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1 Introduction

A totally ordered space like the real field is very useful for preference, evaluation,
computation, or comparison on the values of real-valued functions. However,
multiobjective programming and vector optimization are a little complicated
with multicriteria structure like some partial ordering, and minimal and maximal
notions like Pareto optimal solution or efficient solution are defined with respect
to a certain ordering cone (i.e., a dominance cone); see [19].

In vector optimization and set optimization, we have a typical approach by
which optimization problems with vector-valued or set-valued maps can be easily
handled by converting vectors or sets into real numbers; see [2| and [3, 5]. From
the viewpoint of scalarization, the notion of weighted sum is a good tool for the
scalarization of vectors in multicriteria problems, and it is regarded as the projec-
tion (i.e., inner product with the weight vector d) in R™. The average of elements
is also a special case of weighted sum with the weight d = (1/n,...,1/n)". They
all are linear scalarization methods, and they can be regarded as a special case
of a certain sublinear scalarization (introduced by Tammer [1, 3]):

ho(v;d) :=inf{t e R|v € td— C}
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where C' is a convex cone in a real topological vector space and d € C'. This
scalarizing functional hg(-;d) is sublinear (i.e., ho(v1 + v9;d) < he(v1) + he(vg)
and he(tv;d) = the(v;d) for t > 0) and hence this conversion is called “sublin-
ear scalarization.” Therefore this special functional is a certain generalization
of linear scalarization including the notions of weighted sum and inner product.
Accordingly, this idea has inspired some researchers to develop particular scalar-
ization methods for sets, leading to several applicable results shown in [4, 15].

On the other hand, we know that composite operation frequently preserves
several mathematical properties of each nested function. For instance, a composi-
tion of continuous maps is continuous on topological spaces. Based on this prop-
erty, we can characterize solutions for multicriteria problems through scalariza-
tion under certain assumptions. This leads to consider the mechanism by which
composite functions of a set-valued map and a scalarization function transmit
semicontinuity of parent set-valued maps through several scalarization for sets.

Recently, Ike, Liu, Ogata and Tanaka [6] show certain results on the inheri-
tance property of some kinds of continuity of set-valued maps via scalarization
functions for sets: if a set-valued map has a kind of continuity (lower continu-
ity or upper continuity; see [3]) then the composition of its set-valued map and
a certain scalarization function assures a similar semicontinuity to that of its
scalarization function defined on the family of nonempty subsets of a real topo-
logical vector space. Their results are generalizations of results in earlier study
by Kuwano, Tanaka and Yamada [15].

The aim of this paper is to review these background and to propose some
idea how to generalize the inheritance property which is introduced by [6].

2 Set Relations and Scalarizing Functions for
Sets

Throughout the paper, let X be a topological space and Y a real topological
vector space. Let fy be the zero vector in Y and P(Y) denote the set of all
nonempty subsets of Y. The topological interior, topological closure, convex
hull, and complement of a set A € P(Y) are denoted by int A, cl A, co A, and
A°, respectively. For given A, B € P(Y) and t € R, the algebraic sum A + B
and the scalar multiplication tA are defined as follows:

A+ B:={a+blac A be B}, tA:={ta|ac A}

In particular, we denote A+ {y} by A+y and (—1)A by —A for A € P(Y) and
yey.

Let X be a nonempty set and < a binary relation on X. The relation < is
said to be

(i) reflexive if z < x for all z € X;



(ii) irreflexive if x £ « for all x € X;

)
(iii) transitive if z < y and y < z imply z < z for all z,y, 2z € X;
(iv) antisymmetric if z < y and y < = imply z = y for all z,y € X
)

(v

The relation < is called

complete if r X y or y <Xz for all z,y € X.
(i) a preorder if it is reflexive and transitive;

)
(i) a strict order if it is irreflexive and transitive;
(iii) a partial order if it is reflexive, transitive, and antisymmetric;
)

(iv) a total order if it is reflexive, transitive, antisymmetric, and complete.

Throughout the paper, we assume that C'is a convex cone in Y with int C' # ()
and #y € C. Then, C'+ C' = C holds, and int C' and cl C' are also convex cones.
Accordingly, we can define a preoder < on Y induced by C as follows:

def
for yi,yo €Y, y1 <cyp <= 12—y € C.

This preorder is compatible with the linear structure of Y':

for all y1,y2,y3 €Y, 11 <cvyo = 11 +ys <cY2 + ys; (1)

for all y1, 0 € Yand t >0, 1y <cys = ty; <ctys. (2)
When C'is pointed (i.e., C N (=C) = {0y }), <¢ is antisymmetric and then a

partial order.

Proposition 1. Let C', C" be convex cones in'Y and d € Y. Assume that
C + (0,400)d C C". Then, for any vy,v3 €Y and t,t' € R with t > ¢/,

v +td <cvy = v + t'd <cgr Vs.

As generalizations of partial orderings for vectors, we give a definition of
certain binary relations between sets in Y, called set relations. This is a modified
version of the original one proposed in [12].

Definition 2 (set relations, [12]). For A, B € P(Y), we define the following
eight types of binary relations on P(Y).
() A< B &L Vae A, WbeB, a<cb «= ACepb—C)
— B C(eala+C);
def

(i) A<CY B £5 JueAst.Voe B, a<ob <« AN(N,ezb—C)) #0;
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(i) A<V B £L e BstVac A, a<cb <= (Nyeala+C))NB £ 0;

(iv) A<@ B 4L A<B Band A<CY' B «— AN (N,ep5(b—C)) #0

and (ﬂaeA(a + C)) N B # (;

(v) A<BP B & Vhe B, Jac Ast.a<gb < BCA+C;

(vi) A<V B &L Vaec A BeBst.a<cb < ACB-C;

(vii) A<® B £ A<EY Band A< B «= Bc A+Cand AC B—C;
(viii) A<W B &L e A, FbeBst.a<ch = AN(B—C)#0
— (A+C)NB#0.

In the above definition, the letters L and U stand for “lower” and “upper,”
respectively. Each relation S(c]) is transitive for j = 1,2L,2U,3L,3U and not

transitive for j = 4. Since 0y € C, S(Cj) is reflexive for j = 3L,3U,4 and
hence a preorder for j = 3L,3U. Besides, for each j = 1,2L,2U,3L,3U,4, the
relation Sg) satisfies certain similar properties to conditions (1) and (2) for all
A, BeP(Y),

(i) A<YB = A+y<¥B+y for yev;
()A< 'B :>tA< )tB for t> 0.

Also, we easily obtain the following implications:

A<IB — A4<PB — A<BB — A<YB;
A<<1>B:>A<(2UB:>A§5UB:>A§C B; (3)
A<YB — A<YB — A4<¥B — A<WB

for A, B € P(Y).

Proposition 3 ([6]). Let C" and C be two nonempty convex cones in Y and
deY. Assume that C'+ (0,400)d C C. Then, for each j = 1,2L,3L,2U,3U, 4,
any A,Be€P(Y), s,s € R with s’ < s and t,t' € R witht <t

A< Btdd = A<Y B+sd,
and A+td<¥)B — A+td<Y B
Now, we recall the scalarization scheme [13] for sets in a real vector space

related to the set relations, which are certain generalizations as unification of
several nonlinear scalarizations proposed in [5].



Definition 4 ([7, 13]). For each j = 1,2L,3L,2U,3U, 4, we define

19(A;V,d) == inf{t GR‘A <) (v+td)}, (4)
) 4. . ()
S/ (A;V,d) :=supqt e R|(V +td) <A ¢, (5)

for any A,V e P(Y)anddeY.

The idea of these scalarization functions is introduced in [13], which originates
from the idea of Gerstewitz’s (Tammer’s) sublinear scalarizing functional in [1];
see [3, 7]. This type of scalarization measures how far a given reference set needs
to be moved toward a specific direction to fulfill each set relation between a
target set and its moved reference set. Note that V' and d in (4) and (5) are
index parameters for scalarization which play key roles as a reference set and a
reference direction, respectively.

Proposition 5 ([7]). Let C' be a convex cone in V. The following inequalities
hold between each scalarizing function for sets:

1<4>(A W, d) < ISM (A, W, d
BAaw,d) < 189 (AW, d
1<4>(A W,d) < IS (A, W, d

) < IEP (AW, d) < I (A; W, d)
) < I8V (AW, d) < 1Y (AW, d) ;
( ) < I (AW, d) < 1Y) (AWd)
S (AW, d) < SEM (AW, d) < SEP (AW, d) < SE (A, W, d) ;
5%4 Wd><s<w (A;W,d) < SEV (AW, d) < S& (AW, d);
S (AW, d) < SE (AW, d) < S (AW, d) < SE (A; W, d)

for AW € P(V)\ {0} and d € C.

Proposition 6 ([7]). Let C be a convex cone in V. There are certain relations
among the scalarizations of types (2L), (2U), (2) as well as (3L), (3U), (3):

(i) 1? (A; W, d) = max {sz> (AW, d), IE7 (A W, d)} :
(ii) 12 (A; W, d) = max {Jg’“ (AW, d), 187 (A; W, d }
(iii) S? (A; W, d) = min {S(C”) (A; W, d), S@ (A W, d) }

(iv) S& (A; W, d) = min {5}5’“ (A; W, d), SC (A, W, d)

for AW e P(V)\ {0} and d € C.



Proposition 7 ([6]). Let A,V € P(Y) andd € Y. Then the following statements
hold

I (-4 -V,d) = SP(A;V,d),
—IEP(—A-vid) = SEV(A V),
—I8P(=A;—V,d) SE(A; v, d),
—IE9(-A;-vid) = SEP(AV.d),
—I189(—4;-v,d) = SEP(A;V,d),

I (-4;-vid) = SP(A;V,d).

For each j without j = 4, scalarizing functions ]g) (+; W,d) and S(Cj) (+; W,d)
with a nonempty reference set W and a direction d have the following mono-
tonicity with respect to S(CJ), which is referred to as “j-monotonicity” in [10]:

{Agg>3 — 1 (4 W,d) < 17 (B; W, d); -

A<YB = 8Y (AW, d) < SP (B:; W, d).

3 Transmission Mechanism on Semicontinuity
of Set-Valued maps

Ike, Liu, Ogata and Tanaka [6] introduce a new concept of invariant property for
set-valued map F' : X — P(Y) with respect to a binary relationship on a family
of sets in Y, which is regarded as some kind of continuity from the viewpoint of
order-monotonicity. Besides they show certain results on the inheritance prop-
erty of some kinds of continuity of set-valued maps via scalarization functions
for sets: if a set-valued map has a kind of continuity (lower continuity or up-
per continuity; see [3]) then the composition of its set-valued map and a certain
scalarization function assures a similar semicontinuity to that of its scalarization
function defined on the family of nonempty subsets of a real topological vec-
tor space. On the other hand, Sonda, Kuwano, and Tanaka [20] introduce two
kinds of continuity with respect to cone, called “cone continuity,” for set-valued
maps by analogy with semicontinuity for real-valued functions, and they investi-
gate the inheritance properties on cone continuity of parent set-valued maps via
scalarization. Therefore, it is interesting to investigate the inheritance of cone
continuity for set-valued maps via general scalarization functions for sets in the
same manner as [6]. At first, we recall several definitions and results in [6].

Let M (z) and < be a neighborhood system of a point z € X and a binary
relation on P(Y'), respectively.

Definition 8 (Definition 3.2 in [6]). Let F' : X — P(Y) be a set-valued map,
o € X and < a binary relation on P(Y). We say F' is <-continuous at x, if
VIV.CY with W g F(xo), 3V € N(x) such that W < F(z),Vz € V.

6



For A, B € P(Y), we denote binary relations int AN B # () and B C int A
by A <1 B and A <y B, respectively. Then =<;-continuous and =<s-continuous
coincide with usual “lower (semi)continuity” and “upper (semi)continuity” for
set-valued maps, respectively.

Definition 9 (Definition 3.3 in [6]). Let ¢ : P(Y) — RU{+£o0} be a scalarization
function, Ay € P(Y), and < a binary relation on P(Y’). Then

(i) we say ¢ is <-lower semicontinuous at Ag if

Vr < @(Ap), AW € P(Y) such that W < Ag and r < p(A),VA € UW, %),
(ii) we say ¢ is <-upper semicontinuous at Ag if

Vr > p(Ap), AW € P(Y) such that W 5 Ag and r > ¢(A),VA € U(W, X),

where U(W,x) :={A € PY) | W < A}

Theorem 10 (Theorem 3.1 in [6]). Let F : X — P(Y), ¢ : P(Y) —» RU{xo0},
zo € X, and % a binary relation on P(Y). If F is <-continuous at xo and ¢
is X-lower semicontinuous at F(xq), then ¢ o F' is lower semicontinuous at g
where p o F(x) := @o(F(x)) for each x € X.

Theorem 11 (Theorem 3.2 in [6]). Let F : X — P(Y), ¢ : P(Y) —» RU{xo0},
xo € X, and % a binary relation on P(Y). If F' is X-continuous at xo and ¢ is
<-upper semicontinuous at F(x), then @ o F' is upper semicontinuous at xy.

In order to investigate the inheritance properties on cone continuity of parent
set-valued maps via scalarization, we consider generalizations of semicontinuity
for set-valued maps and real-valued functions.

Definition 12. Let F': X — P(Y), o € X, < a binary relation on P(Y’) and
C C Y a convex cone. We say that I is (, C)-continuous at x if

VIV CY,W open ,W < F(x¢),3V € Nx(xg) s.t. W+ C g F(zx),Vax € V.

As special cases, (=1, C)-continuity and (<2, C')-continuity coincide with “C-
lower continuity” and “C-upper continuity” for set-valued maps, respectively.
Indeed, F' : X — P(Y) is (=1, C)-continuous at zy if and only if

VIV C Y, W open , WNF(xo) # 0,3V € Nx(x0) s.t. (W 4+ C)NF(z) # 0,V €V,

that is, ' is C-lower continuous at xy. Similarly, F' is (52, C')-continuous at x
if and only if

VIW CY,W open , F(xy) C W,3V € Nx(xo) s.t. F(z) CW +C,Vx €V,

that is, F' is C-upper continuous at xg; see Definition 2.5.16 of [3].
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Remark 13. If C' = {0} then (%, C)-continuity for set-valued maps becomes
<-continuity in Definition 8.

Definition 14. Let ¢ : P(Y) — RU{£o0}, Ay € P(Y), < a binary relation on
P(Y), and C a convex cone in Y with C' # Y. Then, we say that ¢ is

(i) (=, C)-lower semicontinuous at Ay if Vrr < ¢ (Ag),IW € P(Y), W open,
st. WxApand r < ¢ (A),VAec UW + C,%);

(i) (%, C)-upper semicontinuous at Ay if Vrr > ¢ (Ay),3IW € P(Y), W open,
st. WxAgand r > ¢ (A),VAc UW +C,=x),

where U(V, %) ={AePY)|V g A}

Remark 15. When C' = {0}, (=, C)-lower and (=, C)-upper semicontinuities
are coincident with <-lower and <-upper semicontinuities, respectively, which are
introduced in Definition 3.3 of [6]. In Definition 14, we adopt that if ¢ (A4y) = —o0
(resp. +00) then ¢ is (%, C)-lower (resp. upper) semicontinuous at Ag.

Therefore, we can easily show the following results as generalizations of The-
orems 10 and 11.

Theorem 16. Let F: X — P(Y), ¢ : P(Y) - RU{to0}, zp € X, <X a binary
relation on P(Y), and C C'Y a convex cone. If F is (%, C')-continuous at xo and
v is (%, C)-lower semicontinuous at F(xy), then @ o F' is lower semicontinuous
at x.

Theorem 17. Let F: X — P(Y), ¢ : P(Y) - RU{to0}, 2o € X, X a binary
relation on P(Y), and C CY a convez cone. If F is (%, C')-continuous at xo and
¢ is (X, C)-upper semicontinuous at F(xg), then @ o F' is upper semicontinuous
at xq.

By above theorems, we can systematically unravel the inheritance mechanism
related to lower and upper continuities for set-valued maps.
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