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1. INTRODUCTION

In this article, we will consider the following problems of one-sided dy-
namical systems:

Problem 1.1. Is it possible to study arbitrary one-sided dynamical systems
by use of appropriate 0-dimensional dynamical systems?

Problem 1.2. Is it possible to reconstruct arbitrary one-sided dynamical
systems by use of appropriate time series analysis?, i.e., is it possible to
extend Takens’ reconstruction theorem to one-sided dynamical systems?

In this article, we show that the above problems 1.1 and 1.2 have near-
positive answers by using doubly 0-dimensional maps.

For a space X, dim X means the topological (covering) dimension of X
(e.g. see [Eng95], [HW41] and [Nag65]). Let X be compact metric space
and Y a space with a complete metric dy. Let C(X,Y) denote the space
consisting of all maps f : X — Y. We equip C(X,Y) with the metric d
defined by

d(f,g) = sup dy (f(z),9(x)).

Recall that C(X,Y") is a complete metric space and hence Baire’s category
theorem holds in C(X,Y). A map ¢g: X — Y of separable metric spaces is
n-dimensional (n = 0,1,2,...) if dim ¢! (y) < n for each y € Y. Note that a
closed map g : X — Y is O-dimensional if and only if for any 0-dimensional
subset D of Y, dimg~1(D) < 0 (see [Eng95, Hurewic’s theorem (1.12.4)]).
A map T : X — X is doubly 0-dimensional if for each closed set A C X of
dimension 0, one has dim771(4) < 0 and dim T'(A) = 0.

We have the following theorem ([Kat21] and [KOU16]) which is the key
fact in this article.

Theorem 1.3. Suppose that X is one of the following spaces: compact PL-
manifolds, compact PL-manifolds with branched structures, Menger mani-
folds, Sierpinski carpet, Sierpinski gasket, dendrites. Then the followings
hold.

(1) The set of all doubly 0-dimensional maps on X is dense in the space
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C(X, X) (see [Kat21]).

(2) The set of maps T with dim P(T') < 0 contains a Gs-dense subset of the
set C(X, X) (see [KOU16]), where P(T) denotes the set of periodic points
of T.

So if we could study dynamical properties of doubly 0-dimensional maps,
we can obtain approximate properties of any dynamical systems (X,T)
and hence it is important to study the dynamical properties of “doubly
0-dimensional maps”. In this article, we show that the above problems 1.1
and 1.2 have near-positive answers through Theorem 1.3.

2. FINITE-TO-ONE 0-DIMENSIONAL COVERS OF DOUBLY (-DIMENSIONAL
MAPS

In this section, we consider the problem 1.1. Throughout this article,
all spaces are separable metric spaces and maps are continuous functions.
Let N be the set of all nonnegative integers, i.e., N = {0,1,2,...} and let
Z be the set of all integers and R the real line. A map h : X — Y is
an embedding if h : X — h(X) is a homeomorphism. A pair (X,T) is
called a one-sided dynamical system (abbreviated as dynamical system) if
X is a separable metric space and T' : X — X is any map. Moreover, if
T : X — X is a homeomorphism, i.e., invertible, then (X,T) is called a
two-sided dynamical system. Also if T : X — X is not a homeomorphism,
(X, T) called a non-invertible dynamical system.

A dynamical system (Z,T) covers (X, T) via a map p : Z — X provided
that p is an onto map and pT' = Tp. We call the map p : Z — X a factor
mapping. If Z is O-dimensional, then we say that the dynamical system
(Z,T) is a 0-dimensional cover of (X, T). Moreover, if the factor mapping
is a finite-to-one map, then we say that the dynamical system (Z, T) is a
finite-to-one 0-dimensional cover of (X, T).

The following theorem implies that the problem 1.1 has a near-positive
answer (see [KM20]).

Theorem 2.1. Suppose that T : X — X is a doubly 0-dimensional map of
a compactum X with dim X =n < co. If dim P(T) < 0, then there exist a
dense Gs-set H of X and a zero-dimensional cover (Z,T) of (X, T) via an at
most 2"-to-one onto map p : Z — X such that P(T) C H and |p~*(z)| =1
for x € H. Moreover, if X is perfect, then Z can be chosen as a Cantor set.
In particular, h(T) = h(T), where h(T) denotes the topological entropy of
T.

For the special case of positively expansive maps, we have

Theorem 2.2. Let T : X — X be a positively expansive map of a com-
pactum X with dimX = n < oc. Then there exist k > 1 and a closed
o-invariant set ¥ of the shift map o : {1,2, ..., kYN — {1,2,..., k} such that
(X,0) is a zero-dimensional cover (= symbolic extension) of (X,T) via an
at most 2™-to-one map p: ¥ — X.
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An indexed family (Cs)scs of subsets of a set X will by abuse of notation
also be denoted by {Cs}ses or {Cs : s € S}. Hence if C = {Cs}ses is such a
family then its members Cs and C} will be considered as different whenever
s # t. We then put

ord(C) = sup{ord;(C) : x € X}, where ord,(C) = |[{s € S| z € Cs}|.

Note that ord(C) so defined is by 1 larger than it would be according to the
usual definition, as e.g. in [Eng95, (1.6.6) Definition].

To prove the above theorems, we need the following lemma which is the
key result to study the dynamical properties of doubly 0-dimensional maps
(see [KM20]).

Lemma 2.3. Suppose that T : X — X is a doubly 0-dimensional map of a
compactum X such that dim X = n < oo and dim P(T') < 0. Let F be an
F,-set of X with dim F < 0. Then, for each j € N, there is a finite open
cover C(j) ={C(j)i | 1 <1 <my} of X such that

(1) mesh(C(j)) < 1/7 (j = 1),

(2) ord(G) < n, where G = {TP(bd(C(j)i)) |1 <i<mj, j€Nandp €
N}, and

(3) FNL =0, where L = J{bd(C(j):)| 1 <i<my,j €N}

3. DYNAMICAL DECOMPOSITION THEOREM OF DOUBLY 0-DIMENSIONAL
MAPS

In dimension theory, the following decomposition theorem is well-known.

Theorem 3.1. A separable metric space X is dimX < n (n € N) if and
only if X can be represented as the union of n + 1 subspaces Zy, Z1, ..., Zp,
of X such that dim Z; < 0 for each i =0,1,...,n.

In this section, we study “dynamical decomposition theorem” of doubly
0-dimensional maps. Let T : X — X be a map. A subset Z of X is a bright
space of T except n times (n € N) if for any =z € X,

{p e N| TP(z) ¢ Z}[ <n.

Note that for any x € X, the positive orbit O(x) appears in Z except n
times. Also we say that L = X — Z is a dark space of T' except n times.
Note that for any z € X, the positive orbit O(z) disappears from L except
n times. Bright spaces Z would be expected to be very large spaces. But
we can choose very ”"small” bright spaces.

Theorem 3.2. [KM20] Suppose that T : X — X is a doubly 0-dimensional
map of a compactum X with dim X = n < co. Then dim P(T) < 0 if and
only if there is a zero-dimensional bright space Z of T except n times such
that Z is a dense Gg-set of X and the dark space L = X — Z of T is an
(n — 1)-dimensional Fy-set of X.
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This theorem implies that the bright space Z is very small like ”small
dots” and the dark space is very large like ”dark matters” in physics. Such Z
as in Theorem 3.2 satisfies the dynamical decomposition theorem of doubly
0-dimensional maps (see [KM20]).

Theorem 3.3. Suppose that X is a compactum with dim X = n (< 00) and
T:X — X is a doubly 0-dimensional onto map. Then dim P(T) < 0 if and
only if there exists a zero-dimensional Gs-dense set Z of X such that for
any n + 1 integers ko < k1 < -+ < ky, (k; € Z),

X=Tk(Z)yuTF(Z)U-- - UT*(2).

4. TAKENS-TYPE RECONSTRUCTION THEOREM OF ONE-SIDED DYNAMICAL
SYSTEMS

In this section, we consider the problem 1.2. Reconstruction of dynam-
ical systems from a scalar time series is a topic that has been extensively
studied. The theoretical basis for methods of recovering dynamical systems
on compact manifolds from one-dimensional data was studied by Takens
[Tak81, Tak02]. In 1981, Takens [Tak81], by use of Whitney’s embedding
theorem, proved that under some conditions of (two-sided) diffeomorphisms
on a manifold, the dynamical system can be reconstructed from the obser-
vations made with generic functions.

Theorem 4.1. (Takens’ reconstruction theorem for diffeomorphisms [Tak81]
and [Noa91l]) Suppose that M is a compact smooth manifold of dimen-
sion d. Let D"(M) be the space of all C"-diffeomorphisms on M and
C"(M,R) the set of all C"-functions (r > 1) to R. If E is the set of
all pairs (T, f) € D"(M) x C"(M,R) such that the delay observation map

I;?}LQ“"M) : M — R2d+1 defined by

v (FT9 ()2,
is an embedding, then E is open and dense in D" (M) x C"(M,R).

Moreover, in 2002 Takens [Tak02], extended his theorem for endomor-
phisms on compact smooth manifolds as follows.

Theorem 4.2. (Takens’ reconstruction theorem for endomorphisms [Tak02])
Suppose that M is a compact smooth manifold of dimension d. Then there
is an open dense subset U C End*(M) x CY(M,R), where End'(M) denotes
the space of all C-endomorphisms on M, such that, whenever (T, f) € U,
there is a map w : I}O}l’“’%)(M) — M with 7 - L}O}l""m) =72,

For a space K, we consider the (one-sided) shift o : KN — K which is
defined by

o(xg, 1, x2, T3....) = (v1, T2, T3....), ; € K.
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Let (X, T) and (X', T") be dynamical systems. If a map h : X — X' satisfies
the following commutative diagram

h

X = X
LT 17
x M ox

then we say that h: (X,T) — (X', T") is a morphism of dynamical systems.
In this article, we need the following definition from [Kat20].

Definition 4.3. Let T : X — X be a map of a compact metric space X.
(a) Given a set S C N and a map f: X — R, the map (f17)jcs : X — RS
will be denoted by I7€7f. We call this map the delay observation map at times
Jj € S. Note that Iy := Igf (X, T) = (RN, 0) is a morphism of dynamical
systems. We call I7 s the infinite delay observation map for (T, f).

(b) We say that I}? is a trajectory-embedding if If(ar) # I;?(y) whenever
T (x) # TI(y) for allj € S.

Let (X,T) be a dynamical system of a compact metric space X. For
n > 1, let P,(T) be the set of all periodic points of T' with period < n and
P(T) the set of all periodic points of T, i.e.

Po(T) = {x € X| there is an i such that 1 <i <n and T%(z) = z}

and P(T) = | Pu(T).

n>1

Two points = and y of X are trajectory-separated for T if T7(z) # T (y) for
j € N. A morphism h : (X,T) — (X',T") is a trajectory-monomorphism if
h(x),h(y) are trajectory-separated for T”, whenever x,y € X are trajectory-
separated for T.

For z,y € X, let or(x) = (T%(x))ien and o7(y) = (T*(y))ien be two orbits
of T. We say that the orbit op(x) is eventually equivalent to the orbit op(y)
if the orbits will be equal in the future, i.e., there exists an n € N such that
T'(z) = T'(y) for each i > n. In this case, we wright op(x) ~ or(y). We
see that this relation is an equivalence relation. So we have the equivalence
class

lor(z)] = {or(y)| or(x) ~e or(y)}
containing o (z) and we put

[O(T)] = {lor(x)]] = € X}.

Note that if T : X — X is injective, the function o : X — [O(T)] defined
by = — [or(z)] is bijective, i.e., o : X = [O(T)]. Also, note that if h :
(X,T) — (X',T") is a morphism of dynamical systems, then h induces the
function h : [O(T)] — [O(T")] defined by h([or(x)]) = [or(h(x))] for z € X.
A morphism h : (X,T) — (X',T’) of dynamical systems is a trajectory-
isomorphism if h induces the bijection h : [O(T)] = [O(T")].
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Proposition 4.4. Suppose that a morphism h : (X,T) — (X',T') is a
trajectory-monomorphism and h is surjective, i.e., h(X) = X'. Then h is a
trajectory-isomorphism:

h: [O(T)] = [O(T")]

We need the definition of topological entropy and we give the definition
by Bowen [Bow78]. Let T': X — X be any map of a compact metric space
X. A subset E of X is (n, €)-separated if for any z,y € E with z # y, there
is an integer j such that 0 < j < n and d(T7(x),T(y)) > e. If K is any
nonempty closed subset of X, s, (¢; K) denotes the largest cardinality of any
set E C K which is (n, ¢)-separated. Also we define

1
s(e; K) = limsup — log s, (€; K),

n—oo N
MT; K) = lgr(l)s(e;K).

It is well known that the topological entropy h(T) of T is equal to h(T; X)
(see [BowT78]).

Let (X,T) and (Y, S) be one-sided dynamical systems of compact metric
spaces. The inverse limit of T is the space

l'gl(X, T) = {(2))2% | T(xis1) = x; for each i € N} ¢ XV

which has the topology inherited as a subspace of the product space XN, If
h: (X, T)— (Y,5) is a morphism of dynamical systems, then the map

l'&lh : I'&n(X, T) — @(Y, S)
is defied by L&lh((zl)l) = (h(x;)); for (z;); € @(X, T). Note that if T is a
homeomorphism, then X = lgl(X ,T).
By [Kat20, Theorem 3.1], we have the following result.

Theorem 4.5. Let X be a compact metric space with dim X = d < oo and
let T : X — X be a doubly 0-dimensional map with dim P(T") < 0. Then
there is a dense Gs-set D of C'(X,R) such that for all f € D,

Ity = Tﬁf (X, T) — (RY, o)

satisfies the following conditions:

a) I; - [O(T)] = [O(or1)],

b) l'glfnf : I'&n(X, T) = Um(Ir ;(X),07,r) is a homeomorphism,
c) h(T) = h(or,r) and

d) if z,y € X are trajectory-separated for T, then

Hi € N| It p(x); = I1,f(y):}| < 2d.

Now, we will introduce the notion of reconstruction space of dynamical
systems (see [Kat21]).

o~~~ S~
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Definition 4.6. A compact metric space X is a reconstruction space of
dynamical systems if there exists a Gg-dense set E of C(X,X) x C(X,R)
such that for (T, f) € E, the infinite delay observation map

Irg:=1Ir;: (X,T) = (RY,0)

satisfies the following conditions (1) and (2):
(1) Ity : [O(T)] = [O(or,f)], where orf = o|Ir (X), and
(2) fm I : @(X, T) — l'Lm(ITJ(X), or,f) is a homeomorphism.

I
X A oIppx) c RN
1T Lory Lo
I
X X oIpyx) c RN

Finally we obtain Theorem 4.7 by use of Theorem 1.3 (see [Kat21]). The-
orem 4.7 implies that the problem 1.2 has a near-positive answer.

Theorem 4.7. Let X be one of the following spaces: PL-manifold, PL-
manifold with branch structures, Menger manifold, Sierpiriski carpet, Sierpinski
gasket and dendrite. Then X is a reconstruction space of dynamical systems.
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