DYNAMICAL PROPERTIES OF DOUBLY 0-DIMENSIONAL MAPS

HISAO KATO

INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA

1. Introduction

In this article, we will consider the following problems of one-sided dynamical systems:

Problem 1.1. Is it possible to study arbitrary one-sided dynamical systems by use of appropriate 0-dimensional dynamical systems?

Problem 1.2. Is it possible to reconstruct arbitrary one-sided dynamical systems by use of appropriate time series analysis?, i.e., is it possible to extend Takens' reconstruction theorem to one-sided dynamical systems?

In this article, we show that the above problems 1.1 and 1.2 have near-positive answers by using doubly 0-dimensional maps.

For a space X, dim X means the topological (covering) dimension of X (e.g. see [Eng95], [HW41] and [Nag65]). Let X be compact metric space and Y a space with a complete metric d_Y . Let C(X,Y) denote the space consisting of all maps $f: X \to Y$. We equip C(X,Y) with the metric d defined by

$$d(f,g) = \sup_{x \in X} d_Y(f(x), g(x)).$$

Recall that C(X,Y) is a complete metric space and hence Baire's category theorem holds in C(X,Y). A map $g:X\to Y$ of separable metric spaces is n-dimensional (n=0,1,2,...) if $\dim g^{-1}(y)\le n$ for each $y\in Y$. Note that a closed map $g:X\to Y$ is 0-dimensional if and only if for any 0-dimensional subset D of Y, $\dim g^{-1}(D)\le 0$ (see [Eng95, Hurewic's theorem (1.12.4)]). A map $T:X\to X$ is doubly 0-dimensional if for each closed set $A\subset X$ of dimension 0, one has $\dim T^{-1}(A)\le 0$ and $\dim T(A)=0$.

We have the following theorem ([Kat21] and [KOU16]) which is the key fact in this article.

Theorem 1.3. Suppose that X is one of the following spaces: compact PL-manifolds, compact PL-manifolds with branched structures, Menger manifolds, Sierpinski carpet, Sierpinski gasket, dendrites. Then the followings hold.

(1) The set of all doubly 0-dimensional maps on X is dense in the space

C(X,X) (see [Kat21]).

(2) The set of maps T with dim $P(T) \leq 0$ contains a G_{δ} -dense subset of the set C(X,X) (see [KOU16]), where P(T) denotes the set of periodic points of T.

So if we could study dynamical properties of doubly 0-dimensional maps, we can obtain approximate properties of any dynamical systems (X,T) and hence it is important to study the dynamical properties of "doubly 0-dimensional maps". In this article, we show that the above problems 1.1 and 1.2 have near-positive answers through Theorem 1.3.

2. Finite-to-one 0-dimensional covers of doubly 0-dimensional maps

In this section, we consider the problem 1.1. Throughout this article, all spaces are separable metric spaces and maps are continuous functions. Let $\mathbb N$ be the set of all nonnegative integers, i.e., $\mathbb N=\{0,1,2,\ldots\}$ and let $\mathbb Z$ be the set of all integers and $\mathbb R$ the real line. A map $h:X\to Y$ is an embedding if $h:X\to h(X)$ is a homeomorphism. A pair (X,T) is called a one-sided dynamical system (abbreviated as dynamical system) if X is a separable metric space and $T:X\to X$ is any map. Moreover, if $T:X\to X$ is a homeomorphism, i.e., invertible, then (X,T) is called a two-sided dynamical system. Also if $T:X\to X$ is not a homeomorphism, (X,T) called a non-invertible dynamical system.

A dynamical system (Z,T) covers (X,T) via a map $p:Z\to X$ provided that p is an onto map and $p\tilde{T}=Tp$. We call the map $p:Z\to X$ a factor mapping. If Z is 0-dimensional, then we say that the dynamical system (Z,\tilde{T}) is a θ -dimensional cover of (X,T). Moreover, if the factor mapping is a finite-to-one map, then we say that the dynamical system (Z,\tilde{T}) is a finite-to-one θ -dimensional cover of (X,T).

The following theorem implies that the problem 1.1 has a near-positive answer (see [KM20]).

Theorem 2.1. Suppose that $T: X \to X$ is a doubly 0-dimensional map of a compactum X with dim $X = n < \infty$. If dim $P(T) \le 0$, then there exist a dense G_{δ} -set H of X and a zero-dimensional cover (Z, \tilde{T}) of (X, T) via an at most 2^n -to-one onto map $p: Z \to X$ such that $P(T) \subset H$ and $|p^{-1}(x)| = 1$ for $x \in H$. Moreover, if X is perfect, then Z can be chosen as a Cantor set. In particular, $h(T) = h(\tilde{T})$, where h(T) denotes the topological entropy of T.

For the special case of positively expansive maps, we have

Theorem 2.2. Let $T: X \to X$ be a positively expansive map of a compactum X with $\dim X = n < \infty$. Then there exist $k \ge 1$ and a closed σ -invariant set Σ of the shift map $\sigma: \{1, 2, ..., k\}^{\mathbb{N}} \to \{1, 2, ..., k\}^{\mathbb{N}}$ such that (Σ, σ) is a zero-dimensional cover (= symbolic extension) of (X, T) via an at most 2^n -to-one map $p: \Sigma \to X$.

An indexed family $(C_s)_{s\in S}$ of subsets of a set X will by abuse of notation also be denoted by $\{C_s\}_{s\in S}$ or $\{C_s:s\in S\}$. Hence if $\mathcal{C}=\{C_s\}_{s\in S}$ is such a family then its members C_s and C_t will be considered as different whenever $s\neq t$. We then put

$$\operatorname{ord}(\mathcal{C}) = \sup \{ \operatorname{ord}_x(\mathcal{C}) : x \in X \}, \text{ where } \operatorname{ord}_x(\mathcal{C}) = |\{ s \in S | x \in C_s \}|.$$

Note that ord(C) so defined is by 1 larger than it would be according to the usual definition, as e.g. in [Eng95, (1.6.6) Definition].

To prove the above theorems, we need the following lemma which is the key result to study the dynamical properties of doubly 0-dimensional maps (see [KM20]).

- **Lemma 2.3.** Suppose that $T: X \to X$ is a doubly 0-dimensional map of a compactum X such that $\dim X = n < \infty$ and $\dim P(T) \leq 0$. Let F be an F_{σ} -set of X with $\dim F \leq 0$. Then, for each $j \in \mathbb{N}$, there is a finite open cover $C(j) = \{C(j)_i \mid 1 \leq i \leq m_j\}$ of X such that
- (1) $\operatorname{mesh}(C(j)) < 1/j \ (j \ge 1),$
- (2) $\operatorname{ord}(\mathcal{G}) \leq n$, where $\mathcal{G} = \{T^{-p}(\operatorname{bd}(C(j)_i)) \mid 1 \leq i \leq m_j, \ j \in \mathbb{N} \ and \ p \in \mathbb{N}\}$, and
- (3) $F \cap L = \emptyset$, where $L = \bigcup \{ \operatorname{bd}(C(j)_i) | 1 \le i \le m_j, j \in \mathbb{N} \}.$
 - 3. Dynamical decomposition theorem of doubly 0-dimensional Maps

In dimension theory, the following decomposition theorem is well-known.

Theorem 3.1. A separable metric space X is $\dim X \leq n$ $(n \in \mathbb{N})$ if and only if X can be represented as the union of n+1 subspaces $Z_0, Z_1, ..., Z_n$ of X such that $\dim Z_i \leq 0$ for each i=0,1,...,n.

In this section, we study "dynamical decomposition theorem" of doubly 0-dimensional maps. Let $T: X \to X$ be a map. A subset Z of X is a *bright space* of T except n times $(n \in \mathbb{N})$ if for any $x \in X$,

$$|\{p \in \mathbb{N} | T^p(x) \notin Z\}| \le n.$$

Note that for any $x \in X$, the positive orbit O(x) appears in Z except n times. Also we say that L = X - Z is a dark space of T except n times. Note that for any $x \in X$, the positive orbit O(x) disappears from L except n times. Bright spaces Z would be expected to be very large spaces. But we can choose very "small" bright spaces.

Theorem 3.2. [KM20] Suppose that $T: X \to X$ is a doubly 0-dimensional map of a compactum X with dim $X = n < \infty$. Then dim $P(T) \le 0$ if and only if there is a zero-dimensional bright space Z of T except n times such that Z is a dense G_{δ} -set of X and the dark space L = X - Z of T is an (n-1)-dimensional F_{σ} -set of X.

This theorem implies that the bright space Z is very small like "small dots" and the dark space is very large like "dark matters" in physics. Such Z as in Theorem 3.2 satisfies the dynamical decomposition theorem of doubly 0-dimensional maps (see [KM20]).

Theorem 3.3. Suppose that X is a compactum with $\dim X = n \ (< \infty)$ and $T: X \to X$ is a doubly 0-dimensional onto map. Then $\dim P(T) \le 0$ if and only if there exists a zero-dimensional G_{δ} -dense set Z of X such that for any n+1 integers $k_0 < k_1 < \cdots < k_n \ (k_i \in \mathbb{Z})$,

$$X = T^{k_0}(Z) \cup T^{k_1}(Z) \cup \cdots \cup T^{k_n}(Z).$$

4. Takens-type reconstruction theorem of one-sided dynamical systems

In this section, we consider the problem 1.2. Reconstruction of dynamical systems from a scalar time series is a topic that has been extensively studied. The theoretical basis for methods of recovering dynamical systems on compact manifolds from one-dimensional data was studied by Takens [Tak81, Tak02]. In 1981, Takens [Tak81], by use of Whitney's embedding theorem, proved that under some conditions of (two-sided) diffeomorphisms on a manifold, the dynamical system can be reconstructed from the observations made with generic functions.

Theorem 4.1. (Takens' reconstruction theorem for diffeomorphisms [Tak81] and [Noa91]) Suppose that M is a compact smooth manifold of dimension d. Let $D^r(M)$ be the space of all C^r -diffeomorphisms on M and $C^r(M,\mathbb{R})$ the set of all C^r -functions $(r \geq 1)$ to \mathbb{R} . If E is the set of all pairs $(T,f) \in D^r(M) \times C^r(M,\mathbb{R})$ such that the delay observation map $I_{T,f}^{(0,1,2,..,2d)}: M \to \mathbb{R}^{2d+1}$ defined by

$$x \mapsto (fT^j(x))_{j=0}^{2d}$$

is an embedding, then E is open and dense in $D^r(M) \times C^r(M, \mathbb{R})$.

Moreover, in 2002 Takens [Tak02], extended his theorem for endomorphisms on compact smooth manifolds as follows.

Theorem 4.2. (Takens' reconstruction theorem for endomorphisms [Tak02]) Suppose that M is a compact smooth manifold of dimension d. Then there is an open dense subset $\mathcal{U} \subset \operatorname{End}^1(M) \times C^1(M,\mathbb{R})$, where $\operatorname{End}^1(M)$ denotes the space of all C^1 -endomorphisms on M, such that, whenever $(T,f) \in \mathcal{U}$, there is a map $\pi: I_{T,f}^{(0,1,\dots,2d)}(M) \to M$ with $\pi \cdot I_{T,f}^{(0,1,\dots,2d)} = T^{2d}$.

For a space K, we consider the (one-sided) shift $\sigma: K^{\mathbb{N}} \to K^{\mathbb{N}}$ which is defined by

$$\sigma(x_0, x_1, x_2, x_3....) = (x_1, x_2, x_3....), x_i \in K.$$

Let (X,T) and (X',T') be dynamical systems. If a map $h:X\to X'$ satisfies the following commutative diagram

$$\begin{array}{ccc} X & \xrightarrow{h} & X' \\ \downarrow T & & \downarrow T' \\ X & \xrightarrow{h} & X' \end{array}$$

then we say that $h:(X,T)\to (X',T')$ is a morphism of dynamical systems. In this article, we need the following definition from [Kat20].

Definition 4.3. Let $T: X \to X$ be a map of a compact metric space X. (a) Given a set $S \subset \mathbb{N}$ and a map $f: X \to \mathbb{R}$, the map $(fT^j)_{j \in S}: X \to \mathbb{R}^S$ will be denoted by $I_{T,f}^S$. We call this map the delay observation map at times $j \in S$. Note that $I_{T,f} := I_{T,f}^{\mathbb{N}}: (X,T) \to (\mathbb{R}^{\mathbb{N}},\sigma)$ is a morphism of dynamical systems. We call $I_{T,f}$ the infinite delay observation map for (T,f). (b) We say that I_f^S is a trajectory-embedding if $I_f^S(x) \neq I_f^S(y)$ whenever $T^j(x) \neq T^j(y)$ for all $j \in S$.

Let (X,T) be a dynamical system of a compact metric space X. For $n \geq 1$, let $P_n(T)$ be the set of all periodic points of T with period $\leq n$ and P(T) the set of all periodic points of T, i.e.

 $P_n(T) = \{x \in X | \text{ there is an } i \text{ such that } 1 \le i \le n \text{ and } T^i(x) = x\}$

and
$$P(T) = \bigcup_{n \ge 1} P_n(T)$$
.

Two points x and y of X are trajectory-separated for T if $T^{j}(x) \neq T^{j}(y)$ for $j \in \mathbb{N}$. A morphism $h: (X,T) \to (X',T')$ is a trajectory-monomorphism if h(x), h(y) are trajectory-separated for T', whenever $x, y \in X$ are trajectory-separated for T.

For $x, y \in X$, let $o_T(x) = (T^i(x))_{i \in \mathbb{N}}$ and $o_T(y) = (T^i(y))_{i \in \mathbb{N}}$ be two orbits of T. We say that the orbit $o_T(x)$ is eventually equivalent to the orbit $o_T(y)$ if the orbits will be equal in the future, i.e., there exists an $n \in \mathbb{N}$ such that $T^i(x) = T^i(y)$ for each $i \geq n$. In this case, we wright $o_T(x) \sim_e o_T(y)$. We see that this relation is an equivalence relation. So we have the equivalence class

$$[o_T(x)] = \{o_T(y) | o_T(x) \sim_e o_T(y)\}$$

containing $o_T(x)$ and we put

$$[O(T)] = \{ [o_T(x)] | x \in X \}.$$

Note that if $T: X \to X$ is injective, the function $o: X \to [O(T)]$ defined by $x \mapsto [o_T(x)]$ is bijective, i.e., $o: X \cong [O(T)]$. Also, note that if $h: (X,T) \to (X',T')$ is a morphism of dynamical systems, then h induces the function $h: [O(T)] \to [O(T')]$ defined by $h([o_T(x)]) = [o_{T'}(h(x))]$ for $x \in X$. A morphism $h: (X,T) \to (X',T')$ of dynamical systems is a trajectory-isomorphism if h induces the bijection $h: [O(T)] \cong [O(T')]$.

Proposition 4.4. Suppose that a morphism $h:(X,T)\to (X',T')$ is a trajectory-monomorphism and h is surjective, i.e., h(X)=X'. Then h is a trajectory-isomorphism:

$$h: [O(T)] \cong [O(T')]$$

We need the definition of topological entropy and we give the definition by Bowen [Bow78]. Let $T: X \to X$ be any map of a compact metric space X. A subset E of X is (n, ϵ) -separated if for any $x, y \in E$ with $x \neq y$, there is an integer j such that $0 \leq j < n$ and $d(T^j(x), T^j(y)) \geq \epsilon$. If K is any nonempty closed subset of X, $s_n(\epsilon; K)$ denotes the largest cardinality of any set $E \subset K$ which is (n, ϵ) -separated. Also we define

$$s(\epsilon; K) = \limsup_{n \to \infty} \frac{1}{n} \log s_n(\epsilon; K),$$

$$h(T;K) = \lim_{\epsilon \to 0} s(\epsilon;K).$$

It is well known that the topological entropy h(T) of T is equal to h(T; X) (see [Bow78]).

Let (X, T) and (Y, S) be one-sided dynamical systems of compact metric spaces. The *inverse limit* of T is the space

$$\underline{\lim}(X,T) = \{(x_i)_{i=0}^{\infty} \mid T(x_{i+1}) = x_i \text{ for each } i \in \mathbb{N}\} \subset X^{\mathbb{N}}$$

which has the topology inherited as a subspace of the product space $X^{\mathbb{N}}$. If $h:(X,T)\to (Y,S)$ is a morphism of dynamical systems, then the map

$$\underline{\lim} h : \underline{\lim}(X, T) \to \underline{\lim}(Y, S)$$

is defied by $\varprojlim h((x_i)_i) = (h(x_i))_i$ for $(x_i)_i \in \varprojlim (X, T)$. Note that if T is a homeomorphism, then $X \cong \varprojlim (X, T)$.

By [Kat20, Theorem 3.1], we have the following result.

Theorem 4.5. Let X be a compact metric space with $\dim X = d < \infty$ and let $T: X \to X$ be a doubly 0-dimensional map with $\dim P(T) \leq 0$. Then there is a dense G_{δ} -set D of $C(X,\mathbb{R})$ such that for all $f \in D$,

$$I_{T,f} = T_{T,f}^{\mathbb{N}} : (X,T) \to (\mathbb{R}^{\mathbb{N}}, \sigma)$$

satisfies the following conditions:

- (a) $I_{T,f} : [O(T)] \cong [O(\sigma_{T,f})],$
- (b) $\varprojlim I_{T,f} : \varprojlim (X,T) \to \varprojlim (I_{T,f}(X),\sigma_{T,f})$ is a homeomorphism,
- (c) $h(T) = h(\sigma_{T,f})$ and
- (d) if $x, y \in X$ are trajectory-separated for T, then

$$|\{i \in \mathbb{N} | I_{T,f}(x)_i = I_{T,f}(y)_i\}| \le 2d.$$

Now, we will introduce the notion of reconstruction space of dynamical systems (see [Kat21]).

Definition 4.6. A compact metric space X is a reconstruction space of dynamical systems if there exists a G_{δ} -dense set E of $C(X,X) \times C(X,\mathbb{R})$ such that for $(T,f) \in E$, the infinite delay observation map

$$I_{T,f} := I_{T,f}^{\mathbb{N}} : (X,T) \to (\mathbb{R}^{\mathbb{N}}, \sigma)$$

satisfies the following conditions (1) and (2):

- (1) $I_{T,f}: [O(T)] \cong [O(\sigma_{T,f})], \text{ where } \sigma_{T,f} = \sigma | I_{T,f}(X), \text{ and }$
- (2) $\underline{\lim} I_{T,f} : \underline{\lim} (X,T) \to \underline{\lim} (I_{T,f}(X), \sigma_{T,f})$ is a homeomorphism.

$$\begin{array}{cccc} X & \stackrel{I_{T,f}}{\to} & I_{T,f}(X) \subset & \mathbb{R}^{\mathbb{N}} \\ \downarrow T & & \downarrow \sigma_{T,f} & \downarrow \sigma \\ X & \stackrel{I_{T,f}}{\to} & I_{T,f}(X) \subset & \mathbb{R}^{\mathbb{N}} \end{array}$$

Finally we obtain Theorem 4.7 by use of Theorem 1.3 (see [Kat21]). Theorem 4.7 implies that the problem 1.2 has a near-positive answer.

Theorem 4.7. Let X be one of the following spaces: PL-manifold, PL-manifold with branch structures, Menger manifold, Sierpiński carpet, Sierpiński gasket and dendrite. Then X is a reconstruction space of dynamical systems.

References

- [AAM18] M. Achigar, A. Artigue and I. Monteverde, Observing expansive maps, Journal of the London Mathematical Society, 98 (3) (2018), 501-516.
- [Aus88] J. Auslander, Minimal flows and their extensions, North-Holland Mathematics Studies, vol. 153 (North-Holland Publishing Co., Amsterdam, 1988)
 Notas de Matem'atica [Mathematical Notes], 122.
- [Bes88] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 71 (1988), no. 380.
- [BF85] L. S. Block and J. E. Franke, The chain recurrent set, attractors, and explosions, Ergod. Th. Dynam. Sys. 5 (1985), 321-327.
- [Bor67] K. Borsuk, Theory of Retract, Monografie Matematyczne 44, Polish Scientific Publisher, Warszawa, 1967.
- [Bow78] R. Bowen, On Axion A diffeomorphisms, CBMS Reg. Conf. 35 American Mathematical Society: Providence RI 1978.
- [Chi96] A. Chigogidze, *Inverse Spectra*, North-Holland publishing Co., Amsterdam, 1996.
- [Coo15] M. Coornaert, Topological Dimension and Dynamical Systems, Springer international Publishing Switzerland, Universitext, 2015.
- [Eng95] R. Engelking, *Theory of Dimensions Finite and Infinite*, Heldermann Verlag, Lemgo, 1995.
- [GL02] R. Gilmore and M. Lefranc, The topology of Chaos, Alice in Stretch and Squezeland, NY: Wiley 2002.
- [Gut15] Y. Gutman, Mean dimension and Jaworski-type theorems, Proc. London Math. Soc. (3) 111 (2015), 831-850.
- [Gut16] Y. Gutman, Takens' embedding theorem with a continuous observable, In Ergodic Theory: Advances in Dynamical Systems 2016, 134-141.
- [GQS18] Y. Gutman, Y. Qiao and G. Szabó, The embedding problem in topological dynamics and Taken's theorem, Nonlinearity 31 (2018), no.2, 597-620.

HISAO KATO

- [GT14] Y. Gutman and M. Tsukamoto, Mean dimension and a sharp embedding theorem: extensions of aperiodic subshifts, Ergodic Theory Dynam. Systems 34 (2014), 1888-1896.
- [HW41] W. Hurewicz and H. Wallman, *Dimension theory*, Princeton University Press (1941).
- [IKU13] Y. Ikegami, H. Kato and A. Ueda, Dynamical systems of finite-dimensional metric spaces and zero-dimensional covers, Topol. Appl. 160 (2013), 564-574.
- [Jaw74] A. Jaworski, The Kakutani-Beboutov theorem for groups, PhD Dissertation, University of Maryland, College Park, MD, 1974.
- [Kat21] H. Kato, Takens-type reconstruction theorems of non-invertible dynamical systems on compact metric spaces, preprint.
- [Kat20] H. Kato, Jaworski-type embedding theorems of one-sided dynamical systems, Fund. Math. 253 (2021), 205-218.
- [KM20] H. Kato and M. Matsumoto, Finite-to-one zero-dimensional covers of dynamical systems, J. Math. Soc. Japan, 72 (3) (2020), 819-845.
- [KOU16] P. Krupski, K. Omiljanowski and K. Ungeheuer, *Chain recurrent sets of generic mappings on compact spaces*, Topol. Appl. 202 (2016), 251-268.
- [Kul95] J. Kulesza, Zero-dimensional covers of finite dimensional dynamical systems, Ergod. Th. Dynam. Sys. 15 (1995), 939-950.
- [Kur61] C. Kuratouski, Topologie II, Warszawa 1961.
- [Lef31] S. Lefshetz, On compact spaces, Ann. Math. 32 (1931), 521-538.
- [Lin99] E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math., 89 (1999), 227-262.
- [LW00] E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math. 115 (2000), 1-24.
- [Lor63] E. N. Lorentz, *Deterministic nonperiodic flow*, Journal of the Atmospheric Sciences, 20 (1963), 130-141.
- [MS93] W. de Melo and S. van Strien, One dimensional Dynamics, Springer, Berlin, 1993.
- [Mil01] J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland publishing Co., Amsterdam, 2001.
- [Nag65] J. Nagata, Modern Dimension Theory, North-Holland publishing Co., Amsterdam, 1965.
- [Noa91] L. Noakes, *The Takens EmbeddingTheorem*, International Journal of Bifurcation and Chaos, 1 (1991), 867-872.
- [Ner91] M. Nerurkar, Observability and Topological Dynamics, Journal of Dynamics and Differential Equations, Vol. 3 (1991), 273-287.
- [SYC91] T. Sauer, J. A. Yorke and M. Casdagli, Embedology, J. of Statistical Physics, 65 (1991), 579-616.
- [Tak81] F. Takens, Detecting strange attractors in turbulence, Lecture Notes in Mathematics, vol. 898 (1981), 366-381.
- [Tak02] F. Takens, The reconstruction theorem for endomorphisms, Bull. Braz. Math. Soc. New Ser. 33 (2002), 231-262.
- [Why58] G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320-324.