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This article is a résumé of the paper [6] developed from the research an-
nouncement [5]. In the paper, we introduced the concept of a homotopy motion
of a subset in a manifold and gave a systematic study of homotopy motions of
surfaces in closed oriented 3-manifolds. This notion arises from various natural
problems in 3-manifold theory such as domination of manifold pairs, homo-
topical behavior of simple loops on a Heegaard surface, and monodromies of
virtual branched covering surface bundles associated to a Heegaard splitting
(see [6, Section 0.2]).

1. THE HOMOTOPY MOTION GROUPS

A homotopy motion of a subspace X in a manifold M is a homotopy F =
{fi}ter + ¥ x I — M, such that the initial end f; is the inclusion map j :
> — M and the terminal end f; is an embedding with image X, where f; :
Y — M (t € I = [0,1]) is the continuous map from ¥ to M defined by
fi(x) = F(z,t). Roughly speaking, the homotopy motion group II(M,X) is
the group of equivalence classes of homotopy motions of ¥ in M, where the
product is defined by concatenation of homotopies.

Example 1.1. Let ¢ be an element of the mapping class group MCG(X) of
Y. Counsider the 3-manifold M = ¥ x R/(z,t) ~ (p(x),t + 1), which is the
Y-bundle over S with monodromy . We denote the image of ¥ x {0} in
M by the same symbol > and call it a fiber surface. Then we have a natural
homotopy motion A = {f;} of ¥ in M defined by fi(z) = [z,t], where [z,t] is
the element of M represented by (x,t) (see Figure 1(i)). Its terminal end is
equal to ¢!, because fi(x) = [z,1] = [¢ 1(x),0] = ¢ ().

Example 1.2. Let h be an orientation-reversing free involution of a closed, ori-
entable surface ¥. Consider the 3-manifold N := ¥ x[0,1]/(z,t) ~ (h(x),1-t),
which is the orientable twisted /-bundle over the closed, non-orientable sur-

face %/h. The boundary ON is identified with X by the homeomorphism
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F1GURE 1. (i) The homotopy motion A. (ii) The homotopy motion u.

Y — ON mapping z to [z,0], where [z,t] denotes the element of N repre-
sented by (x,t). Then we have a natural homotopy motion u = {f; }es of
Y = ON in N, defined by f;(z) = [z,t]. Its terminal end is equal to h, be-
cause fi(xz) = [z,1] = [h(z),0] = h(z) for every z € ¥ = IN. Let N’ be
any compact, orientable 3-manifold whose boundary is identified with ¥, i.e.,
a homeomorphism N’ = ¥ is fixed, and let M = N U N’ be the closed,
orientable 3-manifold obtained by gluing N and N’ along the common bound-
ary 3. Then the homotopy motion p = {f;}e; of ¥ in N defined as above
can be regarded as that of ¥ in M (see Figure 1(ii)). If N’ is also a twisted
I-bundle associated with an orientation-reversing involution A’ of 3, then we
have another homotopy motion g’ of ¥ in N’ with terminal end A’.

We now describe key examples that arise from open book decompositions.
Recall that an open book decomposition of a closed, orientable 3-manifold M
is defined to be the pair (L, n), where

(1) L is a (fibered) link in M; and
(2) m: M — L — S'is a fibration such that 7'(6) is the interior of a
Seifert surface ¥y of L for each 6§ € S*.

We call L the binding and ¥y a page of the open book decomposition (L, ).
The monodromy of the fibration 7 is called the monodromy of (L, ). We think
of the monodromy ¢ of (L, 7) as an element of MCG(X, rel 9%), the mapping
class group of ¥, relative to 9%, i.e., the group of self-homeomorphisms of
Yo that fix 0%y, modulo isotopy fixing 0%y. The pair (M, L), as well as the
projection 7, is then recovered from 3y and ¢. Indeed, we have

(Ma L) = (20 X Ra 820 X R)/ ™~
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where ~ is defined by (z,s) ~ (¢(x),s +1) for x € ¥y and s € R, and
(y,0) ~ (y, s) for y € 0¥y and any s € R. So, we occasionally denote the open
book decomposition (L,7) by (3o, ). Under this identification, the Seifert
surface Y is identified with the image ¥ x {0}. We define an R-action {r;},cr
on M, called a book rotation, by r¢([z, s]) = [x,s + t], where [z, s] denotes the
element of M represented by (z, s).

Given an open book decomposition (L,7) of M, we obtain a Heegaard
splitting M = V; Us V5, where

Vi =cl(x1([0,1/2])) = 7 ([0,1/2]) U L = Up<p<1/230,

Vo =cl(m 1 ([1/2,1])) = 7 ([1/2,1]) U L = Uy jo<9<1 S,
E — 20 U 21/2.

We call this the Heegaard splitting of M induced from the open book decom-
position (L, 7).

Example 1.3. Under the above setting, we define two particular homotopy
motions in M. The first one, p = prx) = P(so,e), is defined by restricting
the book rotation, with time parameter rescaled by the factor 1/2, to the
Heegaard surface X, namely p(t) = 74/2|s, see Figure 2. The second one,
0 = 0(Lx) = O(sy,), 15 defined by

 orx) (x € Xp)
a@)(x)_{x e

see Figure 3. We call p and o, respectively, the half book rotation and the
unilateral book rotation associated with the open book decomposition (L, )

(or (2o, p)).

L fo(zo> w

FIGURE 2. The homotopy motion p = {f; }er.

We now give a formal definition of homotopy motion groups. Let ¥ be a

subspace of a manifold M, and j : ¥ — M the inclusion map. Let C'(X2, M) be
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FIGURE 3. The homotopy motion o = {g; }te;-

the space of continuous maps from Y to M with the compact-open topology,
and J(X, M) the subspace of C'(3, M) consisting of embeddings of ¥ into M
with image j(X). We call a path

a: (1,{1},{0}) = (C(2, M), J(Z, M), {j})

a homotopy motion of ¥ in M. We call the maps «(0) and (1) from ¥ to
M the initial end and the terminal end, respectively, of the homotopy motion.
Two homotopy motions (I,{1},{0}) — (C(X, M), J(X,M),{j}) are said to
be equivalent if they are homotopic via a homotopy through maps of the same
form. We define

(M, Y) :=m(C(E,M), J(E,M),j)

to be the set of equivalence classes of homotopy motions, as usual in the
definition of relative homotopy groups m,(X, 4, z¢) for zo € A C X, where
X is a topological space. We equip II(M,Y) with a group structure as in the
following way. Let a and  be homotopy motions. Then the concatenation

of them is defined by

o2t 0<t<1/2
a-B(t) = { ﬁE2t)— 1) o (1) E1/2 <t 3/1%.

We can easily check that the concatenation naturally induces a product of
elements of m (C(X, M), J(X,M)). The identity motion e : (I,{1},{0}) —
(C(E,M),J(X,M),{j}) defined by e(t) = j (t € I) represents the identity
element of IT1(M,Y). The inverse & of a homotopy motion « is defined by

at) =a(l —4 t)oa(1)t,



where we regard «(1) as a self-homeomorphism of ¥, and a(1)™! denotes its
inverse. Then the inverse of [a] in the group m(C(X, M), J(X, M)) is given
by [&].

Definition 1.4. We call the group II(M, X) the homotopy motion group of
in M.

Since the inclusion map j is nothing but the identity if we think of the
codomain of j as ¥, J(X, M) can be canonically identified with Homeo(X).
Thus, the terminal end «(1) = f; of a homotopy motion a = {f;};c; can be
regarded as an element of Homeo(3). Therefore, we obtain a map

0, : II(M, %) - MCG(X)
by taking the equivalence class of a homotopy motion « = {fi}ies to the
mapping class of a(1) = f; € Homeo(X). Here MCG(X) = mo(Homeo(X)) is
the mapping class group of 3. Clearly, this map is a homomorphism. (To be
precise, this holds when we think of Homeo(X) as acting on X from the right:

under the usual convention where Homeo(X) acts on X from the left, which
we employ in this paper, the map d, is actually an anti-homomorphism.)

Definition 1.5. We denote the image of 0, by I'(M, ¥). Namely, I'(M, ) is
the subgroup of the mapping class group MCG(3) defined by
I'(M,%) ={[f] € MCG(X) | 3 homotopy motion {f;};s such that f = f;.}
={[f] e MCG(X) | jo f: %X — M is homotopic to j : ¥ — M.}.

The kernel of 0, is denoted by K (M, X): thus we have the following sequence.
1 —— K(M,S) —TI(M, %) = T(M,3) — 1

For an element [ of C(M, X)), we may choose its representative a so that
a(1) = j. Then « induces a continuous map & : ¥ x S' — M that sends
(x,t) € X x St to a(t)(z) = a(z,t), where we identify S* with R/Z. Then we
can construct two homomorphisms deg and ® defined on (M, ) as follows.
(See [6, Section 2] for well-definedness.)

Definition 1.6. (1) We denote by deg : K(M,X) — Z the homomorphism
defined by
deg([a]) = deg(a : ¥ x ST — M).
We call deg([a]) the degree of the element [a] € (M, X).
(2) Suppose the genus g(X) > 2. We denote by ® the homomorphism

D : IC(M’ E) — Z(j*(ﬂ-l(zaxo))?ﬂ-l(M’ xo))> (I)([Oé]) = [u]>
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where u : (I,0I) — (M, {xo}), u(t) = a(t)(xq). Here Z(j.(m1 (%, x0)), m1 (M, x0))
denotes the centralizer of j, (w1 (3, xg)) in m (M, xo).

The homomorphism deg : K(M,¥) — Z does not vanish if and only if
(M,X) is dominated by ¥ x S*, namely, there exists a map ¢ : 3 x ST — M
such that ¢|syo) is an embedding with image ¥ C M and that the degree of
¢ is non-zero.

2. THE HOMOTOPY MOTION GROUPS OF SURFACES IN 3-MANIFOLDS -
TWO EXTREME CASES -

In this section, we describe the homotopy motion groups I'(M, X) of surfaces
in 3-manifolds for the two extreme cases: the case where ¥ is incompressible
and the case where X is homotopically trivial in the sense that the inclusion
map j : % — M is homotopic to a constant map.

Theorem 2.1. Let M be a closed, orientable Haken manifold, and suppose
that X 1s a closed, orientable, incompressible surface in M. Then the following
hold.

(1) If M is a Z-bundle over S* with monodromy ¢ and ¥ is a fiber surface,
then TI(M, %) is the infinite cyclic group generated by the homotopy
motion \ described in Example 1.1.

(2) If & separates M into two submanifolds, My and M,, precisely one of
which is a twisted I-bundle, then II(M,3) is the order-2 cyclic group
generated by the homotopy motion u described in Example 1.2.

(3) If ¥ separates M into two submanifolds, My and My, both of which are
twisted I-bundles, then TI(M,X) is the infinite dihedral group generated
by the homotopy motions p and [’ described in Example 1.2.

(4) Otherwise, II(M,X) is the trivial group.

This theorem is proved by using the positive solution of Simon’s conjecture
[13] concerning manifold compactifications of covering spaces, with finitely
generated fundamental groups, of compact 3-manifolds. A proof of Simon’s
conjecture can be found in Canary’s expository article [3, Theorem 9.2], where
he attributes it to Long and Reid.

Theorem 2.2. Let ¥ be a closed, orientable surface embedded in a closed,
orientable 3-manifold M. Then the following hold.
(1) If ¥ is homotopically trivial and if M is aspherical, then I1(M,3) =
m (M) x MCG(X). To be more precise, I'(M,%¥) = MCG(X), and
K(M, ) is identified with the factor m (M). Moreover, the homomor-
phism deg : K(M,X) — Z vanishes.
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(2) Conversely, if I'(M,¥) = MCG(X) and if M is irreducible, then Y is
homotopically trivial.

3. THE HOMOTOPY MOTION GROUPS OF HEEGAARD SURFACES CLOSED
ORIENTABLE 3-MANIFOLDS

In this section, we study the homotopy motion groups of Heegaard surfaces
of 3-manifolds. Throughout this section, M = V; Usx, V5 denotes a Heegaard
splitting of a closed, orientable 3-manifold.

3.1. The group K(M,X) for Heegaard surfaces of closed orientable 3-manifolds

For irreducible 3-manifolds, we obtain the following complete determination
of the group (M, %).

Theorem 3.1. Let M be a closed, orientable, irreducible 3-manifold and ¥ a
Heegaard surface of M.

(1) Suppose that M is aspherical. Then (M,Y.) is not dominated by ¥ x S*.
To be precise,  gives an isomorphism (M, %) = Z(m(M)), and the
homomorphism deg : K(M,%) — 7Z vanishes. Thus if M is a Seifert
fibered space with orientable base orbifold, then KC(M,Y) is isomorphic
to Z3 or Z according to whether M is the 3-torus T or not; otherwise,
IKC(M, %) is the trivial group.

(2) Suppose that M is non-aspherical, namely M has the geometry of S®.
Then (M, ) is dominated by X x S*. To be precise, the following holds.

(i) If g(¥) > 2, then the product homomorphism ® x deg induces an
isomorphism IC(M, %) = Z(m (M) x |m(M)] - Z.

(i) If g(X) < 1, then the homomorphism deg induces an isomorphism
K(M, %) 2| (M)|-Z.

For 3-manifolds which are not necessarily irreducible, we obtain the following
partial result.

Theorem 3.2. Let M be a closed, orientable 3-manifold and ¥ a Heegaard
surface of M.

(1) If M contains an aspherical prime summand, then (M,Y) is not dom-
inated by ¥ x St.
(2) If M = #,(S? x SY) for some g > 1, then (M,X) is dominated by
¥ x St To be precise, deg(K(M, X)) = Z.
(3) If M = RP°#RP?, then (M,Y) is dominated by ¥ x S*. To be precise,
deg(KC(M, X)) = 2Z.
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By the geometrization theorem established by Perelman, we obtain the fol-
lowing corollary.

Corollary 3.3. Let M be a closed, orientable, 3-manifold which is either prime
or geometric, and let 3 a Heegaard surface of M. Then (M,%) is dominated
by 3 x St if and only if M is non-aspherical, namely M admits the geometry
of S or S% x R.

We remark that Theorems 3.1 and 3.2 are intimately related with the result
of Kotschick-Neofytidis [7, Theorem 1], which says that a closed, orientable
3-manifold M is dominated by a product ¥ x S* for some closed, orientable
surface Y if and only if M is finitely covered by either a product F x S*, for
some aspherical surface F, or a connected sum #,(S* x S*) for some non-
negative integer g.

3.2. Gap between I'(M, X) and its natural subgroup (I'(V1),'(V2))

For a Heegaard splitting M = V;Ug Vs, let T'(V;) be the kernel of the homomor-
phism MCG(V;) — Out(m1(V;)) (i = 1,2). Since MCG(V}) is regarded as a sub-
group of MCG(X), the group I'(V;) is regarded as a subgroup of MCG(X). In [4,
Question 5.4], Minsky raised a question concerning the subgroup (I'(V4), I'(V2))
generated by I'(V;) and I'(V3). The corresponding question for 2-bridge spheres
for 2-bridge links were completely solved by Lee-Sakuma [9, 11], and applied
the study of epimorphisms among 2-bridge knot groups [1, Theorem 8.1]) and
variations of McShane’s identity [10] (see [8] for summary).

Now observe that the group (I'(V;), I'(V2)) is contained in the group I'( M, X2).
The above results show that it is more natural to work with the group I'(M, X)
for [4, Question 5.4], and the following questions naturally arise.

Question 3.4. (1) When is the group (I'(V}),I'(V2)) equal to I'(M, X)?
(2) When is the group (I'(V}), I'(V2)) equal to the free product I'(V;)«'(V3)?

A partial answer to the second question was given by Bowditch-Ohshika-
Sakuma in [12, Theorem B] (cf. Bestvina-Fujiwara [2, Section 3|), which says
that if the Hempel distance is large enough, then the orientation-preserving
subgroup (I't(V1),T1(V,)) is equal to the free product T'F(Vy) « I'F(13). A
main purpose of [6] is to give the following partial answer to Question 3.4(1).

Theorem 3.5. Let M = Vi Uy V5 be a Heegaard splitting of a closed, ori-
entable 3-manifold M induced from an open book decomposition. If M has an

aspherical prime summmand, then we have (I'(Vy),T(V3)) < T(M, X).
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In fact, it is proved that neither the half book rotation p nor the unilateral
book rotation o, defined in Example 1.3, is not contained in (I'(V}),T'(V5)).
This theorem is proved by using a Z?-valued invariant for elements of I'(M, X),
which in turn is constructed by using Theorem 3.1.

(1]

(10]
(11]
(12]

(13]
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