Mann type approximation theorem by using

balanced mappings on geodesic spaces
IR A 22 ] 12 35 1F 5 balanced mapping %z F W 7=
Mann B R &

FIRARF: - BAEER AR AL
Yasunori Kimura
Department of Information Science
Toho University
BRFRRY: - HAEISERL {4 KRR
Kazuya Sasaki
Department of Information Science
Toho University

Abstract
In this paper, we show a fixed point approximation theorem with the form of
balanced mapping using Mann’s iterative method for nonexpansive mappings
on admissible complete CAT(1) spaces and complete CAT(—1) spaces.

1 Introduction

The CAT (k) space is one of the metric spaces with convex structures, and several
researchers study the convex analysis on those spaces. Fixed point approximation is
one of the topics of the convex analysis, and has been studied in CAT (k) spaces as
well. Mann’s iterative scheme is the method to generate a sequence converging to
a fixed point of mappings produced by Mann [10] in 1953. The most basic form of
Mann’s iterative scheme is expressed by

Tpt1 = @y © (1 — )Tz, (n€N),

where {z,}nen is an iterative sequence, {ay, }neny C [0,1] is a real sequence, T is a
mapping that has fixed points, and @ is a symbol of the convex combination. Mann
[10] showed a convergence theorem with Mann'’s iterative scheme for a nonexpansive
mapping in a Hilbert space. Thereafter, many researchers has been studied that
scheme in several spaces. For instance, that scheme is studied on Banach spaces,
complete CAT(0) spaces, complete CAT(1) spaces, and so on. Henceforth, we call
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the theorem using Mann’s iterative scheme a Mann type approximation theorem.

In 2008, Dhompongsa and Panyanak [1] proved a Mann type approximation the-
orem in a complete CAT(0) space. Five years later, Kimura, Saejung, and Yotkaew
[8] proved the same type theorem in a complete CAT(1) space. Recently, Kimura [5]
showed the following Mann type approximation theorem.

Theorem 1.1 ([5]). Let X be a complete CAT(0) space and {Ty}Y_, nonexpansive
mappings from X into itself such that ﬂgzl F(Ty) # &. Let {a,}, {8}, C[a,b] C
10, 1] be real sequences such that Zgzl BF =1 for alln € N. Let 1 € X arbitrarily
and define a sequence {x,} C X by

N
Tpt1 = argmin (and(xn, y)2 + (1 —ap) Z Bﬁd(Tkxn, y)2>

yex k=1

for each n € N. Then {z,} A-converges to an element of ﬂé\;l F(Ty).

In the assumption of Theorem 1.1, put v} = a,, and v**! = (1 — a,,)B* for each
n € Nand k € {1,2,...,N}, and let S;: X — X be the identity mapping and put
Sk+1 =Ty for each k € {1,2,...,N}. Then we can describe the iteration of Theorem

1.1 as

N+1
(i) Tnt1 = argmin > kd(Skan,y)?,
YEX =1

and Zgi’ll 7% = 1 holds. The right-hand side of (i) has the form of the balanced
mapping proposed by Hasegawa and Kimura [3].

In the above theorem, the equation on the right-hand side can be described as a
balanced mapping. In this paper, we show a fixed point approximation theorem with

the form of balanced mapping using Mann’s iterative method on admissible complete
CAT(1) spaces and complete CAT(—1) spaces.

2 Preliminaries

Let X be a metric space with a metric d. For a mapping T': X — X, the set of all fixed
points of T is denoted by F(T'). A mapping 7: [0,1] — X is called a geodesic joining
re€Xandy e X ify(0) ==z, v(1) =y, and d(v(s),v(t)) = |s — t| d(x, y) hold for any
s,t € [0,1]. For D € ]0,00], X is called a uniquely D-geodesic space if there exists
a unique geodesic v: [0,1] — X for any z,y € X with d(z,y) < D. In particular,
oo-geodesic space is merely said a geodesic space. For a uniquely D-geodesic space,
the image of the geodesic joining x and y is denoted by [z, y].

Let (X,d) be a uniquely D-geodesic space. For two points z,y € X, we define a
convex combination tx ® (1 —t)y by v(1—1t) for ¢t € [0, 1], where 7 is a geodesic joining
x and y. A subset C of X is said to be convex if [z,y] C C holds for any x,y € C. For



points z,y,z € X, we define a geodesic triangle A(x,y, z) with vertices z,y,z € X
by the union [z,y| U [y, z] U [z, z].

Let k € {—1,0,1} and (X,d) a uniquely D,-geodesic space, where D_; = Dy =
oo, and Dy = w. Let us denote a 2-dimensional model space with the constant
curvature k by (M,,d’), where d' is a metric on M,. To be accurate, M_; is the
2-dimensional hyperbolic space, My is the 2-dimensional Euclidean space, and M is
the 2-dimensional unit sphere. M, is one of the uniquely D,-geodesic spaces. Then
for each geodesic triangle A(x,y, z) on X with d(x,y)+d(y, z) +d(z,x) < 2D,,, there
exists a geodesic triangle with vertices A(%,7,Z) C M, such that d(z,y) = d'(T,7),
d(y,z) =d'(y,%z), and d(z,x) = d'(z,7). That triangle on M, is called a comparison
triangle of A(z,y,2). For a triangle A(z,y,z) C X with its comparison triangle
A(Z,7,%Z) C M,, and two vertices s1,52 € {x,y, 2} and these corresponding vertices
$1 and Sz, there exists a point p € [s7,353] for each p € [s1, s3] such that d(s1,p) =
d'(31,D). Such a point p € A(Z,7,%) is called a comparison point of p. X is called a
CAT(k) space if, for any A(x,y,z) C X with d(z,y) + d(y, z) + d(z,x) < 2D,; and
A(Z,7,%Z) C M,, the inequality d(p, q) < d'(p,q) always holds for p, ¢ € A(x,y, z) and
their comparison points 7,§ € A(Z,7,%Z). A CAT(k) space is said to be admissible
if the distance between any two points is less than D, /2. Every CAT(—1) space is
admissible obviously.

Let k € {—1,1} and X a CAT(k) space. Then the following inequalities hold for
any z,y,z € X and t € 0,1[:

e if Kk = —1, then

coshd(tx @ (1 — t)y, z) sinhd(z,y)
< coshd(z, z) sinh td(z, y) + cosh d(y, z) sinh((1 — t)d(zx,y)),
e if K =1, then

cosd(tx ® (1 —t)y, z)sind(z,y)
> cosd(x, z)sintd(x,y) + cosd(y, z) sin((1 — t)d(x,y)).
Considering the convexity or concavity of sinh and sin, we easily obtain the following:

e if Kk = —1, then coshd(tx @ (1 —t)y, z) < tcoshd(x,z)+ (1 —t)coshd(y, z),
e if kK =1, then cosd(tz & (1 —t)y,2) > tcosd(x,z) + (1 —t) cosd(y, 2)

for any x,y,z € X and t € ]0, 1].

Let X be a set and f a function from X into R. We write the set of all minimizers
(resp. maximizers) of f as argmin,y f(x) (resp. argmax,cy f(x)). For a set X and
a mapping T: X — X, let us denote the set of all fixed points of T by F(T).

Let X be a metric space with a metric d. For {z,,} C X, define an asymptotic center
of {x,, } by argmin . y limsup,,_, . d(z, z,), and denote it by AC'({z,,}). The sequence
{z,,} is said to A-converge to xg if AC({z,,}) = {0} holds for any subsequence {z,, }
of {x,,}, and then refer to xg as the A-limit of {z,}. The A-convergence of {x,} to
xq is expressed by the notation x, = xg.



Let X be a complete CAT(1) space. Then a sequence {z,} C X is said to be
spherically bounded if inf,c x limsup,,_, ., d(zn,y) < 7/2 holds. Then the asymptotic
center of any spherically bounded sequence {x,} is exactly one point, and {z,} has
A-convergent subsequences. See [2] for details. Incidentally, suppose X is a complete
CAT(0) space, then the asymptotic center of any bounded sequence {x, } is exactly
one point, and {z,} has A-convergent subsequences [9]. These natures contribute to
prove theorems for Mann’s iterative schemes on CAT (k) spaces.

3  Main results

In this section, we prove approximation theorems using a Mann’s iterative scheme
with balanced mappings on a CAT(1) space and a CAT(—1) space.

Lemma 3.1 ([4]). Let X be an admissible complete CAT(1) space and C a nonempty
closed convexr subset of X. For uj,us,...,uy € X and ot,a?,...,aN € [0,1] with

Zgzl af =1, define a function g: X —]0,1] by g(x) = Zgzl a¥ cosd(uy, x) for each
x € X. Then g has a unique maximizer on C.

Let X be an admissible complete CAT(1) space and {a*}_, a real sequence on
[0, 1] satisfying ngvzl a® =1, and let {T}}2_, be mappings from X into itself. Then
a mapping U: X — X defined by

N

Ux = argmax Z of cosd(Tz,y) (z € X)
veX k=1

is well-defined as a single-valued mapping from Lemma 3.1. This mapping U is called
a balanced mapping for {a*} and {T}} on an admissible complete CAT(1) space.

Lemma 3.2 ([7]). Let X be an admissible complete CAT(1) space and let {Ty}Y_,
be mappings from X into itself. Let {o*}Y_, C ]0,1[ such that Zgzl af =1 and
U: X — X a balanced mapping for {a*} and {Ty}. Then the following inequality
holds for any x,z € X :

N N

Z a” cos d(Tyx,Uz) cosd(Ur, z) > Z a” cos d(Tyx, 2).

k=1 k=1
Lemma 3.3 ([4]). Let X be an admissible complete CAT(1) space and let {Ty}Y_,
be quasinonexpansive mappings from X into itself such that ﬂfcv:l F(Ty) = &. Let
{a*}N_ 10, 1] such that ngvzl af =1andU: X — X a balanced mapping for {a*}
and {Ty}. Then F(U) = ﬂgzl F(Ty) holds, and U is also quasinonexpansive.

Using above lemmas, we prove the following convergence theorem on an admissible
complete CAT(1) space.



Theorem 3.4. Let X be an admissible complete CAT(1) space and let {Ty}Y_,
be nonexpansive mappings from X into itself such that ﬂfcv:l F(Ty) ~ &. Let

{an}, {BEYN_, C [a,b] C]0,1] be real sequences such that ngvzl BE =1 for allm € N.
Let x1 € X arbitrarily and define a sequence {x,} C X by

N
Tpy1 = argmax (an cosd(xn,y) + (1 — ) Z B cos d(Tyxy, y))
yex k=1

for each n € N. Then {z,} A-converges to an element of ﬂé\;l F(Ty).

Proof. Define a mapping U, : X — X by U,r = argmax,¢y (an cosd(zy,y) + (1 —
an) Zgzl Bk cosd(Tyxn,y)) for each z € X and n € N. The well-definedness of the
mapping U, is guaranteed by Lemma 3.1. Then z,,+1 = U,z, holds for any n € N.
From Lemma 3.3, we have F'(U,) = ﬂgzl F(Ty) for all n € N, and we also get the
quasinonexpansiveness of U,,.

Let p € (), —; F(T%). Then we have d(xp41,p) = d(Unzp,p) < d(zn,p) and hence
{d(zn,p)} is decreasing. It means that the real sequence {d(z,,p)} has the limit value
for any p € ﬂé\;l F(Ty).

We show lim,, o0 d(Tx2y,z,) = 0 for any k = 1,2,...,N. Let t € |0,1[. Using
Lemma, 3.2, we have

] =

<an cosd(xp, Upzy) + (1 — ap) B cos d(Txxn, Unxn)> cos d(Upxp, p)

1

B cos d(Typxn,p)

M= 7

Z Qpy, COS d(xnap) + (1 - an)

>
I

1
> cosd(zp, p)

and thus

cosd(xy,Dp)

N
(ii) U, €08 (T, Upp) + (1 — aup) kz::l Bk cos (T, Unn) 2 cos d(Up2n,p)’

From (ii), we obtain

cosd(xp,p)

oy cosd(xy, Upzy) + 1 — ay >

cosd(Upxy,p)

Since oy, > a, we get

cosd(xp, p)

—a(l — cosd(zy,Upxy)) +1>

cosd(Upxy,p)



and thus

cosd(zy,p)

1
1- d ny Ynin S —|(1- .
cosd(xzp, Upxy) - ( cosd(xn+1,p)> —0 (n— o)

Therefore we have lim,, o d(zy, Uyz,) = 0.
Moreover, from (ii), we get

cosd(xp,p)

B cos d(Tpxn, Upxy) >

E

n 1- n
ant(l—a )kzl cosd(Upxy,p)

and it implies that

__cosd(zn,p)
cosd(UpZn,p)

N
(1= an) Y B¥(1 = cosd(Tian, Unay)) < 1
k=1

Fix k € {1, 2, ..., N}. Then we obtain

cosd(xn,Dp)

(1 —ap)f*(1 — cosd(Tyy, Upzy)) < 1

~ cosd(Upzn,p)
and hence

cos d(zy,p)

1
1 —cosd(Txxn, Unty) < —r (1

=0 -ba )>—>O (n — o).

 cos d(Unpzp,p
Thus we have limy_, oo d(Txy, Upzy,) = 0 for any k = 1,2,..., N and hence we obtain
lim,, o d(Txzp,x,) =0 for any k=1,2,..., N.

Let zg € AC({z,}) and {z,,} a subsequence of {z,}, and let u € AC({zy,}). For
k=1,2,...,N, we get

limsup d(zp,,,u) < limsupd(x,,, Tru)
1—>00 1—>00
< lim sup (d(xnz ) Tkxnz) + d(Tkxn, ’ Tku))
1—>00
< limsupd(xy,,u)
1—+00
and thus limsup,_, . d(z,,,u) = limsup,_, . d(x,,, Tru). By the uniqueness of the
asymptotic center of {z,, }, we have u € ﬂé\;l F(T}). Then we obtain

limsupd(z,,zo) < lim d(z,,u) = lim d(z,,,u)
n—oo n—oo 1— 00

< limsupd(z,,,xo) < limsupd(z,,xo).

1—00 n—>00

Therefore we get limsup,,_, . d(zn,zo) = lim,, o0 d(zy, u). By the uniqueness of the
asymptotic center of {z, }, we have £y = u. From the definition of the A-convergence,
we get x, A To € ﬂfcvzl F(T}), which is the desired result. O
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Next, we consider the balanced mapping on complete CAT(—1) spaces. Let X be a
complete CAT(—1) space and {o*}_ a real sequence on [0, 1] satisfying Eé\;l ak =
1, and let {Tk}é\;l be mappings from X into itself. Then a mapping U: X — X

defined by
N

Ur = argminz o coshd(Tpx,y) (€ X)
yeX E—1

is well-defined as a single-valued mapping from the following Lemma 3.5. This map-
ping U is called a balanced mapping for {a*} and {T:} on a complete CAT(—1)
space.

Lemma 3.5. Let X be a complete CAT(—1) space and C' a nonempty closed convex
subset of X. For ui,uz,...,uy € X and ot,a?,... o € [0,1] with Zé\;l af =1,
define a function g: X — [1,00] by g(x) = Zé\;l o cosh d(ug, z) for allx € X. Then
g has a unique minimizer on C.

The above theorem can be proved in the same way as Lemma 3.1.
Definition 3.6 ([6]). Let X be a uniquely geodesic space. For each u,v € X and
t € 10,1], we put tu EDS (1 —t)v = argmin,c x (t coshd(u, x) + (1 — t) coshd(v, x)). If
u = v, then tu EIS (1 — t)v coincides with

1 tonh-! t sinh D " 1 tonh-L (1 —t)sinh D ;
D 1—t+tcoshD D t+(1—t)coshD /)"’

—1
where D = d(u,v). It obviously holds that tu & (1 —t)v =tu® (1 —t)v if u = v.
Lemma 3.7 ([6]). Let X be a CAT(—1) space and let z,y,z € X. Then

2 h 1-— h
coshd(ax @1 (1—a)y,2) < acoshd(z,z) + (1 — ) coshd(y, 2)
Va?+2a(1 - a)coshd(z,y) + (1 — a)?

holds for any « € [0, 1].

Lemma 3.8. Let X be a complete CAT(—1) space and {Ty}Y_, mappings from X
into itself. Let {a*}N_, C [0,1] such that ngvzl o =1 and let U be a balanced
mapping for {a*} and {Ty}. Then the following inequality holds for any x,z € X :

N N
Z a” cosh d(Tyx, Uz) coshd(Uz, z) < Z o cosh d(Tyz, 2).
k=1 k=1



Proof. Let t € ]0,1] and put D = d(Uz, z). By Lemma 3.7 we have

N

Z oF coshd(Tyx, Uz) Z of coshd(Tyz, tUz @ (1 —t)z)

k=1 k=1

o¥tcoshd(Tyx, Uz) 4+ o®(1 — t) cosh d(Tyx, 2)
V12 +2t(1 —t)cosh D + (1 —t)2 '

<

k=1

Thus we obtain

N
t
. Zak coshd(Tyz,Ux)
( V12 +2t(1 —t)cosh D + (1 — t)2> k=1

1—t
\/t2+2t (1 —t)cosh D + (1 —t)?

Za coshd(Tyx, z)

and it implies that

2t(1 —t)cosh D + (1 — t)?
t+ /12 +2t(1 —t)cosh D + (1 — )2 f

Z a” coshd(Tyx,Uz)

N
<(1-1%) Z o cosh d(Tyz, 2).
k=1

Dividing both sides by 1 — ¢ and letting ¢ — 1, we obtain the desired result. U

~1

The proof of above theorem used the different type of convex combination ¢, but
actually it can be proven by using ordinal convex combination. The reason we used
that convex combination is that it is simpler to calculate than the ordinal one.

Lemma 3.9. Let X be a complete CAT(—1) space and {Ty}Y_, quasinonezpansive
mappings from X into itself such that (\n_, F(Ty) * @. Let {o*}N_ € ]0,1[ such
that Zgzl o =1 and U: X — X a balanced mapping for {a*} and {T}}. Then
FU) = ﬂfcvzl F(Ty) holds, and U is also quasinonexpansive.

Proof. Let z € ﬂgzl F(Ty). Then we have
N N

Uz = argmin Z oF coshd(Tyz,y) = argmin Z o coshd(z,y) = =
veX =1 yeX =1

and thus F(U) D ﬂgzl F(Ty) holds.



We show F(U) C mszl F(Ty). Let z € F(U) and w € mszl F(Ty). By Lemma
3.8, we have

N N
Z o” cosh d(Tyz, 2) coshd(z, w) = Z o” cosh d(Tyz,Uz) cosh d(Uz, w)
k=1 k=1
N
Za coshd(Tyz,w) < coshd(z,w).
k=1
Hence we get ngvzl a¥ coshd(Tyz,z) <1 and it implies z € ﬂgzl F(Tg).

Finally we show the quasinonexpansiveness of U. Let z € X and z € F(U). Then
we have z € ﬂfcv:l F(Ty). From Lemma 3.8, we get

o cosh d(Tyx, Uz) coshd(Uz, 2)

E

coshd(Uz, z) <

k=1
N
< Zak coshd(Tyz,z) < coshd(z, z)
k=1
and it implies d(Ux, z) < d(z, z). Therefore we get the conclusion. O

Using above lemmas, we get the following result.

Theorem 3.10. Let X be a complete CAT(—1) space and {Tk}ff:l NONETPansive
mappings from X into itself such that ﬂgzl F(Ty) = &. Let {an}, {BE}Y_, C [a,b] C
10, 1] be real sequences such that Zgzl BF =1 for allm € N. Let 1 € X arbitrarily
and define a sequence {x,} C X by

N
Tp+1 = argmin <an coshd(z,,y) + (1 — an) Z BY cosh d(Ty,,, y)>
yeX k=1

for each n € N. Then {z,} A-converges to an element of ﬂé\;l F(Ty).

Proof. Define a mapping Uy, : X — X by U,r = argmin, ¢ x (an coshd(x,,y) + (1 —
an) Egzl B% cosh d(Tyxn,y)) for each € X and n € N. The well-definedness of the
mapping U, is guaranteed by Lemma 3.5. Then z,,+1 = U,z, holds for any n € N.
From Lemma 3.9, we have F(U,) = ﬂk | F(Ty) for all n € N, and we also get the
quasinonexpansiveness of U,.

Let p € (), —; F(T%). Then we have d(xn41,p) = d(Unzp,p) < d(zn,p) and hence
{d(zn,p)} is decreasing. It means that the real sequence {d(z,,p)} has the limit value

for any p € ﬂé\;l F(Ty).



We show lim,, o0 d(Tx2y,z,) = 0 for any k = 1,2,...,N. Let t € |0,1[. Using
Lemma, 3.8, we have

NE

B* cosh d(Tyxy, Unxn)> coshd(Uyx,, p)

(an coshd(xp, Upzy) + (1 — av)
1

< ay coshd(zy,p) + (1 —ay) Y B*coshd(Ta,, p)

NER

>
I

1
< coshd(z,,p)

and thus

hd(z,,
,Bkcoshd(Tkxn,Unxn)< coshd(zn, p)

(i) aycoshd(xy, Upzy) + (1 — ay) S coshdUnznp)’

-

From (iii), we obtain

N coshd(z,, p)
" = coshd(U,zpn,p)

oy, coshd(z,, Upx,) +1 —

Since «,, > a, we get

coshd(x,,p)
CL(COS (QZ‘ x ) ) + COSh d(Unajﬂnp)

and thus

1 hd(zy,
coshd(z,,Uyx,) — 1< = coshd(an, p)
coshd(xp41,p

" )—1>—>0 (n — 00).

Therefore we have lim,, o d(x,, Upzy,) = 0.
Moreover, from (iii), we get

cosh d(xy,,p)
coshd(Upxp, p)

N
an + (1 —ap) Z 5% cosh d(Tpxn, Upxy) <
k=1

and it implies that

coshd(z,,p)
cosh d(U,xp, p)

B¥(cosh d(Txpn, Upzyn) — 1) < —1.

M=

(1—an)

Fix k € {1, 2, ..., N}. Then we obtain

coshd(z,, p)

-1
cosh d(U,xp, p)

(1-— an)ﬁk(cosh d(Txxy,Upxy) — 1) <
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and hence

1 hd(z,,
coshd(Txzy, Upz,) — 1 < ( cosh d(wn, p)

= (1—b)a \coshd(Upzn,p) 1) -0 (n— o00).

Thus we have limy_, oo d(T 2y, Upzy,) = 0 for any k = 1,2,..., N and hence we obtain
lim,, o d(Txzp,x,) =0 for any k =1,2,...,N.

Let zg € AC({z,}) and {z,,} a subsequence of {z,}, and let u € AC({z,,}). For
k=1,2,...,N, we get

limsup d(zy,,u) < limsupd(z,,, Tru)
1—+00 1—00
< lim sup (d(xnz ) Tkxnz) + d(Tkxn, ’ Tku))
1—>00
< limsupd(xy,,u)
1—+00
and thus limsup,_, . d(z,,,u) = limsup,_, . d(x,,, Txu). By the uniqueness of the
asymptotic center of {z,, }, we have u € ﬂfcv:l F(Ty). Then we obtain

limsup d(z,,zo) < lim d(z,,u) = lim d(z,,,u)
n—oo n—oo 1— 00

< limsup d(x,,,xo) < limsupd(z,,xo).
1—>00 n—00
Therefore we get limsup,,_, . d(zn,zo) = lim,, o0 d(z,,u). By the uniqueness of the
asymptotic center of {x, }, we have £y = u. From the definition of the A-convergence,
we get T, A€ ﬂé\;l F(Ty), which is the desired result. O

Theorem 3.4 is a convergence theorem on admissible complete CAT(1) spaces, and
it targets at nonexpamsive mappings. Since we have not found many examples of
nonexpansive mappings in CAT(1) spaces, we consider Theorem 3.4 to be less useful.
On the other hand, there exists many examples of nonexpansive mappings in CAT(—1)
space and thus we consider Theorem 3.10 to be useful.
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