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ABSTRACT. In this note, we survey rigidity of hyperbolic cone structures and
give an example of degeneration with decreasing cone angles. This example is
constructed by gluing four copies of a certain polyhedron. We can explicitly
describe the isometry types of such hyperbolic polyhedra. Furthermore, we
introduce a generalization of cone structure to avoid intersection of cone loci.

1. INTRODUCTION

The Mostow—Prasad rigidity [15, 16] implies that the isometry type of a finite
volume hyperbolic 3-manifold is uniquely determined by its topology. Hence there
is no deformation of (complete) finite volume hyperbolic structures on a 3-manifold.
Nevertheless, we can obtain deformation via hyperbolic cone structures by allowing
cone-type singularities. Deformation via cone structures has two major applica-
tions: Dehn fillings [8] and geometrization of orbifolds [2, 3, €].

Related to the uniqueness of deformation via cone structures, there are two no-
tions: local and global rigidity. Local rigidity asserts that the deformation space
is locally parametrized by cone angles. Global rigidity asserts uniqueness for fixed
cone angles. Local rigidity for finite volume cone structures holds if the cone an-
gles are at most 27 [7]. On the other hand, global rigidity for finite volume cone
structures is known to hold only when the cone angles at most 7 [10].

Small deformation of cone structures is possible by local rigidity, Sometimes,
however, there are degenerations, in which continuous deformation cannot be ex-
tended. The following types of degeneration are known:

(1) collapsing (where the volumes decrease to zero),
(2) appearance of an essential Euclidean sub-cone-surface, and
(3) intersection of cone loci.

The first and second types do not occur if the cone angles decrease. Kojima [10]
showed that the third type does not occur if the cone angles are less than 7. One
might expect that cone structures do not degenerate if the cone angles decrease.
However, this conjecture fails in an example by the author [21]. Cone loci may
intersect even if the cone angles decrease.

Such degeneration is likely to be ordinary, but explicit construction is hard in
general. In our single example, we construct cone structures by gluing four copies
of a certain polyhedron. Then we are reduced to considering isometry types of such
polyhedra.

Furthermore, we introduce the notion of holed cone structures. The author is
preparing a paper for a detailed account [20]. The construction of our example
is naturally extended to holed cone structures. Then we can avoid intersection of
cone loci.
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2. RIGIDITY OF HYPERBOLIC CONE STRUCTURES

In this section, we survey rigidity of hyperbolic cone structures on a 3-manifold.
Let X be a 3-manifold, and let ¥ be a link in X. Let ¥i,...,>, denote the
components of ¥. Suppose that X \ ¥ admits an incomplete hyperbolic structure,
and the completed metric has the form

dr? + sinh? rd6? + cosh? rdz>

in cylindrical coordinates around each component ¥; for 1 < i < n, where r is
the distance from the singular locus, z is the distance along the singular locus,
and 6 is the angle measured modulo ¢; > 0. Then the metric on (X,¥) is called
a (hyperbolic) cone structure. More precisely, an equivalence class of such cone
metrics by isometries isotopic to the identity is a cone structure. The angle 6; is
called the cone angle at the cone locus ¥;. In our definition, the cone loci consist
of disjoint closed geodesics.

If 0; = 27, the metric around ¥; is smooth. By generalizing the notion, 6; = 0
means that ¥; is a cusp. If §; = 27 /n; for n; € N, the metric space (X,¥) can be
regarded as a hyperbolic orbifold.

From now on, fix a pair (X,¥). Let Cjga = Cjo,q)(X,3) denote the set of
cone structures on (X, ) such that the cone angles are at most «. We usually
consider Cjg25). The set Cjg o) admits the pointed Gromov-Hausdorff topology,
which is induced by the geometric convergence of metric spaces. The continuous
map O: Cjg o] — [0, ] is defined by ©(g) = (1, ...,0,), where 6; is the cone angle
at ¥; in the cone-manifold (X,Y;g).

Suppose that the cone structures on (X, Y) have finite volume. In practice, it is
sufficient to suppose only that X \ 3 admits a cusped hyperbolic structure of finite
volume. Then local and global rigidity for cone structures are known as follows.

Theorem 2.1 (The local rigidity by Hodgson and Kerckhoff [7]). The space Cip 2x]
is Hausdorff, and the map ©: Cjg o) — [0,27]"™ is a local homeomorphism. In other
words, the space Cig 2x) s locally parametrized by the cone angles.

This result is induced from the infinitesimal rigidity of cone structures, which
extends the local rigidity theory of Weil [17] by using Hodge theory. Infinitesimal
deformations preserving cone angles are represented by L?-harmonic forms, which
are finally shown to vanish. The possibility of local deformation follows from a cal-
culation of the dimension of representation space. This result cannot be generalized
to the case that cone angles exceed 2m. Izmestiev [9] constructed infinitesimally
flexible hyperbolic cone-manifolds with cone angles more than 2.

Theorem 2.2 (The global rigidity by Kojima [10]). The map ©: Cjg - — [0, 7]"
is injective. In other words, the cone structure is determined by the cone angles if
the cone angles do not exceed 7.

Global rigidity is not known when cone angles exceed 7. Let gg be an element
in Cpg,x) such that ©(go) = (0,...,0). The cusped hyperbolic structure go is unique
for (X,¥) by the Mostow—Prasad rigidity [15, 16]. Theorem 2.2 follows from this
fact and Theorems 2.1 and 2.3. Cone structures are uniquely deformed from gg to
g € Cjo,x) With respect to a fixed path of increasing cone angles.

Theorem 2.3 ([10]). Let g € Cjo . Suppose that ©(g) = (61,...,0,) € [0,7]".
Then there is A C Cion such that g € A and O|4: A — [0,61] x --- x [0,6,]
is a homeomorphism. In other words, we can obtain a continuous family of cone
structures from g to go by arbitrarily decreasing cone angles.

A continuous degenerating family of cone structures is a continuous map
v:[0,1) = Cjo,2+] such that lim;,; ©(y(t)) € [0,27]" but () does not converge
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in Cjo,2n) as t — 1. Theorem 2.3 implies that there is no continuous degenerating
family of cone structures with decreasing cone angles if the cone angles are at most
w. However, Theorem 3.1 implies that Theorem 2.3 cannot be generalized for cone
angles less than 27.

Similar results are known for 3-dimensional hyperbolic cone-manifolds with ver-
tices. Local rigidity for cone angles less than 27 was proved by Mazzeo and Mont-
couquiol [13], and independently Weiss [19]. Global rigidity for cone angles at most
m was proved by Weiss [18]. The methods in the proofs are similar to [7, 10].

A few results are also known for 3-dimensional hyperbolic cone-manifolds of
infinite volume. In this case, similarly to hyperbolic 3-manifolds without cone
singularity, there is deformation preserving the cone angles. Nevertheless, one may
expect that the cone angles and the end invariants determine the isometric type.

Local rigidity for geometrically finite cone-manifolds means that the deformation
space is locally parametrized by the conformal invariant at infinity and the cone
angles. In the case that there are no rank-one cusps, this local rigidity was proved
by Bromberg [4].

It is possible to consider the case that cone loci are open. Global rigidity for
quasi-Fuchsian cone-manifolds with cone angles less than m was proved by Lecuire
and Schlenker [12], using quite a different argument from the above results. This is
an analog of Bers’ simultaneous uniformization theorem. Local rigidity for quasi-
Fuchsian cone-manifolds are proved only when the cone angles are less than m by
Moroianu and Schlenker [14].

3. AN ALTERNATING LINK IN THE THICKENED TORUS

We consider a link L = L;U---ULy C T? x I as indicated in the left of Figure 1,
where I is an open interval. (A fundamental domain of T2 x I is drawn.) Let
C = Cio,2x] = Cjo,27] (T? x I, L) denote the space of cone structures on (72 x I, L),
where the components of T2 x I keep to be two cusps. Note that any of the cone

angles cannot be equal to 2. The map ©: C — [0, 27)* assigns the cone angles at
L;.

Theorem 3.1. There is a continuous degenerating family of cone structures on
(T? x I, L) with decreasing cone angles. In this degeneration, two of the cone loci
L intersect transversally. Two simultaneous intersections may occur.

e Ly
. s . ,
Lz\ ) L

L3

IR

............................

FIGURE 1. Decomposition of (72 x I, L) into trapezohedra

The space (T? x I, L) is topologically decomposed into four (tetragonal) trape-
zohedra as indicated in Figure 1. The four trapezohedra correspond to the comple-
mentary regions of the diagram of L in T2.
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FIGURE 2. Gluing four copies of a trapezohedron

Conversely, we can construct a cone structure on (T2 x I, L) by gluing four copies
of a hyperbolic trapezohedra with right dihedral angles except at L; as indicated
in Figure 2. This construction can be called “double of double”. Let Cgyr, denote
the set of cone structures obtained by this construction. A cone structure in Coym
is symmetric with respect to an action by Z/27 x Z/27Z on (T? x I, L).

The two ideal vertices disjoint from L; correspond to the components of T2 x 1.
The edge f)i corresponds to the cone locus L;. If the dihedral angle at f)i is equal to
«;, the cone angle at L; is equal to 2a;. We remark that ﬁz degenerates to an ideal
vertex if a; = 0. We use the term “trapezohedron” also for such a degenerated
polyhedron.

The local rigidity implies that the set Csyy is the union of components of C. In
fact, the space Csym is connected. Though we have no proof, it is very likely that
Csym = C. Otherwise the global rigidity for C fails.

The above argument for gy € C with O(g9) = 0 induces a decomposition of
T? x I'\ L into four regular ideal octahedra. This decomposition was given in [1, 5],
and the “double of double” construction was described in detail in [11].

4. DIHEDRAL ANGLES OF A TETRAGONAL TRAPEZOHEDRON

By the construction in Section 3, we are reduced to consider hyperbolic trapezo-
hedra (possibly L; degenerates to an ideal vertex) with right dihedral angles except
at L;. Let A denote the image of the map %@: Csym — [0,7)%. In other words,
(a1,...,04) € Aif and only if there exists a trapezohedron with dihedral angles «;
at L; and /2 at the other edges in the hyperbolic space. We explicitly describe A.
From now on, the indices i = 1, ..., 4 are regarded modulo 4. See [21] for details.

Theorem 4.1. The map %@: Csym — A is a homeomorphism. In particular, the
isometry class of a hyperbolic trapezohedron is determined by the element of A.

Theorem 4.1 is non-trivial because we do not know whether the global rigidity
holds in general.



Theorem 4.2. For 1 <i <4, let a function ®; be defined by
®i(c1, ..., ca) = cicipr(cicipr + 1)ciyaciys — cicivr(ci + cip1)(Civa + Ciys)
+ (ci + cip1)? — cicipr — 1.

Let OA denote the frontier of A in [0,7)*. Then the set A consists of the elements
(a1,...,a4) € [0,7)* satisfying ®;(cosay,...,cosay) < 0 or cosa; + cosa;yq > 0
for any i. Moreover, it holds that 0.A =, 0; A, where

0iA={(a1,...,a4) €[0,m)* | ®;(cosay,...,cosay) =0, cosa; + cosai <0,

cos a; < COS Wy, COSQ;+1 < COSQ;t3}.
As (aa,...,aq) € A approaches to 0;A, the edge between L; and f/i+1 degenerates.

Theorem 4.2 enables us to see the shape of A more explicitly.
A #[0,m)%
The space A is connected.
(o, By, B) € A for any a, § € [0, ).
AN D2 A=10.
0; AN ;41 A # (0. This corresponds to a degeneration in Cgyp in which two
intersections of cone loci occur.
[0, arccos(1 — v/2))* C A.
e (arccos(1 — /2),arccos(1 — v/2),0,0) ¢ A.

Theorem 3.1 follows from Theorem 4.2. For instance, (27/3,...,27/3) € A and
(27/3,27/3,0,0) ¢ A. The edge between L; and Lo degenerates while decreas-
ing cone angles from (27/3,...,27/3) to (27/3,27/3,0,0). This corresponds to a
degeneration of cone structures in Coyr .

We sketch an outline of the proof. Let us consider a hyperbolic trapezohedron
T whose dihedral angles are «; at L; and /2 at the other edges. We use the
upper half-space model of hyperbolic 3-space. Regard OH® = R? U {cc}. The
trapezohedron T has two ideal vertices disjoint from L;. We set them at oo and
O = (0,0). We project T to R? C OH? as indicated in Figure 3.

We consider the following points and circles:

131- and Qvl are the end points of the edge éz B

P; and @; are respectively the images of P; and (); by the projection.
The circle C; is the boundary of the geodesic plane containing OQ;_1 P;Q;.
R; is the center of C;.

S; is the intersectional point of C; and C;; 1 other than O.

e o o o o

e o o o o

The dihedral angles a; are indicated in Figure 4. The point @Q; is the intersection
of the segments OS; and P; P; ;. Since the other dihedral angles are equal to 7, we
may assume that

Py = (p1,p2), P» = (—p3,p2), Ps = (—=p3, —pa), P+ = (p1, —p4),
Ry = (p1,tp1), R2 = (—tp2,p2), Ry = (—ps3, —tps), Ry = (tpa, —pa),

for p; > 0 and ¢ > 0. Let ¢; = pH_l. Since a positive constant multiple on R?
i

extends an isometry of H?3, an isometry type of T' determines ¢; and t. Moreover,

g —t

Vit

Conversely, we can construct the above points by ¢; > 0 and ¢t > 0. Then the
condition for the projection of a trapezohedron is as follows:

we have cosa; =

e The segments OS; and P, P;;; intersect, and
e their intersection @Q); is distinct from P;41.
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FIGURE 3. Projection of a trapezohedron
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FIGURE 4. Image of the projection




This is equivalent to the following inequalities for each i:

1 —1

t25(%‘—ql )y (1 —qiqis1)t < ¢i + i

The latter inequality concerns degeneration. If Q; = P;y1, the edge between L;
and L,y degenerates, which corresponds to intersection of L; and L,y in T? x I.
Let
! 1
B = {(qlv" '7q4at) € R4>O X RZO | qu = 17 t 2 5(% - qz_l)}a
i=1
Bo={(q,-..,q4,t) € B| (1 = qiqi+1)t < @i + qit1}

Define f: B — R* by

flar, ..., qq,t) = (ji +;,..., \;]411 +;> = (cosayq,...,cosay).
Then f is a homeomorphism onto (—1,1]*. Moreover, we have f(By) = cos(A),
where cos(aq,...,a4) = (cosaq,...,cosay). Theorems 4.1 and 4.2 follow from this
description. In particular, By # B implies that A # [0, 7)*.

The fact that (a,...,a) € A for any a € [0,7) is elementarily shown in the left
of Figure 5. A degeneration is shown in the right of Figure 5.

s,

FiGURE 5. Examples of projections

5. HOLED CONE STRUCTURES

We introduce holed cone structures on a 3-manifold as a generalization of cone
structures. This enables to avoid intersection of cone loci in deformation, and
extend the deformation space. The author is preparing a paper for a detailed
account [20].

Definition 5.1. Let X be a 3-manifold, and let L be a link in X. Let B be union
of finitely many (possibly empty) disjoint closed 3-balls in X \ . A (hyperbolic)
holed cone metric on (X,X) is a (hyperbolic) cone metric on (X \ int(B),X) with
smooth boundary 0B. We call each component of B a hole.
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Definition 5.2. Let g and ¢’ be (hyperbolic) holed cone metrics on (X, X) respec-
tively with holes B and B’. The metrics g and ¢’ are equivalent if there are holed
cone metrics g; with holes B; on (X, ) for 0 < i < n such that go = ¢, gn = ¢,
and for each 0 < i <n — 1 either

e there is a map f: (X,X) — (X, X) isotopic to the identity (preserving )
such that the restriction of f to (X \ int(B;),%;¢;) is an isometry onto
(X \int(Bit1), %5 git1),
e B; C B;y1, and g;11 is the restriction of g; to X \ int(B;41), or
e Bii1 C By, and g; is the restriction of g;11 to X \ int(B;).
We call an equivalent class a (hyperbolic) holed cone structure. Let HC(X, ) denote
the set of holed cone structures on (X,¥). The deformation space HC(X,Y) is
endowed with the quotient topology induced from C°°-topology of metrics.

For a holed cone structure, the holonomy representation of 7y (X \ ) to Isom(H?)
is well-defined.

Our example can be extended to holed cone structures. We construct a holed
cone structure on (T2 x I, L) by gluing four copies of a “holed trapezohedra” in
the same manner as in Section 3. Here a holed trapezohedron is the complement
of holes in a trapezohedron endowed with a hyperbolic metric such that each face
is totally geodesic. This is isometrically immersed in H? as indicated in Figure 6.
We suppose that the holes do not intersect L;.

The construction in Section 4 is naturally extended to holed trapezohedra (see
Figure 7). As a result, every element in B corresponds to a holed trapezohedron.
Hence every quadruple in [0, 27)? is realized as cone angles of a holed cone structure
on (T?x1I,L). Let HCsym (T?x I, L) denote the set of holed cone structures obtained
by this construction. Then ©: HCoym(T? x I, L) — [0,27)* is a homeomorphism.

We do not know whether HCyym (T% % I, L) is a component of HC(T x I, L). This
question concerns local rigidity for holed cone structures. It is doubtful whether
local rigidity holds for all the holed cone structures with cone angles at most 2.
However, we may have a chance if we restrict the shape of holes. Deformation via
holed cone structures may be effective to consider global rigidity for cone structures.

FIGURE 6. A holed trapezohedron
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