ESTIMATES OF THE REGULAR SET FOR NAVIER-STOKES FLOWS
IN TERMS OF INITIAL DATA

HIDEYUKI MIURA
DEPARTMENT OF MATHEMATICAL AND COMPUTING SCIENCE,
TOKYO INSTITUTE OF TECHNOLOGY

1. INTRODUCTION

The purpose of this note is to present a joint work with Kyungkeun Kang and Tai-Peng Tsai. We
are concerned with the regularity of weak solutions for the incompressible Navier-Stokes equations

(NS) Ov—Av+v-Vo+Vp=0, divi=0

associated with the initial value v|;—g = vg with divey = 0. Caffarelli, Kohn, and Nirenberg []
established local regularity theory for suitable weak solutions. As an application of their celebrated
e-regularity criterion, they showed the following result:

Theorem D [5]. There exists eg > 0 such that if vg € L*(R?) satisfies
_1
(1.1) 2|2 w072 = € < e,
then there exists a suitable weak solution which is reqular in the set 11.,_., where

jz?

Iy := {(x,t) it > 5

} for d > 0.

This theorem asserts that the smallness of initial data in a weighted space implies regularity of the
solution above a paraboloid with vertex at the origin. There are at least two interesting features
in this result: No regularity condition (better than L?) is assumed away from the origin and the
regularity around the origin is propagated globally in time. We also note that if the size of vy
tends to 0, I, increases and converges to a limit set II.,. This observation leads to the following
questions:

(a) Can the size of regular set II; be enlarged?
(b) Can the condition (1.1) of initial data be relaxed in terms of regularity and smallness?

One of the goals of this paper is trying to answer questions (a) and (b) by employing approach
based on a framework of scaled local energy explained below.

It is known from works [6, 23, 12, 7] that for vg € LI(R3) with ¢ > 3, (Ns) has a (unique)
mild solution defined on some short time interval. Motivated by the problem for constructing large
forward self-similar solutions to (NS), Jia and Sverdk [)] asked under which condition this result
can be localized in space. For B,(z) = {y € R®: |z — y| < r} and B, = B,(0), their question can
be stated as follows:

(c) If vy is a general initial data for which suitable weak solutions v is defined and vg|p, €
L%(B3), can we conclude that v is regular in By x [0,¢1) for some time t; > 07

Although non-local effect of the pressure might prevent the solution from having the same amount
of the regularity as the one for the heat equation, such effect is expected to be handled at least for a
short time and ¢ > 3. Indeed this question is settled affirmatively for the scale subcritical case ¢ > 3

in [9] and for the critical case ¢ = 3 in [, 11]; see also [21] for the condition on the initial enstrophy
1
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and [1] for further extension to the L space and the critical Besov spaces. Notice that the results
for the critical case have some similarities with Theorem D in [5]. Namely, the assumptions for the
initial data ensure critical regularity at the origin and they lead to local-in-space regularity. As the
first main result of this paper, we present a new type of local-in-space regularity estimate, which
guarantees regularity in the set like Il5. In order to formulate it, define the scaled local energy of
the initial data by
No = No(vo) := sup 1/ jvo(2)|? da,
re(0,1] T JB,

which plays a central role in this paper.

Theorem 1.1. Let (v, p) be a suitable weak solution in By x (0,4) with the initial data vo € L?(Bs)
in the sense that lim¢ o+ [|v(t) — vol|r2(By) = 0. Assume that

(1.2) M = ||UH%;>°(074;L3(32)) + HVUH%%BQX(OA)) + HpHL%(ng(OA)) <00
and that
(13) NO S €x.

Then there exists T = T(M) > 1= such that v is regular in the set

r= {(x,t) € By x (0,1) : eN2 |z < t < T}
and satisfies

for (z,t) €T,
where €, ¢, and C are positive absolute constants.

Remark 1.2. (1) This theorem asserts that smallness of the scaled energy implies regularity above
a paraboloid for a short time. It may be viewed as an e-regularity criterion in terms of the initial
data.

(2) One can relate Theorem 1.1 to results in [5, 1, 11] by noting that

No < Cmin{||v0||%3(31), HUOH%Z—I(Bl)}a
where
llvoll 2.e0) = Illz]2 vol L2

for « € R and Q ¢ R3. Thus (1.3) holds if either L? norm or L>»~! norm is small in B;. Hence our
theorem can be regarded as a local version of Theorem D in [5].

The proof of Theorem 1.1 is based on a local-in-space a priori estimate for the scaled energy of
(v, p) defined by

1 [ ) 1 ot ) 1 ot 3
(1.4) E.(t) := esssup — lu(s)]” + — Vol + — Ip|2 .
o<s<t T JB, ™ Jo - ™ Jo JB,

Our strategy is partially inspired by a uniformly local L? estimate established in the fundamental
work [15] of Lemarié-Rieusset. However, in contrast to his estimate, our a priori estimate guarantees
scale-critical regularity at the origin so that the e-regularity criterion of [5] can apply.

We now return to the questions (a) and (b) concerning the regular set. In order to state our
result, it is natural and convenient to use the notion of local energy solutions introduced by Lemarié-
Rieusset [15] and later slightly modified in [13, 9, 3]. The local energy solution is a suitable weak
solution of (NS) defined in R which satisfies certain uniformly local energy bound and pressure
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representation; see Definition 2.1 for the details. In this context, let us recall the uniformly local
L7 spaces for 1 < g < oo. Wesay f € L% if f € L! (R?) and

uloc loc

= 2 < 0.
(1.5) 1fllzs j:{gg”fHLq(Bl( ) < 00

2

Local-in-time existence of local energy solutions for initial data in Lz, .

and also global existence

for initial data in E? := @L‘z‘l"c are established in [15]. One of the advantages of the local energy
solution is it can be defined even for infinite energy data; see [14, 16, 10] and references therein for
further developments and its applications, and [19] for the local energy solutions in the half space.
We also define the global version of the scaled energy by

. 1

Ny = sup—/ lvo(x)|? da:
r>0 T r

Here note that Ny is invariant under the Navier-Stokes scaling: u(z, t) — uy(z,t) := Au(Az, A2t).

The following result shows the estimates of the regular set for the local energy solution for initial

data with small scaled energy and also about that for large data in L*~1(IR?):

Theorem 1.3. Let (v,p) be a local energy solution in R3x (0,00) for the initial data vy € L?,.(R?).
(i) There exist absolute constants €, and ¢ such that if vy satisfies

17

(1.6) sup sup—/ lvo(z)|? dz < o0,
20€ER3 r>1 r By (z0)

and if

(1.7) No < €,

then v is regular in the set

{(x,t) € R x (0,00) : N2 |z|? < t}.

(i) For any vo € L*~1(R3) there exist positive constants T(vg) and c(vo) such that v is regular in
the set

{(z,t) € R?* x (0,00) : c(vo)|z|* <t < T(vp)}.

Note that Ny < ||vo|]%2$_1(R3) holds and that the condition (1.6) only assumes some mild decay

of the data at infinity. We also note that [5, Theorem D] is an existence result for initial data
satisfying the conditions, while Theorem 1.3 is a regularity result for any solution for such data.

The following corollary concerns estimates of regular set for the data in the weighted space L*
with a > —1, which generalize the classical result [17] of Leray and [5, Theorem C] for the cases
a =0 and o = 1, respectively.

Corollary 1.4. Let (v,p) be a local energy solution for the initial data in L2, (R3).

uloc

(i) Assume thatvg € L*>*(R?) for some a > 0. Then vy € L*(R3) and there is K = K (||vol| 1.2, |vol| f2.)
such that v is regular in the set

{(z,t) € R? x (0,00) : t > min{K|z|>* Collvol72}} -

(i) Assume that vg € L*%(R3) for some a € (—1,0) and that (1.6) holds. Then there exist
K = K(||vo||z2.«) and T = T(||vo||r2.0) such that v is reqular in the set

{(2,t) € R® x (0,00) : t > max{K|z| **,T}}.
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2. PRELIMINARIES

In this section, we recall some notions about the weak solution to (NS) and some results such as
the e-regularity theorems and a priori estimates for the solutions.

For any domain €2 C R? and open interval I C (0,00), we say (v, p) is a suitable weak solution
in Q x I if it satisfies (NS) in the sense of distributions in Q x I,

ve LI L) N LA H T (Q), pe L¥2(Qx D),

and the local energy inequality:

t
2 2
/Q o(t) 2(t) dir + 2 /0 /Q Vol dr di
t t
2 ) .
S/O/Q!v! (8t¢+A¢)dxdt+/0/Q(yv\ + 2p)(v - V) dx dt

for all non-negative ¢ € C2°(Q2 x I). Note that no boundary condition is required.

We next define the notion of local energy solutions, The following definition is formulated in
[3], which is slightly revised from the notions of the local Leray solution defined in [15], the local
energy solution in [13] and the Leray solution in [9]. We refer to [11, Section 2] for discussion of
their relation.

(2.1)

Definition 2.1 (Local energy solutions [3]). A vector field v € L (R® x [0,T)) is a local energy
solution to (NS) with divergence free initial data vo € L?, _ if

uloc
3/2
loc

(1) for somep € L
(2) for any R >0,

(R3 x [0,T)), the pair (v,p) is a distributional solution to (NS),

min{R2,T}
(2.2) ess sup sup / |v|* dx + sup / / |Vv|? dz dt < oo,
0<t<min{R2,T} zoeR3 J Br(zo) zo€R3 JO Bgr(zo)
(3) for all compact subsets K of R® we have v(t) — vy in L*(K) ast — 07,
(4) (v,p) satisfies the local energy inequality (2.1) for all non-negative functions ¢ € C°(Q)
with all cylinder Q compactly supported in R3 x (0,T),
(5) for every xog € R® and r > 0, there exists ¢4y, € L3/?(0,T) such that

1
Pl ) eanel) = gl 0P + [ K@) el t) 20 dy
3r(Zo

(2.3) i
+ / (K(z —y) — K(wo — 9)) : v(y,t) ® v(y, 1) dy
R3\Bgr(:v())

mn L3/2(B2r($0) X (OaT)): where K(IE) = VQ( : )’ a’nd

4r|z|

(6) for any compact supported functions w € L?(R3)3,

(2.4) the function t+— v(z,t) - w(z)dr is continuous on [0,T).
R3
We now recall the scaled version of the e-regularity theorem of Caffarelli-Kohn-Nirenberg [5,
Proposition 1]. It is formulated in the present form in [20, 18].

Lemma 2.2. There are absolute constants ecxn and Ceogy > 0 with the following property. Suppose
(v,p) is a suitable weak solution of (NS) in By (z0) x (to — r2,t0)), r > 0, with

1t

") / v + |p|3/2dx dt < eckn,
r? +(@0)

to—r2
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,,.2
then v € L*®(Bg(yg) % (to — 7, t0)) and

CCKN

(25) Hv|’LOO(B%(mO)X(to—%,to)) - T

We recall a useful Gronwall-type inequality from [3, Lemma 2.2].

Lemma 2.3. Suppose f € L{3.([0,1p); [0,00)) (which may be discontinuous) satisfies, for some a,
b>0, andm>1,

<a—|—b/ )™)ds fort e (0,Tp),
then we have f(t) < 2a fort € (0,T) with
C
T =min | Ty, ———m8M8M8M8M—
“““( “zwl+am—w>’
where C 1s a universal constant.

Finally we also recall the following elementary bound for the scaled energy.

Lemma 2.4. Assume that f € L} (R*) and let Ngp = Ng(f) := subp_,< %fBT |fI? for some

R€0,3]. If § > 2Np, then for any xoeBl we have
1
(26) swp = ipp s
R(zo)<r<l—|zo| T J By (x0)

with R(zp) = max (%, QN%‘xO‘).

3. PROOF OF THEOREMS

We first prove Theorem 1.1 regarding local regularity of suitable weak solutions. It is obtained
as a consequence of the following theorem; see Remark 3.2 below.

Theorem 3.1. Let (v,p) be a suitable weak solution in By x (0,Ty), To > 0, associated with the
initial data v in the sense that limy o4 |[0(t) — voll2(p,) = 0. There are absolute constants c,
C € (1,00) such that the following holds true.

(i) Let Np = supR<T§1%_[ér lvg|? < 0o, R > 0. For any M € (0,00) and § € [5Ng,00), there
exists T =T (M, §,Ty) € (0,Ty] such that if

(3.1) 01170 (072282 T IV 02 (8 0.7y + Hp”L%(32x(o,T)) <M,
then E,.(t) defined by (1.4) and (v, p) satisfy
(3.2) E.(t) <o for t € (0, min{\r? T} for allr € (R, r]

if R<ry, and
1 Ar? 3 3
(3.3) > / P + [plidadt < C(G+6%)  for all 7 € (R, 7]
0 JB,
if R<ry, whereT, A\, r1, and ro are given by

) cmin{1, 62} c ) cd 1 ) T
T:mln(Tg,W s )\:1+527 71 = min E,g s T9 = ImMin X,Tl .

(ii) There exists €, > 0 such that if N < €, and R2< T, then v is reqular in the set

= {(:n,t) € By x [R%T) : t> cN,%|x|2}
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and satisfies

C
v(x,t)| < — or (x,t) € II
el < % for (@)
with T = min{ 7y, m} and absolute constants ¢, C > 0.

Remark 3.2. Theorem 3.1 sharpens and generalizes Theorem 1.1 in the following senses: (a) The
assumption (3.1) is weaker than (1.2). (b) It treats the case of general R > 0 so that the regular
set II is more specifically characterized. It should be emphasized that if R > 0 the assumption
Npr < €, in (ii) does not require scale critical regularity at the origin.

Proof. (i) For the convenience, we let

5R7r1(t) ‘= Sup Er(t)
R<r<r;

with the constant 1 to be specified later. The local energy inequality (2.1) with a test function
¢ € C§°(Bsa,) such that 0 < ¢ < 1 in By, with ¢ = 1 in B, and ||[VF¢||1~ < Cpr~" leads to

t t
[rpeas sz [ [190Pe < [uPede s [ 1P+ (o + po- Tetdods
0 0

c [t c [t
< [ Pdot i [[ P S [ jof 4 plideds
Bo, r 0J By, r 0 J Bar

Note that we may take time-independent test functions in the local energy inequality provided the

solution is continuous at ¢ = 0 in L%OC. See, e.g., [19, Remark 1.2]. This implies
C t 2 C t 3 C t 3
e A =1 A A= A
" T3 0 BQT T2 0 BZr T2 0 BZT
(3-4) =:2Npg + Liin + Lnontin + Ipr-

For any p € (3r,1] we decompose the pressure as p = p + p with
- 1
@)= pv. [ Ko=) s 0)0)dy - 5EP) (o)

where ¢ is a smooth cut-off function with ¢ = 1 in B, and supported in By, and K (z) = V(2 |).

47|z

Since Ap = Ap in By, py, is harmonic in B,. By the mean value property, we have

3 3 3
/ mwsc/ mw+c/ ol
Bgr B2r B27‘
.3 T, 3
so/ mw+cef/|mw
Ba, P By

e, mﬁ+c¢ﬁ/)w3+cﬁﬁ/rm3

J By, P JB, P JB,
By the Calderén-Zygmund estimate we see

(3.5) / misc/ wﬁ+c¢ﬁ/1m?
Ba, Ba, P JB

P

We now divide the proof into two cases. Let 7y be a constant satisfying 0 < ro < r1/3 to be
fixed later.
Case I: R <r <rg. If ro < R < rq, this case is empty, which is fine. Noting that 2r € [R,r], we
easily observe that

C t
(36) Ilin < ﬁ/ 5R,7"1 (8)d57
0
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and also by the interpolation inequality,

c [t i ioo ot 2
Tnoniin < _2/ (/ |VU|2> </ |U|2) ds + _2/ <_/ |U|2> ds
r Bo, Ba, r 0 r By
C. N (1 2\ ?
o[ [ (L ()
Ba r Ba r Ba

3
(3.7) < eEpp (1) / Ep () + &, (8)ds

with some constant € € (0,1). For the pressure term, integrating (3.5) in time yields

c [t C'r 1
g [ e [

with an absolute constant C’ > 1. Choose p = 10C’r so that % < 1—10 and also let 79 = 5557
Noting that 2p = 20C"r < 1y and (3.7), we see that

c [t 1
s;// ol + < (1)
r BQOCI

C’ g 1
(3.8) < eEppm( ER o ( Efppy (8)ds + 1—0537,«1 (t).
Hence applying (3.6)-(3.8) in (3.4) with e = &, we obtain
26 C [ 1
(3.9) Ernn() < 5+ 7 | Eher () + En(5)ds + SEn (1)

Case II: 79 < r <r;. For t < T with T specified later, we estimate the right hand side of (3.4)
with the aid of M. A straightforward estimate yields

C 5
Ljin < / / 2 < —3 %
Bs 7o

provided ¢ < % with a small absolute constant ¢ € (0,1). In the similar way to (3.7) we have

i
g% 0 (/BQ\W;) (/ \v> ds+—/ (/BQM)

CtiMs: CtM3
<0
) 7‘0

(3.10)
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4.8 2
Thus Ioniin is bounded by 35—0 if t < min (%l, %&) with a suitable absolute constant ¢ € (0,1).
2

Concerning the pressure, we choose p =1 (using 3r; <1 = p) in (3.5) and apply (3.10) to get

C [t .3 t 3

Iprﬁr—g// |p|2+07“// p|>
0 Ba, 0 By

C t

_—// 5% + O3

Ty Jo JBy

C [t .

§—2// of* + O M2

B2

3
tiM3 tM>2 0
(3.11) LOHME OME oo P
3 rH 30
. . c*r  cor? . cd 1 :
provided ¢ < min { —, ?&1 and r1 < min I3 with an absolute constant ¢ > 0.
2 2
Making use of these estimates in (3.4), we obtain that
1) . . cord cotrd cor? . cd 1
(3.12) Ergri (1) < 3 if ¢t <min ( MO’ Mﬁo’ M§> and 71 < min (E7 §> .
Combining (3.9) and (3.12), we see
(3.13) Ennlt) < 5 /SRH )+ Enp(s)ds, 0<t<T,
where
. cmin{l1, 62}
(314) T = min <T0, W .
Note that T' < min (%231, c%fﬁ, %ﬁl) with a suitable small constant ¢ > 0 upon the choice of
2
To = 55 With r1 = min <_5§, %) The inequality (3.13) is also true if R is replaced by any
2

M
r € (R,r] with the same 6. Therefore we may invoke Gronwall Lemma 2.3 with f(t) = &, (¢)
with a = g, b= %, and m = 3 to see that
c

(3.15) Erm(t) <6 forte (0,min{T,\?}] and re(R,r], A= vt

This proves (3.2).
In the similar way to (3.7), we see that if \r? € (0,T] and r € (R, 1],

L () () o £ [, )

3
2

< O\ + N B (\r2)3,

Hence taking ry := min ( %,rl), we have from (3.2) and A < 1 that

Ar2
— / lv]® < Cs? for r € (R, ra).
0 By

This together with the pressure bound
Ar?

/ P2 < E.(\r?) <6

T

leads to (3.3) as desired.
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(ii) In order to show the statement (ii), we claim that there exist e, and ¢ > 0 such that if
Np < €, then for any xy € B% and r € (max (R, cNg|xo|) , c(1 — |zo|)r2],

1 [ 3
(3.16) —2/ / w]? + |p|2 dwdt < ecxn
™ Jo JBr(z0)

holds. Here eckn is the small constant in Lemma 2.2. To this end, we first note that for each
n = 2Ng and xg € By /3, Lemma 2.4 implies

1
sup —/ wol2dz <1, p=1— |zol,
R(zo)<r<p T J Br(z0)

with R(zp) = max <R 2NR|:130|) Let vy, (2,t) = pv(z0 + px, p°t), Pay(x,t) = p*p(z0 + p, p*t) and
§ = 51. Since (Vgy, Pay) solves (Ns) in Ba(0) x (0, p~2Tp), corresponding to (v, p) in B, (xo) X (0, Tp),
and 1/2 < p <1,

2 2
1vao oo (0,0-2m52(B2)) T IV V20 T2(Bax 0,0-210)) F P20l 3 5, 0 p-20y) S CM

1 1 1)
sup —/ |vx0(:13,0)|2d:n = sup —/ |vo|2d$ < -,
p=1R(z0)<r<1 T JB,(0) R(zo)<r<p " JB, (o) 5
by (3.3) and (3.14) we get

A2
sup —// [vol® + el < C(6 + 63).

p~1R(z0) <r<r2
Here r9 = min (\/TT',rl) with
) _ cmin{1, 512} ) cd 1
T, = min <p 2CT(), W , 1 =min E, g R
with a smaller constant c. Note T" differs from 7" in (3.14) by the factor p=2 for Ty. This implies

Ar2

C(6+02

(3.17) sup / of 1l < SO oy s 409,
R(z0)<r<pra )\7‘ B /5, (z0) A

Take a constant dp > 0 so small that C(1 + 63)(dp + 55) < eckn. We now assume that vy satisfies
Npr < 0p/10. Then we may choose 6 = dp since 50 > 10Ng. With this choice and with A\g = A(do),

(3.17) shows (3.16) holds for /\2R(IB0) <r < )\0 pra. This enables us to apply Lemma 2.2 for

xo € B1 and tg = r? E(/\omax<R2 ﬂ-g’z'x—o‘> Aop*r3] to see
2

C’CKN CCKN

v(xo,t0)| < = ,
|(0 0)|— r \/%

and hence v is regular at (zg,tp). Since ro = min (1/5\%,7”1) and 1/2 < p <1,

. ) B cmin{1, 6%} : ¢
p2>\0r% E p2 mln(T/7)\0’r'%) = p2 min (p 2T0, —1 T Mlg ) AOT% Z min TO’ 1+ M18 :

Thus |v(zo,t0)| < CCKNtal/Q for zg € By, and
max (R2,cN}22]xo\2) <ty < min (Tm chwlg) :
This shows Part (ii) of Theorem 3.1. O
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One implication of Theorem 3.1 is that for Lalo . initial data in R3, similar conclusions hold for
the local energy solutions:

Theorem 3.3. Let v be a local energy solution of (Ns) in R3 x (0,Ty) associated with initial data
vo € L2, Nr = SUPR<r<1 %fB,«(O) |vg|? < 0o. The following holds true.
(i) For R€[0,3], let 6 > 5Ng. Then

1
(3.18) E.(t) <4 fort <min{\? T1} for all r € (R, §]’
holds with constants given by

in(1, 64
A= —C <1 T —min (7, SRR )
1 + ||’U0HLiloc

Moreover for any r € (R, Ry] with Ry := min{ %, 1}, there exists ca(t) such that

1 Ar? 3 3
(3.19) = / WP + Ip — ea(8) Fdadt < C(5 + 53).
0 B,

Here ¢ and C' > 0 are absolute constants.
(ii) There are absolute constants e, co, c1, and Cy > 0 such that the following holds. If Nr < e,

for some R < min{y/T5, %} with Ty = min (T, W) , then v 1is regular in the set
L2
uloc

0= {(gc,t) € B% x [R?, To); coNp|z)* < t}
and satisfies

(3.20) lvo(z,t)| < % for (x,t) € 1L

We now show Theorem 3.4, which contains Theorem 1.3 as a special case and is useful for further
applications. To this end, define Ni by

. 1
Npmswpt [ wf (R0
r>RT B;(0)

Theorem 3.4. Let (v, p) be a local energy solution in R3 x (0, 00) for the initial data vy € L2, (R3).

uloc
Let €, and cq be the absolute constants in Theorem 3.3 (ii). The following statements hold:

(i) If vo satisfies (1.6), i.e.,

1

My := sup sup—/ |vo|2dx < 00,
.’L‘oGRS r>1 r B»,»(xo)

and if

(3.21) Ng < e for some R >0,

then v is regular in the set {(w,t) € R3 x (0,00) : max{RQ,coN}% lz?} < t}.

(i) Suppose vg € L>~H(R3). For any 0 < & < €, there exist positive constant T(vg, ) such that v
s regular in the set

(3.22) {(z,t) € R3 x (0,00) : cod?|z|> <t < T(vo,0)} .

If vg € L> 1 (R3) also satisfies (1.6), then for any 6 € (0,¢,], there is T'(vg,d) such that v is
reqular in

(3.23) {(x,t) € R? x (0,00) : max(cod?|z|?,T"(vo, §)) < t}.
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It is also regular in
(3.24) {(x,t) € R x (0,00) : coe2|z|* <t < riTy(Ms)},
with 7y = sup{r > 0 | HUOH%Q%_I(BT) < e}, 0 <7 < o0, and My = [(max(1, L)M;]Y/2. When

-

Ts = 00, i.€., HUOH%Q,A(R% < €, the regular set (3.24) has no time upper bound.

Proof. (i) We first consider the case R > 0. Let ug(z) = Avg(Az), u(z,t) = Av(Ar, A\?t) for A > 2R.
By the assumption, we have
1 .
sup —/ luo|> < Ng < e,
"<ra1 r

and

1/2
1 1
(325) ol =ﬁm(X/ mew) Smw(ymﬁ2Jm) e
woe |x—xo| <A uloc

xo€ER3

with Cr > 0 independent of A\. By Theorem 3.3 (ii), there exists T = T5(Cr) independent of A
such that u is regular if max{R2/\2,coN% |z|[*} <t < T4 for X\ > £ Scaling back we see that

s
v is regular if max{R?, coN3|z|*} <t < A>Ty. Since A > max{2R, \/—RT_,} is arbitrary, v is regular
2
in the set {(z,t) :max{R? coN% |z[*} < t}. This proves the case R > 0. For the case R = 0, by
N, < Ny, the above argument shows v is regular in {(z,t) : max{r?, ¢coN? |z|*} < t}. Since > 0 is
arbitrary, we conclude the proof.

(ii) Suppose now vy € L*>~1(R3). For any 6 € (0, €], there exists Ry > 0 such that

1 2
sup —/ lvo|? da < / de < 0.
0<r<Ro " J B, Br, ||

Let up(xz) = Avo(Az) and u(w,t) = Iv(Az,A\?t) with A = Ry. We easily see ug € L?_ . and
SUPg<,<1 fBr lug|> dz < & < €,. By Theorem 3.3 (i), u is regular if cod?|z|> < t < Th(ug). Hence
v is regular in the set {(z,t) | cod?|x|?> < t < R2T»(up)}. Note Th(up) depends on both Ry and
llvol| 12, and goes to zero rapidly as Ry — 0.

Suppose now vy € L?~! also satisfies (1.6). There is p > 0 such that fRS\Bp ‘—916||U0|2 < 6/2. Let

Ry = max(p, 2 pr |vg|?). For any r > Ry, we have

— [ Jwol" <= [ vl + —lvol” < 5+ 5.
T JB, rJB, By\B, || 2 2

Thus Ng, < 8. By Part (i), v is regular in the set {max(R?, cod?|z|?) < t}.
The remaining statement follows by choosing § = €., A = Ry — 74, and noting ||ug|| 12, < M
using (3.25). O

We next apply Theorem 3.4 to prove Corollary 1.4.

Proof of Corollary 1.4. (i) By the assumptions, we have vg € L?(R3), and hence it satisfies (1.6)
since ) )
sup = [ ol < Lol
zo€ER3 r Br(xO r
This estimate also implies
1 vol|?
(3.26) sup —/ ]vo\z < €, with R, = w.
BT(IO)

zo€R3,r>R, T €x
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Therefore applying Theorem 3.4 (i) to vy, (x,t) := v(z + 70, t) for each zy € R3, we see
{(x,t) € R3 x (0,00) : max{Ri,coNé* |z — zo|?} < t}
is the regular set of v. Since zy € R? is arbitrary, this shows that v is regular for t > R2 = ||vg||7./€2.
We next show that there exists M = M (||vg||r2.«) such that if |zg| > 2R,
1
(3.27) sup —/ [vo|? < €.
M|zo|~*<r<R. T JBr(x0)

Indeed since r < R, < |xo|/2, we see

1 1 x|%|vp? 20
S w=tf e ool” 2% e,
7 J B, (o) T JB(zo) 7] 7|zol

2% [woll?
.

L22 - Combining this with (3.26) implies

from which (3.27) follows with M =

€

1
sup —/ vol® < e provided |zg| > 2R,.
Mzo|=2<r T JBy(0)

Then if |zg| > 2R, we may apply Theorem 3.4 (i) for vy, with R = M|zo|™, to see that v is
regular at (zo,t) for ¢ > M?|zo|~>*. Since v is also regular for ¢ > R2 = [jvg||72/€2, this finishes
the proof of (i) of Corollary 1.4, with K = max(M?,4*R2T2%). Note that K|z|72% > R? when
|z| < 2R,.

(ii) Now a € (—1,0). We use similar approach as above: If r > |zg|/2,
1 1 1 x| vg|? Ch
N A e L
r Br(mo) r Bs, r B3, |$| r

1
Cl””OH%zu) e

€x

Hence we have

1

(3.28) —/ lvol® < e if 7> max @, (
T Br(ﬂ@o) 2

Therefore, by virtue of (1.6), we may use Theorem 3.4 (i) to see that

01HU0||2L2,a) o

€x

2
(3.29) v is regular at (zg,t) if ¢ > max ‘xZ’ , (

For r < |x¢|/2, we have

1 Cy Cy
—/ fwol? < a/ 2] Juol? < =22 |[up)Zac
A rlzol® J B, (w0) 7|20

and hence
1 Collvoll? 2.0 T
(3.30) —/ luol? < e if LCULQ’ <r< M.
7 J By (wo) |Zo|*€x 2
) . lzo| Cillvoll?, , ) TFe
We may increase C7 depending only on « and Cj so that when S5 > | — == , then
Callvoll2 5 .
@ > W—QZ For such z, (3.28) and (3.30) imply

1 Cy||lvol|?
—/ wP<e it rx 20l °l|L2‘“.
T JBy(wo) |[z0|*€x

2 4
Thus Theorem 3.4 (i) shows v is regular for ¢ > %}3—“. This and (3.29) show Part (ii). O
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