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ABSTRACT. This article is an abstract of my presentation at RIMS, June, 2021.
We show the relationship between the number of critical simplices, and Betti
numbers with persistent pairs , which is an improvement to the discrete Morse
inequalities. Furthermore, we prove that given two discrete Morse functions f1, fo
on a simple graph, the number of strongly connected number between f1, f2 is the
Betti number. This result is also an necessary condition to the problem posed in
[4] in case of graphs.

1. INTRODUCTION

Introduced by R. Forman [2] for the first time, discrete Morse theory also known
as Forman theory is a combinatorial version of normal Morse theory. The idea of
discrete Morse theory is to collapse pairs of simplices with adjacent dimensions.
In the process of collapsing, the homotopy type of given space remains consistent.
Similar to elementary collapse theory invented by J. Whitehead [8], discrete Morse
theory establishs a rule, which is called discrete Morse function, to accomplish the
goal. Since discrete Morse theory allows us to reduce the number of simplices in space
by collapsing the pairs in the gradient vector field induced by a given discrete Morse
function, it is widely used for the computation of homology of spaces. An element
of a gradient vector field consists of two non-critical simplices with codimension one.
Main theorems of discrete Morse theory were established on general CW complexes
at first. This approach has proven to be useful to study the topology of spaces.
Applications of discrete Morse theory are miscellaneous in many areas, such as
calculating the persistent homology [6].

King-Knudson-Kostoc [4] introduced the birth and death theory of discrete Morse
theory and showed some interesting applications in data analysis. Given a CW com-
plex and a series of discrete Morse functions on it, they defined a “connectedness”
relationship between two critical simplices in two different gradient vector fields. A
series of organized discrete Morse functions on the same cellulation cut space into
slices in which critical simplices appear and disappear. Connecting critical simplices
in different slides by their “connectedness”, one can glue those fragments to recon-
struct given space. As time t varies, they traced critical points via a discrete version
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of bifurcation diagram. In this diagram one can obtain the birth and death informa-
tion of each critical simplex. The “persistent time” of each critical simplex reflects
the geometric information of the space under the given discrete Morse functions.

In this paper, we use another kind of pair of simplices to describe the birth and
death of homology group generators. Let X be a simplicial complex and f a discrete
Morse function on it. We first build a natural filtration of X by a sequence of
ascending real number values of f. Then given a homology class [h] of the filtration,
we use a pair of simplices (o, 7), which is called a persistence pair, to describe
the birth and death of [h]. Different from the pairs in a gradient vector field, a
persistence pair consists of two critical simplices or infinity in some case. We will
show some fundamental facts about persistent pairs which can be used in discrete
Morse theory. Furthermore, in response to the problem

Problem. “Are there conditions that guarantee that a critical cell in one slice is
strongly connected to at most one critical cell in the next slice?”

in [4], we use persistence pairs to give a positive solution when X is a finite simple
graph. Also, the number of g-dimensional strong connection pairs is the g-th Betti
number of the graph.

2. DEFINITIONS AND RESULTS

We first introduce basic definitions of discrete Morse theory. One can refer [7]
and [5] for more details and theorems.

Definition 2.1. A discrete Morse function on M is a real-valued function
f:K—R
satisfying for all 0 € K,

(1) #{r®*) <ol f(r) < f(0)} < 1,

(2) #{v" - ol f(0) < fl0)} < 1.
Definition 2.2. Given a discrete Morse function f on M, we say that o € K, is a
critical p-dimensional simplex (of f) if

(1) #{70V <o | f(1) < flo)} =0;

(2) #{" Y = o | f(0) < f(v)} =0.

Definition 2.3. For ¢ € R, we define the sub-level complex
Ko= |J U~
ceK, f(o0)<cT<o

K(c) is the sub-complex of M consisting of all simplices 7 with f(7) < ¢ and their
faces.

Given a discrete Morse function f and its corresponding gradient vector field V',

we have a natural filtration consisting of subcomplexes of K.
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Definition 2.4. Let ¢; < ¢y < --- < ¢, be a sequence of real numbers and K(c¢;) be
the sub-level complex at value ¢;. We say that

K(ey) C K(cg) C-+- C K(cp)

is a filtration of K. For convenience, if f(o) = ¢, we both use K(c) and K(o)
to represent the sub-level complex at value ¢ or f(o). It is easy to see that when
¢ <min{f(o)|o € K}, K(c;) =0 and when ¢, > max{f(0)|o € K}, K(¢,) = K.

We always take the filtration ending at the whole space as following
K(c1) C K(co) C -+ C K(cn) =K.

Definition 2.5. A pair of simplices (o, 7) is said to be a persistence pair if there is
a homology class [h] that is born at o and dies at 7. If [h] is born at ¢ and does not
die eventually, we say that o is paired with infinity, denoted (o, 00).

Let [h] be a homology class, we say the dimension of [h] is the dimension of
simplices of its representative chain ), n;0;. It is not hard to find the birth simplex
of a cycle if we arrange the real number in ascending order. The death simplex of a
cycle, however, may be tricky sometimes because a cycle may split into more than
one cycles. Note that the birth simplex has not to be a face of the death simplex,
unless the dimension of the birth simplex is 0. Hence, we use the elder rule to
describe the persistence of a cycle precisely.

The elder rule is that the death simplex is always paired with the youngest birth
simplex.

The following statements about persistent pairs hold under the conditions of dis-
crete Morse function and the elder rule.

Lemma 2.6. Let [ be a discrete Morse function on K. Suppose that [h] is a q-
dimensional homology class with persistent pair (o, 7). Then

(1) dimo = g;

(2) dim7=¢q+1;

(3) [h] is represented by a cycle z =Y. oyn; such that o = o; for some j.

Lemma 2.7. Let f be a discrete Morse function on K. If (69, 7) is a persistence
pair of K then both o and T are f-critical.

Hence we can classify critical simplices by the structure of their persistence pairs.

Let 0@ be a critical simplex, then ¢ is in exactly one of the three following
persistence pairs

(1) a g-dimensional persistence pair (¢(@, 7(a+1);
(2) a (¢ — 1)-dimensional persistence pair (a9~ ¢(@):
(3) a g-dimensional persistence pair consisting of infinity (0@, 00).

Let P, be the set of persistence pairs whose birth simplices have dimension gq.
Let P, be the set of persistence pairs whose birth simplices have dimension ¢ and
death simplices are not infinity. Then P, C P,. Note that the ¢-th Betti number
Bq = #P, — #F,.
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Theorem 2.8. The Morse inequality can be re-written as an equation
C, =B, +#P, 1 +#P,.
Moreover, the strong and weak Morse inequalities become more explicit as well.
Theorem 2.9. Let dim(X) = K. Then
Co—Ci+Co—--£Cu =0y —fi+ -+ Py
Also, fori=0,1,---  dim(X),

Ci—Ciit£Co=p— i1+ % By + #PD.

The definition of connectedness between the critical simplices in different gradi-
ent vector field is introduced by King-Knudson-Kostoc [4]. We fix it slightly and
introduce it as followings.

Definition 2.10. Suppose that a and g are k-simplices of M and « is critical for V;
and f3 is critical for Vj, j # . We say that « is connected to {3 if there is a k-simplex
v and a V; path a,---,7 of k- and (k — 1)-cells and a V; path 7, --- , 7¢=1 of k-
and (k + 1)-cells to a face 7*=Y < 3, denoted @ — f3.

We say that « is strongly connected to 3 if a is connected to § and S is connected
to a, denoted a +— (.

Recall the problem posed in [4], we give the following theorem as a solution in
the case of graph.

Theorem 2.11. Let G = (V, ) be a graph, and
fl, fg YUé& =R

be discrete Morse functions, ¢ = 0,1. Then for any fi- critical oi‘n, there is at most

one fa-critical simplex qu) that is strongly connected to qu)‘

Also, let Agl’ﬁ(G) be the number of q-dimensional strongly connection pairs of fi
and fy critical simplices in G. Then

AD(G) > B,(G).

For a graph, we mean a finite graph G = (V, £) with no multi-edges and loops.
M. Chari and M. Joswig [1] introduced a method to represent the set of discrete
Morse functions as a simplicial complex.

Definition 2.12. Let G be a graph. Construct a simplicial complex A(G) as follows:
the vertices of A(G) are given by the edges of G and faces are all directed forests
which are subgraphs of G.

Lemma 2.13. [1] The set of discrete Morse functions on a graph G is in one-to-one
correspondence with the set of rooted forests of G.

We show the relationship between the path-connectedness on the simplicial com-
plex above and connectedness of discrete Morse functions defined above. This is
also an approach to represent the relationship among all discrete Morse functions of

a given space.
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Definition 2.14. Let X be a simplicial complex. We say that one-dimensional
simplices o7 and 05 of X are one-dimensional simplicial path-connected in X
if there is a path consisting of one-dimensional simplicial simplices of X that joins
o1 and os.

Theorem 2.15. Let G = (V, &) be a graph, and
fla f2 : V U g — R

be discrete Morse functions. Suppose that oy is fi-critical and oy is fo-critical, then
the followings hold.

(1) o1 «— 01 if and only if o1 & Ap,(G).
(2) Assume that 01,09 € Ay, (G)UA,(G), then o1 <— oy if and only if o1 and
oy are one-dimensional simplicial path-connected in Ay, (G) U Ay, (G).
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