set f)fn/Q(t) = ﬂfnm(t) = 0 to ensure that v"(y,t) and u"(y, t) given by (39) are real

numbers. We also do the same thing for F « (1) appearing below. The effect of such alternation is small when n is large.
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gives an approximation of F"(y,t) when n is large enough (the approximation is exact at y = y;);
here, we can calculate F"(y;,) from {0} (z), 4} (¢)} using (39) and (40). It is then natural to define
the time evolution of {0}(2), u} (1)} by

di?
—K = Vlapkid?, >0,
dr

dii! .

dt" = V=1kF",  t>0.

This system is then numerically solved using the classical fourth-order Runge—Kutta method (we
denote by At the time step).

From the computational point of view, it is important to note that F + (1) can be computed effectively
from {07 (¢), &} (¢) } using fast Fourier transforms. Moreover, since the Fourier coefficients of a smooth
function decay rapidly, this scheme is especially efficient when the solution to (19) is smooth (see [1]
for a more detailed account); this is the case when the initial data are smooth.

4.2. Long-time behavior of the fluid velocity at the origin. We now numerically investigate the
long-time behavior of U(¢) := u(0, t) for the solution (v, u) to (19). We set t; = iAt and
U; = ”Z/z(ti) =u"(0,t;) (i=0,1,...,.M :=|T/At]),

where {u;f (t;)} are computed using the scheme explained in the previous section. We consider two
initial data, one satisfying (i) M12 # M22 and the other (ii) M12 = M22, corresponding to Corollaries 2.3
and 2.4, respectively. Here, M; is defined by (20). Note that we have

144 1 oo 144 1 (o]
(41) Mo + My = p ( ) / uo(x) dx, My — My = P ( ) / (Uo—l)(x) dx.
2¢2 ) o 2¢ J_w
We suppose that U(t) obeys a power-law of the form
(42) Ult)=cit7 ™ +0(t™ ") (t - )

for some 0 < @1 < a2 and ¢; # 0. We then numerically evaluate the exponent @ by the methods
described in Appendix A. The first method is to apply (least squares) linear regression to the data

(43) {(logg tilog o Ui Y4y,

where M’ = [0.95M |.7 If the obtained linear fit is log;o |U;| & —@1loggt; + ¢ (@1, ¢ € R), then the
slope @ is an estimator of «1; the second method is to compute

Ui - U .
Yi=—— (i=0 mod 4).
Uij2 = Uis
Then y; = —logy Y; is expected to converge to @ as i — oo. These approaches, however, require the

maximum computation time 7" to be rather large. Therefore, we also consider accelerated versions:
for the linear regression method, instead of the data (43), we use Richardson extrapolation, that is, we
apply linear regression to the data

{(logy 1, 10g10 U IM,,,

"More precisely, we use a subset of this data set: {(log;, t;,1ogo |Ui]) | M’ <i < M,i=0 mod P} with P =|M/160].
The effect of such omission is usually very small.
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where v is a positive number and
(44) UY =U; =270 (i=0 mod 2).

With an appropriate choice of y, the slope drg") of the linear fit log;, |U l.(7)| ~ —drg") logygt; + ¢ is

expected to be a better estimator of @ than @1; for the method using Y;, we apply Aitken extrapolation,
that is, we use

Y; = Yi9)?
Zi=Y - (Yi —Yij2) (i=0 mod 16)
Yi =2Y; 0+ Y
instead of Y¥;. Then z; = —log, Z; is expected to converge to @ faster than y;.

4.2.1. Case (i): M12 # M22. For an example of initial data satisfying M12 # M2, we consider

(00— D(x) = tg(x) = %\/;‘2)

In this case, by (41), we have
M2 — M? = (My+ My)(My — My) # 0.3
We set the parameters of the numerical simulation as follows:
(N, L,At,T) = (2',3200, 1073, 1600).

In particular, M = 1600000.
From the obtained data of {U; = u!! /Q(t,-)}f‘ﬁo, we estimated the exponent a; of the power-law (42);
see Figure 3. The obtained estimators of a; are

&1 = 14972179393,  '” = 1.5007380639
and
yur = 14937167307,  zy = 1.4988693297.

The choice y = 2 in (44) is based on the method described in Appendix A (see the third paragraph of
Section A.1). These support the theoretical result a; = 3/2 (Corollary 2.3).°

To assess the accuracy of the results above, we vary the parameters (N, L, At, T) and compare the
results obtained with the ones above. Let us denote the reference parameters by

(No, Lo, Atg, Tp) = (24,3200, 1073, 1600),
and we consider parameters of the form

(N,L,At,T) = (rNo,rLo, sAtg, To/s).

In Table 1, we list (a1, &52), vum, zm) for three values of (r, s). We see that the effect of the variations

of the parameters are small.

8More precisely, we have (M7, M3) = (0, 1) and hence M22 - M12 = 1. By Corollary 2.3, this implies that the final sign of
u(0, 1) is negative, and our numerical results are consistent with this prediction.
9We note that Case (i) is somewhat special in the sense that M; = 0. To avoid this particularity, we also analyzed initial
data with (M1, M) = (2, 1) and still obtained results consistent with a; = 3/2.
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4.2.2. Case (ii): M12 = M22. For an example of initial data satisfying M12 = M22, we consider

exp(=x?)

(o =1 (x) =0, wuo(x) = N

In this case, by (41), we have

M2 - M? = (My + My)(Mz — My) = 0.
We set the parameters of the numerical simulation as follows:

(N, L,At, T) = (2'%,12800, 1073, 6400).

In particular, M = 6400000.
From the obtained data of {U; = u’, /Q(t,-)}ﬁo, we estimated the exponent a of the power-law (42);
see Figure 4. The obtained estimators of a; are

a1 = 17471572472, &' = 1.7501405988
and
yar = 17378867212,  zy = 1.7530938949.

The choice ¥y = 3 in (44) is based on the method described in Appendix A. By Corollary 2.4, we
conjecture that a; = 7/4; the results above support this conjecture.

To assess the accuracy of the results above, we vary the parameters (N, L, At,T) and compare the
obtained results with the ones above. Let us denote the reference parameters by

(No, Lo, Ao, Tp) = (2,12800, 1073, 6400),
and we consider parameters of the form
(N,L,At,T) = (rNo,rLo, sAtg, Tp/s).

In Table 2, we list (a1, &{3), ym, zm) for three values of (r, s). We see that the effect of the variations
of the parameters are small.

TABLE 1. Estimated values of the power-law exponent with different parameters for
Case (i).

(r,s) i a\? yu M
(1.0,1.0) 1.4972179393 1.5007380639 1.4937167307 1.4988693297

(0.5,2.0) 1.4972179582 1.5007381195 1.4937167305 1.4988693286
(0.375,2.5) | 1.4972179512 1.5007381002 1.4937167305 1.4988693286

Acknowledgements. This work was supported by Grant-in-Aid for JSPS Research Fellow (Grant
Number 20J00882).
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FIGURE 3. Left: The dotted markers represent (log;, #;, log; |U;|) and the star-shaped markers
represent (logq i, log;q |Ul.(2) |) for Case (i); two lines have slope —1.5 and are displayed for
comparison. Right: The dotted markers represent (z;, y; — 1.5) and the star-shaped markers
represent (z;, z; — 1.5) for Case (i).
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FIGURE 4. Left: The dotted markers represent (log;, #;, log; |U;|) and the star-shaped markers

represent (log ;,1ogq |Ul.(3) |) for Case (ii); two lines have slope —1.75 and are displayed for
comparison. Right: The dotted markers represent (z;, y; — 1.75) and the star-shaped markers
represent (¢;, z; — 1.75) for Case (ii).

TABLE 2. Estimated values of the power-law exponent with different parameters for
Case (ii).

(r,s) a1

~(3
015 ) Ym M

(1.0,1.0) 1.7471572472  1.7501405988 1.7378867212 1.7530938949
(0.5,2.0) 1.7471500891 1.7501302295 1.7378870349 1.7530960383
(0.375,2.5) | 1.7471533349 1.7501347961 1.7378871839 1.7530968847
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APPENDIX A. POWER-LAW EXPONENT ESTIMATION METHODS WITH SEQUENCE ACCELERATION

Suppose that we are given a function f = f(¢) satisfying
(45) f(@)=cit™ +cat™ 2 +0(7) (t > )

with 0 < @1 < a9 < @3 and c1,c2 # 0. We present here some methods to evaluate the exponent
a1 from numerical data of f(¢). We also demonstrate theoretically and empirically that sequence
acceleration methods are useful for such purpose; the idea is simple and the tools used are classical,
but we could not find these methods in the literature. Therefore, we thought it would be beneficial to
present these methods in an appendix, given the ubiquity of this task in science.

A.l1. Linear regression method; acceleration by Richardson extrapolation. One simple way to
evaluate a1 in (45) is to apply (least squares) linear regression to the data

{(logyo i-logyg | f (1)) 2,
where 0 < T ' =t1 <to<---<ty=Tandt;y1 —t; = Ar. If
logyo | f(t:)| = —a1logpt: + ¢
is the obtained linear fit, since
(46) logio | f (1)] = —a1logyg t +logyg |e1| + O (1~ @7V),

the slope @7 gives us an approximation of a1. We call this the linear regression method.

This approach, however, might require 7” and T to be rather large when @ and a» are close; this is
because the error term O(¢~(%2721) in (46) may not decay fast enough. But if we have a guess of the
exponent a in (45), say, @2, we can partially overcome this problem using Richardson extrapolation,
that is, we apply linear regression to the data

{(logg 11, log1o | f @2 (1) D},
where

£ = f(0) =272 £ (1/2).
Since

FUOD(1) = e1(1 = 271792)7 4 ¢o(1 - 2727%2)792 4 O (7)),
if |ag — 2| is small, the coefficient of 1~*2 becomes small; in particular, when @y = @2, we have
log |f2)(1)] = ~a1log)p 1 +1ogyg e1(1 = 271792)| + O (1 (@37)).
Then, since a3 — a1 > @ — a1, we expect that the slope afm) of the linear fit
logyo | £92(1;)] ~ —&fm logyg t; + ¢

gives a better approximation of @ than @;. We also note that unless a@; = @32, the leading order
power-law exponent remains unchanged by altering £ () to £(¢2)(¢).

One problem with this method is that we don’t necessarily have a good guess of a2. However, it is
usually easier to have a guess of a1, say, @1. With such a guess, let us set

F91) = f(1) - 279 f(1/2).
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Then if |1 — @] is small, the coefficient of t~%1 in
FYO(1) = e1(1 = 2778) 7 4 oo (1 - 2927%)7%2 4 O (+793)
is small; in particular, when a1 = @1, we have

logyg | (1)] = —aalogig t +logg lea(1 — 202791) | + O (¢~ (®5702)),

(@1)

5 of the linear fit

Therefore, the slope a
logyo | £ (1)] ~ —d/;&l) logyg i + ¢\

is an estimator of @». In this way, we can numerically obtain a guess of @»; in fact, the guesses a2 = 2
and a3 = 3 in Section 4 are obtained in this way.

Here, a remark may be of help to avoid unnecessary confusion: the guess @2 obtained with the
method above may return a value which is rather close to a higher order exponent. To understand this
phenomenon, let us consider f(r) = r~1/2+0.01771 + 10r73/2. If we apply the method explained above
with 77 = 950, 7 = 1000, and Ar = 6.25, we obtain @9 = 1.4965435084; this is because the coefficient
0.01 of +~! is very small compared to 10 of r~3/2. Thus, &5 obtained in this way is an effective ay for
the given data, which is closer to —3/2 than to —1.

If the technique above does not work well, we could also try Aitken extrapolation, which we shall
explain in the next section.

A.2. Ratio method; acceleration by Aitken extrapolation. From the function f = f(z), define a
new function Y = Y (¢) by

Jf(@) - f(t/2)
YO=Fam = ram
Then —log, Y(T) with T large gives an approximation of @ since
ca(l — 2a2)t
c1(1 —2)

Y(£) =279 42791 (] — 22271 —(a2—a1) ot min{Q(wz—wl)ﬂs—wl}).
We call this the ratio method.

Similar to the linear regression method, we need to take 7" large when @ and as are close. This
time, we can use Aitken extrapolation (Aitken Az-process), that is, we define a new function Z = Z(t)
by

(Y(1) = Y(1/2))*

Z(t)=Y(1) - Y (1) - 2Y(1/2) +Y(l/4).

Then, by some calculations, we see that
Z(1) =27 + 0(t—min{2(02—01),03—01}).

Hence, we expect that — log, Z(T) gives a better approximation of @ than —log, Y (7).

A.3. An example. Here, to empirically test the methods presented above, we consider the integral

f()y=27"1 /1; (s +1)732 gs.
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By an explicit computation, we see that

(47) F() = (2w 1) V2 Z (4 1)V = VA2 o3,

Hence, we have a1 = 1/4, ag = 1/2, and a3 = 3/4. Since @ — a1 = 1/4 is quite small, as we shall
see below, the methods without extrapolation give very bad estimates of «;.

First, we apply the linear regression method with 77 = 9500, 7 = 10000, and Ar = 6.25. We then
obtain

1 = 0.21908886128, &\ = 0.25282388874.

See Figure 5 (left). Note that the choice @2 = 1/2 comes from (47). We clearly see that the method
with Richardson extrapolation gives a much better estimate of a; = 1/4. In fact, the linear regression
method without extrapolation converges very slowly. For example, for 77 = 95000, 7 = 100000, and
At = 6.25, we get

a1 =0.23413598748,  a\"'? = 0.25081119797,

and @ is still quite far from a7 = 1/4.
Secondly, for the ratio method, we obtain

—log, Y (10000) = 0.15519485047, —logy Z(10000) = 0.21677096182.

We see that Y (10000) gives a very misleading value although Z(10000) is also quite inaccurate. If we
take 7 = 100000, we have

—log, Y (100000) = 0.20693534152, —logy Z(100000) = 0.23976571677.
We can see that — log, Z () approaches to @1 = 1/4 much faster than —log, Y (¢); see Figure 5 (right).
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e logolft))] e y—025
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—— —0.25l0g10t; 0.05
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logyot = logsot; t=t;

FIGURE 5. Left: The dotted markers represent (log;q?;,10go|f(#:)|) and the star-shaped
markers represent (logy #;, logy | f (/2 (#;)]); two lines have slope —0.25 and are displayed for
comparison. We can observe that (log;, 1;,logyo | £/ (¢;)]) deviates less from the reference
line than (logq#;,log g | f(#;)]). Right: In this graph, we write y; = —log, Y (#;) and z; =
—log, Z(t;). The dotted markers represent (¢;, y; —0.25) and the star-shaped markers represent
(t;,z; — 0.25). We can observe that z; — 0.25 approaches to zero faster than y; — 0.25.
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