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1. INTRODUCTION

The article is a summary of [12]. Let R be a quiver Hecke algebra associated with a simple Lie
algebra g and R-gmod the category of finite-dimensional graded R-modules. We set K (R-gmod) to
be the Grothendieck ring of R-gmod. It is well-known that the unipotent quantum coordinate ring
A, () is categorified by K'(R-gmod). The basic theory of localization for the monoidal category
ﬁ-gmod of R-gmod is initiated by [5] and its Grothendieck ring 'K(ﬁ—gmod) defines the localized
(unipotent) quantum coordinate ring @ﬁ). In [11], Lauda-Vazirani defined certain crystal structure
on the family of simple modules of R-gmod and they have shown that this crystal is isomorphic to
the crystal B(co) of the nilpotent half of U,(g). In this article, considering the family of self-dual
simple module B(ﬁ-gmod) of the localized category ﬁ—gmod, we define a crystal structure of f[ﬁ)
and show that it is isomorphic to the cellular crystal B;, which is defined to a reduced word for
the longest Weyl group element wy. This result can be seen as a localized version of the result by
Lauda-Vazirani.

2. PRELIMINARIES

Letg = n®t®n. = (e;h; fidier=112,-» be a simple Lie algebra associated with a Cartan
matrix A = (a;;); jer Where {e;, fi, hj}ier are the standard Chevalley generators and 1 = (e;);cs (resp.
t = (hyYier, N = (fiier) 18 the positive nilpotent subalgebra (resp. the Cartan subalgebra, the negative
nilpotent subalgebra).

Let {a;}ic; be the set of simple roots of g and {( , ) a pairing on t X t* satisfying a;; =
(Chi, @ j))ijer. We also define a symmetric bilinear form (, ) on t* such that (@;,@;) € 2Z. and
(hi, ) = 223 for ) € t*.

Let P := {1 € t*|(h;,A) € Z forany i € I} be the weight lattice and P, := {1 € P | (h;, 1) >
0 for any i € I} the set of dominant weights. Set Q := ®,;Za; (resp. Q = s Zsow;), Which
is called the root lattice (resp. positive root lattice). For an element 8 = Y ,;m;a; € Q. define
|8l = X.; m;, which is called the height of 8. Let W = (s;| 5;)ic; be the Weyl group associated with P,
where s; is the simple reflection defined by s;(1) = A — (h;, L)a; (1 € P).

We denote the dual weight lattice of P by P* := {h € t|{h, P) C Z}. Let U,(g) := {e;, fi, qh),-elyhep*
be the quantum algebra associated with g with the defining relations (see e.g.,[1, 2]) and U (9 =
(fidier (resp. U;’(g) := {e;)ier) the negative (resp. positive) nilpotent subalgebras of U,(g). We also
define the Z-form Uz, (s) of U7 (g) as in [5]. Set g; := g2 [n); = (q" — ¢ /(g — g7,

[n)i! := [Tockenlkli and X := X7/[n];! for X; = fi,e; fori € I, n € Zsy.
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Now, let us define the (unipotent) quantum coordinate ring A,(n) by
A = P A A ) = Homggy (UF ()5, Q)
BeO_
Note that Uq‘(g) = A,y () as a Q(g)-algebra. The Z-form A()z;, 41 is defined as in [S].

3. CRYSTAL BASES AND CRYSTALS

3.1. Crystal Base of U,;(g) = A, (). Letus define the crystal base (L(co0), B(c0)) of U;(g)([l]). For
i € I the operator ¢; € End( Uq‘(g)) is defined by the formula

¢/(PQ) = €{(P)Q + 4" Pej(Q),  €(f) =51, €(1)=0,
for any P € Uy(g)p, Q € Uy(9), i, j € I. By the fact that for P € U,(g)s, there exists the following
unique decomposition
3.1) P=>"fOp,
k=0

where P, € Ker(e}) N Uq'(g)ﬂ+kai. And define the operators &;, f, € End(U;(g)) on P € U;(g)ﬁ by
using the decomposition (3.1)

EiP — Z f;‘(k_l)Pn’ f:P o Z f;(k-#l)Pn’
k>0 k=0
which are called Kashiwara operators. Now, set
L(e0) := Z Afy - fiteo, B(co) = {f;, -+ fi o mod gL(e0) [k > 0,iy, - i € I} \ {0},
k20,iy,—ixel
&i(b) = max{k : &b # 0},  @i(b) = &i(b) + (hi, wi(b)),
where u., = 1 € Uy(g) and A C Q(q) is the local subring at g = 0.
Theorem 3.1 ([1]). A pair (L(c0), B(c0)) is a crystal base of U, (9. Indeed, we obtain
&iL(c0) C L(o0),  fiL(o0) C L(e),
&iB(c0) C B(co) LU {0},  f;B(c0) C B(oo) LI {0},
wt(e;b) = wt(b) + a; for b,e;b € B(0), wt(ﬁb) = wt(b) — a; forb, fib € B(0),
gi(@b) = gi(b) — 1 ¢i(éb) = ¢&;(b) + 1, for b, &b € B(x),
&i(fib) = ¢(b) + 1 ¢i(fib) = ¢i(b) = 1, for b, fib € B(x0),
fb=b = &b =b, forb, b € B(x)
3.2. Crystals. We shall introduce the notion crystal following [2], which is a combinatorial object

obtained by abstracting the properties of crystal bases in Theorem 3.1.

Definition 3.2 ([2]). A 6-tuple (B, wt, {&;}, {¢i}, {€:}, { f, Dier 18 a crystal if B is a set and there exists a
certain special element O outside of B and maps:

(3.2) wt:B— P, & :B—-ZU{-x}, ¢;:B—>ZU{-c0} (i€l),
(3.3) g :BU{0)—> BU{0), f:BU{0)— BU{O}(Gel,
satisfying :

(1) @i(b) = &i(b) + (hi, wt(D)).
(2) If b, é;b € B, then wt(¢;h) = wt(b) + ;, €i(é;b) = &;(b) — 1, i(é;b) = ¢;(b) + 1.
(3) If b, fib € B, then wt(f;b) = wt(b) — ;, &i(fib) = &(b) + 1, i(fib) = @i(b) — 1.
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(4) Forb,b’ € Band i € I, one has ﬁb =b ifftb=¢b.

(5) If @i(b) = —co for b € B, then &;b = fib = 0 and &;(0) = £,(0) = 0. '
Here, a ccrystal graph of crystal B is a I-colored oriented graph defined by b—b & fi(b) = b’ for
b,b’ € B.

Definition 3.3 ([2]). For crystals By and B,, ¥ is a strict embedding (resp. isomorphism) from B;
to B, if ¥ : B; LU {0} — B, LI{0} is an injective (resp. bijective) map satisfying that ¥(0) = 0,
wt(P (D)) = wt(b), €(¥(b)) = €i(b) and ¢;,(¥ (D)) = ¢;(b) for any b € B; and ¥ commutes with all
¢;’s and f,"s,.

We obtain the tensor structure of crystals as follows([1, 2]):

Proposition 3.4. For crystals By and B,, set
B ® By = {b1 ® by := (b1,b2) | b1 € By, by € Bo}(= By X By).
Then, B; ® B, becomes a crystal by defining:

(3.4) wt(by ® by) = wt(by) + wt(b,),

(3.5) &i(b1 ® by) = max(ei(by), i(b2) — Chi, wt(b1))),

(3.6) ®i(b1 ® by) = max(¢i(ba), gi(b1) + (hi, wi(b2))),
. _ ) ébi®by ifgi(by) = €i(b)

37 &1 ®2) = { bioabs  if gih) < i(ba),
x | fbieby  ifgi(b1) > £i(bo)

(3:8) fibr®by) = { b1 ® fiby if ¢i(b)) < &i(by).

Example 3.5. Fori € I, set B; := {(n); |n € Z} and
wt((n);) = na;, &((n)) = —n, @i((n);) = n,
£j((n)) = ¢j((n);) = —co (i # j),
g((m) =+ 1), fil(y) = (n—1),
&i((m)) = fi((m) =0 (i £ )).
Then B; (i € I) possesses a crystal structure. Note that as a set the crystal B; can be identified

with the set of integers Z.

3.3. Explicit structure of the crystal B; ® --- ® B; . Here we shall describe an explicit structure
of tensor product of B;’s. Fix a sequence of indices i = (i}, -- ,i,) € I"" and write

(1,5 X) 2= 110, ® - ® f7(0);, = (=x1)iy ® -+ ® (=X, »

where if n < 0, then fi”(O)i means &;"(0);. Note that here we do not necessarily assume that i is a
reduced word though later we will take i to be a reduced longest word. By the tensor structure of
crystals in Proposition 3.4, for the sequence i as above, we can describe the explicit crystal structure
onB; := B;, ® ---® B;, as follows: For x = (x1,--- ,x,) € B;, define

o(x) = X + Z(hik,m,)xj
Jj<k
and for i € I define
D(x) := max{ow(x)|1 <k <mandiy = i},
MO = MO(x) = (k|1 <k <m, i =i, op(x) = 7)),

my) = m(x) == max MO(x), m = m(x) := min M (x).
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Now, the actions of the Kashiwara operators &;, f; and the functions &;, ¢; and wt are written explic-
itly:

3.9) f;(x)k =X+ 6k,%(fi)’ &;i(X) = xx — 5k,l—ﬁf)’
(3.10) wi(x) = — Z X, &(0) =), @ix) = (hi, WHX)) + £i(x).
k=1

Define the function ,B,in on B; by :

3.11) BP0 = 0 (0 = 0w(x) = X+ > (hiv i) )x; + X,

k<j<k*
for x = (xq,---, x,) € Bj, where for k € [1,N], k* (resp. k) is the minimum (resp. maximum)
number j € [1, N] such that k < j (resp. [ < k) and iy = i; if it exists, otherwise N + 1 (resp. 0). Here

one knows that ﬁif)(x) and ﬁgi)(x) are determined by {ﬁ,(:)(x) [l <k<N, ip=1i}.

3.4. Braid-type isomorphism. We shall introduce some isomorphism of crystals, called “braid-
type isomorphism”.
Set ¢;j 1= (hi, a;){hj, @), c1 := —(h;,a;) and ¢, := —(hj, @;). In the sequel, for x € Z, put

x ifx>0,
Xy =
0 ifx<O.

Proposition 3.6 ([13]). There exist the following isomorphisms of crystals ¢ (k = 0,1,2,3)
(1) If Cij = O,

(3.12) ¢§?> : B;® B—B;® B,
where ¢ ((x); ® (),) = (), ® (x);.
(2) If Cij = 1,
(3.13) ¢ :B;® B;j® B—B,;8B;®Bj,
where

P ®(0);® @) =+ (~x+y-2).);® (X +2i & (Y= 2~ (—x+y—2).);.
(3) If Cij = 2,

(3.14) ¢f}2) : Bi®Bj®B[®B_i—L>B_i®Bi®Bj®B,',

where ¢ is given by the following: for (x)i®(y);®(2);®(w); we set (X);&(Y);®(Z);&(W); :=
¢§f.>((x),» ® () ®(2)i ® (W))).

(3.15) X = wH(-ox+y—-w+co(x—cy+2+)+,
(3.16) Y = x+cpw+(—x+z—ciw+x—c1y+24)+,
(3.17) Z = y—(-ax+y-—wto(x—cy+2d+
(3.18) W = z—ciw—(—x+z—ciw+(x—c1y+2)+)+

(4) If ¢;j = 3, the map

(3.19) ¢} :Bi®B;®B;®B;®B ®B—B;®B;®©B;®B ®B;® B,
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is defined by the following: for (x); ® (y); ® (2); ® (u); ® (v); ® (W) ; we set A := —x +c1y — 2,
B:=-y+cz—u,C:=—-z+ciu—vand D := —u+cv—w. Then (X);®(Y);®(2);® (U); ®
W)je W)= ¢S>((x)i Q();® (2)i ® (u); ® (v); ® (W);) is given by

w+ (D +(c2C+ 2B+ A4+,

= x+cw+ (1 D+BC+QciB+2A)1)4)4,
= y+u+w-X-Y,

x+z+v-Y-—-W,

= u-w—-—02D+ Q2cC+ BB+ c2A)1)4 )+,
= v—ciw—(C1D+RC+(c1B+Ay))4)s.

T <N~ X
I}

They also satisfy ¢E§) o ¢§.’lf) =id.
We call such isomorphisms of crystals braid-type isomorphisms.

We also define a braid-move on the set of reduced words of w € W to be a composition of the
following transformations induced from braid relations:

cifee i (cij =0, ceedficee e jijee (e = 1),
i e Jifiee (e = 2)y e difijeee = eee jijijice (cij = 3),

which are called by 2-move, 3-move, 4-move, 6-move respectively.

3.5. Cellular Crystal B; = B;;,..;, = B;, ® - -® B;,. For areduced wordi = i;i, - - - iy of some Weyl
group element, we call the crystal B; := B;, ® --- ® B;, a cellular crystal associated with a reduced
word i. Indeed, it is obtained by applying the tropicalization functor to the geometric crystal on the
Langlands-dual Schubert cell £X,,, where w = s, -+ 8;, 1s an element of the Well group W ([14]).
It is immediate from the braid-type isomorphisms that for any w € W and its reduced words i; - - - i;
and j; - - - j;, we get the following isomorphism of crystals:

(3.20) B,® --®B,=B;,® - ®B.

3.6. Half potential and the crystal B(co). For a Laurent polynomial ¢(xy,--- ,x,) with positive
coeflicients, the tropicalization of ¢ is denoted by ¢ := Trop(¢), which is given by the rule: Trop(ax+
by) = min(x, y) with a,b > 0, Trop(xy) = x + y and Trop(x/y) = x — y and Trop(c) = 0 for ¢ > 0. In
[10], the crystal B(co) has been realized as a certain subset of B; defined as follows:

Theorem 3.7 ([10, Theorem 5.11]). Define the subset of B;:
B ome, = {x=(x1. . xy) € B | 0P (x) 2 0},

where B}, is a certain geometric crystal, @™ is a tropicalization of the half potential @) which is

a Laurent polynomial with positive coefficients in N variables and @ is a certain positive structure
on the geometric crystal B, . Then, (B}, Yoo e, = B(c0).

Remark 3.8. To define the crystal structure on (@E<,)¢(+),®is it is supposed that if &;x ¢ (EV‘W))@M,@P

then &;x = 0. Thus, in this sense, the embedding B(co) = (B )o@, < Bi is not a strict embedding.

In [15, 14], it has been given the strict embedding of B(co) < B;, which is called “Kashiwara
embedding” and the method to describe the image of this embedding, called ”polyhedral realization”.
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3.7. Subspace #;. The object H; will play a significant role for this article.
Fix a reduced longest word i = i; ---iy and take the function ﬂ,(c')(x) = Xk + D jekr (hikai‘,)xj +
X+ (1 <k < N)asin (3.11). In what follows, let us identify the Z-lattice ZV with B; and then we

define the summation of elements x = (xy,--- ,xy)andy = (yy,--- ,yn) by x+y = (Xx;+y1,--- , xny+
yy) as a standard one in ZV. Here, we define the subspace Hj C ZV by
(3.21) H; = {x € Z¥(= B) | B (x) = 0 for any k such that k* < N} C B;.

The following result was presented in [10]:

Proposition 3.9 ([10]). Fori=iji,---iy,k=1,2,---, N and a fundamental weight A;, set

(3.22) B = (hy, i, o osiyA) and b= (B0 RP 6N € By

Then, we obtain that {hy,--- ,hy} is a Z-basis of H;, namely,

(3.23) Hi =7Zh, &Zh, & --- & Zh,.

Example 3.10. In ¢ = Gj-case. Set aj; = —1 and a;; = —3. Taking a reduced longest word

i=121212, one has
B =x-xnt+tx EO=xu-3u+x, A
By the formula (3.22), one gets

h; =(1,3,2,3,1,0), h, =(0,1,1,2,1,1).
Then the solution space H; of B(li)(x) = ﬁ(zi)(x) = ,Bg)(x) = ﬁff)(x) =0 is given by

7'{1 = {Clhl + Czhg = (Cl,Cz + 3(,’1,(,’2 +26‘1,2(32 + 3C1,6‘2 + Cl,Cz) | C1,C2 € Z}

(i)

(i)
3 4

(x) = x3 — x4 + X5, (x) = x4 — 3x5 + X¢.

Lemma 3.11. The braid-type isomorphisms are well-defined on Hj, that is, ¢f§)((Hi) = Hy, where
i’ is the reduced word obtained by applying the corresponding braid-moves. We also obtain the
following formula:
(1) Forany h = (- ,x,y,---) = -+ ® (=x); ® (-)); ® - -+ € Hj, assume that a;; = aj; = 0.
Applying the braid-type isomorphism ¢§?> on (x,y) in h, we have

(3.24) G = (- yx) =@ (), @ (1)@ € Hy
(2) Foranyh=(--- ,x,y,2,---) = ®(=x); ®(—y);®(-2); ® - - - € H;, assume that ¢;; = aj; =
—1. Applying the braid-type isomorphism ¢f}) on (x,y,7) in h, we have
(3.25) FPM) = (o zyx )= ®(=2); @ (<)) @ (—x); @ - € Hy
(3) Forh = (---,x,y,z,w,-+) = - ® (=x); ® (-)); ® (—2); ® (—w);--- € Hi, assume that

a;j - aji = 2. Applying the braid-type isomorphism ¢f§> on (x,y,z,w) in h, we have
(3.26) G = (o w2y x ) =B (W) @ (2 8 (-); @ (—x); ® - € Hy
(4) For h = ( LNV LUV, W, ) = '®(_x)l®(_y)]®(_z)l®(_u)j®(_v)l®(_w)] ot € ﬂi?
assume that g;; - aj; = 3. Applying the braid-type isomorphism ¢f.j3.) on (x,y,z,u,v,w) in h,
we have

B2 PP = (o w2y, ) = B (W) ® (<2 ® (=) ® (—x); ® -+ € Hy

In [10, Sect.8], we have shown the following statements under the condition "H;”, where we omit
the explicit form of H; since we do not need it here. But, we succeed in showing the following
proposition without the condition H; since in [10] we have shown that there exists a specific reduced
longest word iy satisfying the condition Hj, for each simple Lie algebra g and we got Lemma 3.11.
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Proposition 3.12. Leti = iyi, ---iy be an arbitrary reduced longest word. Here if the crystal B(co)
is realized in Bj; as in 3.6, we shall denote it by B(co); to emphasize the word i. For i € H;, define

B'(c0); := {x + h € ZV(= Bj) | x € B(0);} C B;.
(1) For any x + h € B"(c0); and i € I, we obtain
(3.28) éi(x+h)=¢&(x)+h, filx +h) = fi(x) + .
(2) For any h € H;, we have B(co); N B"(c0); # 0.
3)
B; = | ] B"(co);

he 7‘{i

Remark 3.13. In the setting of the half-potential method in [10], as mentioned in Remark 3.8, the
crystal B(oo) is realized as a subset of B; and it is supposed that &;x = 0 if &;x ¢ (E;0)®<+)’®i = B(c0).
At the statement (2), since x € B(o0); is considered as an element of B;, &;x is also considered as an
element in B;. That is, even if &;x ¢ B(co), we consider that &;x € B; and then it never vanishes.

It is immediate from this proposition that one has the following theorem:

Theorem 3.14 ([10]). For any simple Lie algebra g and any reduced word i;i; - - - i§, the cellular
crystal B; ;,..;, = B;, ® B;, ® - -- ® B;, is connected as a crystal graph.

4. QuiverR HECKE ALGEBRA AND ITS MODULES

In this section, we shall introduce the quiver Hecke algebra and its basic properties (see [4, 5, 7,
16]).

4.1. Definition of Quiver Hecke Algebra. For a finite index set I and a field k, let (2; j(u, v)); je1 €
k[u, v] be polynomials satisfying:

(1) 2;iju,v)=2;(v,u)foranyi,jel.
(2) 2 j(u,v)is in the form:

t,',j;a,hu”vh ifi # J»
Qi,j(u, V) = { alaia)+blej.a)=-2ea))
0 ifi=],
where ti,j;—a,-,,O e k*.

For 8 = 3 mja; € Q4 with |B8] := X, m; = m, set PB=yv=0u, - ,vp)el| Dy @y, =Bl

Definition 4.1. For 8 € Q,, the quiver Hecke algebra R(f) associated with a Cartan matrix A and
polynomials 2; ;(u, v) is the k-algebra generated by

felve ), {xll<k<n), {tll<i<n-1)
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with the following relations:

eW)e(v) = bype(v), Y ) =1, e =xe(v), XX = XX,
velb

Te(v) = e(si(v)1;, wT =TTy if k=1 > 1,

The) = Dy, (ks Xes)e(),
—e(v) ifl=k, vi =via1,

(tex1 — xgyTr)E(V) = Je(v) ifl=k+1, vi = viy1,
0 otherwise,

Dyt K Xia1, Xr2)e(v) i v = vy,

(Thr 1 ThTha1 — TaThks1TRIE(V) = .
0 otherwise,

2;,juv)=2; j(wy)

u—-w

where @,;_,-(u, v, W) = € k[u,v,w].
(1) The relations above are homogeneous if we define

deg(e(v)) =0, deg(xre()) = (ay,, ), deg(rie(v)) = —(ay,, ay,,).

Thus, R(B) becomes a Z-graded algebra. Here we define the weight of R(S8)-module M as

wt(M) = —8.

(2) Let M = @kez M be a Z-graded R(B)-module. Define a grading shift functor ¢ on the

category of graded R(8)-modules R(5)-Mod by

gM = @(qM)k, where (gM), = M;_;.
keZ

(3) For M, N € R(B)-Mod, let Homgg (M, N) be the space of degree preserving morphisms
and define Homgg) (M, N) := @ rez, HomR(ﬁ)(qu, N), which is a space of morphisms up to

grading shift. We define deg(f) = & for f € HomR(ﬂ)(qu, N).

(4) Let y be the anti-automorphism of R(S) preserving all generators. For M € R(8)-Mod,
define M* := Homg(M, k) with the R(B8)- module structure by (r - f)(v) := f(y(r)u) for
r € R(B), u € M and f € M*, which is called a dual module of M. In particular, if M = M*

we call M is self-dual.

(5) For B,y € O, sete(B,y) = X e yer €(v,V'). We define an injective homomorphism &g, :
R(B) ® R(y) — e(B,7)R([B + y)e(B,y) by £B,y)e(v) ® e(v')) = e(v.V), &(B,y)(xie(B) ®
D = xie(B.y), EB. 7)1 ® xie(y)) = xerpeB,v), EB. y)(Tre(B) ® 1) = 1re(B, ), £(B. y)(1 ®

Tce(y) = Trrige(B,y).
(6) For M € R(B)-Mod and N € R(y)-Mod, define the convolution product o by

M o N :=R(B +v)e(B,y) @rpery) (M ®N)

For simple M € R(8)-Mod and simple N € R(y)-Mod, we say M and N strongly commutes

if M o N is simple and M is real if M o M is simple.

(7) For M € R(B)-Mod and N € R(y)-Mod, denote by MVN := hd(M o N) the head of M o N
and MAN := soc(M o N) the socle of M o N, where the head of module M is the quotient

by its radical and the socle of module M is the summation of all simple submodules.

4.2. Categorification of quantum coordinate ring A,(nm). Let R(8)-gmod be the full subcate-
gory of R(B)-Mod whose objects are finite-dimensional graded R(B)-modules and set R-gmod=

R(B)-gmod. Define the functors
Dpeo. g
E; : R(B)-gmod — R(B — a;)-gmod, F; : R(B)-gmod — R(B + a;)-gmod ,
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by Ei(M) := e(a;,f — a)M, Fi(M) = L(i) o M, where e(@;,8 — ;) := 3 ep,= €(v) and L(i) :=
R(@;)/R(a;)x; is a 1-dimensional simple R(a;)-module. Let K(R-gmod) be the Grothendieck ring
of R-gmod and then K (R-gmod) becomes a Z[q, ¢~ ']-algebra with the multiplication induced by the
convolution product and Z[g, g~']-action induced by the grading shift functor g. Here, one obtain
the following:

Theorem 4.2 ([4, 16]). As aZ][gq, q‘l]—algebra there exists an isomorphism
K(R-gmod) = A;(Wzq411-

4.3. Categorification of the crystal B(co) by Lauda and Vazirani [11]. The following lemma is
given in [4]:
Lemma 4.3 ([4]). For any simple R(8)-module M, soc(E;M), hd(E;M) and hd(F; M) are all simple
modules. Here we also have that soc(E;M) = hd(E; M) up to grading shift.

For M € R(B)-gmod, define
“.1) wt(M) = -8, &(M)=max{n € Z|E!M +# 0}, ¢;(M) = &(M) + (h;, wi(M)),
4.2) EM = g Msoc(E:M) = g7 hd(E:M),  FiM := g7 hd(FiM).
Set B(R-gmod) := {S | S is a self-dual simple module in R-gmod}. Then, it follows from Lemma 4.3
that E; and F; are well-defined on B(R-gmod).

Theorem 4.4 ([11]). The 6-tuple (B(R-gmod), {E}, {E}, wt, {€;}, {¢i})ier holds a crystal structure and
there exists the following isomorphism of crystals:

Y : B(R-gmod) N B(c0).
Remark 4.5. Note that Lauda and Vasirani showed this theorem under more general setting that g

is arbitrary symmetrizable Kac-Moody Lie algebra. Here we assume that g is a simple Lie algebra.
The definition of E; and F; in (4.2) differs from the one in [11], which follows the one in [7].

5. LOCALIZATION OF MONOIDAL CATEGORY
Here we shall review the theory of localization for monoidal category following [5].
5.1. Braiders and Real Commuting Family. Let A be Z-lattice and 7 = @,c4 7 be a k-linear A-
graded monoidal category with a data consisting of a bifunctor ® : 7, X7, — 7T ., an isomorphism
aX,Y,2): (X®Y)®Z—XQ (Y ®Z)satisfyinga(X, Y, Z&W)oca(X®Y,Z, W) =idy ®a(Y,Z,W) o

a(X,Y®Z W)oa(X,Y,Z)®idy and an object 1 € 7 endowed with an isomorphism € : 1 ® 1—51
such that the functor X — X ® 1 and X — 1 ® X are fully-faithful.

Definition 5.1 ([5]). Let g be the grading shift functor on 7. A graded braider is a triple (C, Rc, ¢),
where C € 7, Z-linear map ¢ : A — Z and a morphism:

Re:Co®X - ¢®VYX®C (XeT)),
satisfying the following commutative diagram:

CoXey —LphexeCey  (XeTi, YeT,)

X®Rc(Y

¢PXeY)®C
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and being functorial, that is, for any X, Y € 7 and f € Hom(X, Y) it satisfies the following com-
mutative diagram:

id
ceXx— cev

RC(X)l/ ch(Y)
feid
X®C——YQC

Definition 5.2 ([5]). Let I be an index set and (C;, Rc,, ¢;)ie; a family of graded braiders in 7. We
say that (Cy, Rc,, ¢i)icr 1s a real commuting family of graded braiders in 7 if

(1) C; € Ty, for some A; € A, and ¢;(4;) = 0, ¢;(1;) + ¢;(4;) =0 forany i, j € I.

(2) Rc,(Cy) € K*idggc, forany i € 1.

3) RCi(Cj) ®RC_, (GRS kxidcl@c, for any i, j € 1.

Note that R¢,’s satisfy so-called ”Yang-Baxter equation”, such as,
Rc,(Cj) o Rc,(Cy) © Re,(Cr) = Re;(Cy) © R, (Cy) © Re,(Cj) on CioCjoC.

For a finite index set I, set I := ®,;Ze; and 'y 1= @i/ Z>pe;.

Lemma 5.3 ([5]). Suppose that we have a real commuting family of graded braiders (C;, R¢;, ¢;)ier-
We can choose a bilinear map H : I' x I" — Z such that ¢,(4;) = H(e;, e;) — H(e}, e;) and there exist
(1) an object C* for any o € I'. B
(2) anisomorphism &, : C* ® CPF—¢"@PC¥*F for any a,p € T,
such that C% = 1 and C¢ = C;.

5.2. Localization. Let 7 and (C;, Rc,, ¢i)ic; be as above and {C%},er, objects as in the previous
lemma. We define a partial order < on I by

afe—p-acl,
For ay,a»,--- €T, define
Doy, =10 €T aj+6€Ty forany j=1,2,---}.
ForX € 7,,Y € 7,and 6 € D,g, set
Hs((X, @), (Y.)) := Homr(C*** ® X, ¢" /o1y @ CP*°),

where a Z-valued function P(a,f,0, 1) := H(S,8 — @) + ¢(0 + B,u) and the map ¢ : ' X A — Z is
defined by ¢(a, L(B)) = H(e,B) — HB,a) and L : I — A is defined by L(e;) = A; ([S]).

Lemma 5.4 ([5]). For 6 < ¢’ there exists the map
Gt Hs(X, @), (Y, B)) = Hy (X, @), (Y. 8))
satisfying
45,5' o {6’,6” = 45’5//1:01‘ o < (S/ < (S”.

Therefore, we find that {H;((X, @), (Y, 8))}sep,, becomes an inductive system.
Definition 5.5 (Localization [5]). We define the category T by

Ob(T) := Ob(T) xT,

Homz((X. @), (Y.B)) := lim Hs((X, ). (Y. ),

seD(aB),

A+ L(@)=p+L(B)

where X € 7, Y € 7, and the function L : ' — A (¢; = 4;) is as above. We call this T a
localization of T by (C;, R¢,, ¢:)icr and denote it by ‘7'[C?'1 | i € I1 when we emphasize {C; | i € I}.
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Theorem 5.6 ([5]). 7 becomes a monoidal category. Moreover, there exists a monoidal functor
T :7 — 7 such that
(1) Y(C;)is invertible in T for any i € I, namely, the functors X — X®Y(C;) and X — T(C))®X
are equivalence of categories.
(2) Foranyieland X € 7, T(Rc,(X)) : T(C; ® X) = T(X ® C;) is an isomorphism.
(3) The functor Y holds the following universality: If there exists another monoidal category
7 and a monoidal fucntor 1" : 7~ — 7 satisfying the above statements (1) and (2), then
there exists a monoidal functor F : 7 — 7~ (unique up to iso.) such that 1" = F o T.

Proposition 5.7 ([5]). Under the setting above, we obtain

(1) X,a+p) =g HBaCreX,p), (1,5)®(1,—p) = ¢ HEA1,0)fora eT,,feT and X € T

(2) If 7 is an abelian category, then so is T.

(3) The functors Y : 7~ — T is exact.

(4) If the functor —®Y and Y ®— are exact for any Y in 7, then the functors To>T X XeY
(resp. X — Y ® X)) are exact for any Y in T.

6. LOCALIZATION OF THE CATEGORY R-gmod

In this section, we shall apply the method of localization to the category R-gmod.

6.1. Determinantial Modules. Here we just go back to the setting as in Sect4. Let L({") :=

atn=1) - ap0;
g, * L()™ be asimple R(na)-module satisfying qdim(Z(") = [n];! = [T} =5 (g = 5.
Definition 6.1 ([5, 7]). For M € R-gmod, define
F'(M) := L(i")VM.
For a Weyl group element w, let s;, - - - 5;, be its reduced expression. For a dominant weight A € P,,

set
my = (R, Si,, o Si\) k=1,---,D.
We define the determinantial module associated with w and A by
M(WA, A) := F" - F"1,
where 1 is a trivial R(0)-module.

Note that in general, one can define determinantial modules M(wA, uA) (w, u € W) which corre-
sponds to the generalized minor Ay,a .

Now, let us see some similarity between the family of determinantial modules {M(woA, A)}acp,
and the subspace H;. As has seen above that for a reduced longest word i = i; - - - iy, the subspace
H; C B is presented by

Hi= P Zhi, b= (R = i si, - sy AiDer -
iel
Furthermore, we also get

Proposition 6.2. For any reduced longest word i = #i> - - - iy and A € Py, set
my = (g, Sig Si, sy (k=1,2,--- ,N) and  hp = (my,--- ,my).

Then we obtain

ha = 77 FO), @ (0), @ @ (0),) = FMO0), ® F (0, ® - ® fM(0), € Hh,

i

where note that for A = }}; a;A;, one has hy = 3}, a;hy,.
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By this proposition, one observes that there would exist a certain correspondence

(6.1) MwoA,A) = F" - F"1 e ha =" f™(0), ® (0), ® - ® (0);,).

Definition 6.3 ([5]). For 8 € Q., define a central element in R(8) by
Di = Der (Hae{l,Z,r--,ht(ﬂ)),m:i xa) e(v) € R(B). For a simple M € R(8)-gmod, define an affinization
M of M with degree d:

(1) There is an endomorphism z : M — M of degree d > 0 such that M is finitely generated

freE module of k[z] and M /ZM = M.
(2) ;M #0foranyie€ I.

Theorem 6.4 ([5, Theorem 3.26]). Forany A € P, and w € W, the determinantial module M(wA, A)
is a real simple module and admits an affinization M(wA, A).

Note that indeed, if g is simply-laced, then the affinization M always exists for any simple M €
R(B)-gmod as ([3)). -
M =K[z] ® M.

6.2. Localization.

Definition 6.5 ([5]). Let M be a simple R-module. A graded braider (M, Ry, ¢) is non-degenerate
if Ry (L(i)) : M o L(i) = L(i) o M is a non-zero homomorphism.

For R-gmod, there exists a non-degenerate real commuting family of graded braiders (C;, R¢,, ¢:)icr([5])-
Set Ca := M(woA, A) and denote Cy, by C;.

Proposition 6.6 ([8]). For A = Y, m;A; € P,, we obtain the following isomorphism up to grading
shift:

(6.2) Ca := M(woA,A) = C{™ o -0 C)™.
Theorem 6.7 ([5, Proposition 5.1]). Define the function ¢; : Q — Z by
#i(B) = —(B, wol\;i + Ay).

Then there exists {(C;, Rc,, ¢)}ies @ non-degenerate real commuting family of graded braiders of the
monoidal category R-gmod.

Now, we take I' = P = @B, ZA; and I', = P, = @, Zs0A;. Here, we obtain the localization
R—gmod[Cf‘l |i € I1by {(Ci,Rc,, ¢:)}ier, Which will be denoted by ﬁ—gmod.
By the above Proposition, it holds the following properties:

Proposition 6.8 ([5]). Let ® : R-gmod — ﬁ—gmod be the canonical functor. Then,

1) E—gmod is an abelian category and the functor @ is exact.
(2) For any simple object § € R-gmod, ®(S) is simple in R-gmod.
(3) C;:=®(C)) (i € 1) is invertible central graded braider in R-gmod.
For u € P, define Ey such that 5;1 = ®(C,) foru € Py, 5_,\1, = C;?‘l and E/H_H = 5/1 o 5/1 for
A,y € P up to grading shift. _
(4) Any simple object in R-gmod is isomorphic to Cp o ®(S) for some simple module § €
R-gmod and A € P.
Note thatin (4) A € P and S € R-gmod are not necessarily unique.
Remark 6.9. In [5], the localization is applied to more general category %, which is the full sub-

category of R-gmod associated with a Weyl group element w. The category R-gmod here coincides
with &, associated with the longest element wq in W.
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De[i'nition 6.10. The category ﬁ-gmod is abelian and monoidal. Therefore, its Grothendieck ring
K (R-gmod) holds a natural Z[gq, q‘ll-algebra structure, which defines a localized quantum coordi-
nate ring ﬁq\(ﬁ) = Q(q) ®z14.41) K(R-gmod).

Indeed, the Grothendieck ring K (ﬁ-gmod) is described as follows:

Proposition 6.11 ([5, Corollary 5.4]). The Grothendieck ring K (ﬁ—gmod) is isomorphic to the left
ring of quotients of the ring K'(R-gmod) with respect to the multiplicative set

=" [ [lca™ 1k e Z, (aier € ZLy),
iel
that is, K (R-gmod) = S~'%(R-gmod).
7. CRYSTAL STRUCTURE ON LOCALIZED QUANTUM COORDINATE RINGS

‘We shall mention the main theorem, crystal structure on localized quantum coordinate ring ?/(Xﬁ).
More precisely, we shall define a crystal structure on a family of self-dual simple objects in the
category E—gmod (Theorem 7.4) and mention that it is isomorphic to the cellular crystal B; (Theorem
7.5), where i is a reduced word for the longest Weyl group element wy.

Lemma 7.1 ([4, Proposition 2.18]). For any i € I, B,y € Q., any modules M € R(B)-gmod and
N € R(y)-gmod, one has the following exact sequence in R(5 + y — @;)-gmod:

(7.1) 0— EMoN— EMoN)— g “PMoEN— 0.
Fori € I, leti* € I be a unique index satisfying A; = —wpA,;.

Lemma 7.2. (1) For§ € R-gmodandi € [, if E;S = 0, then the module E;Cy,. o S is a simple
module.
(2) If E;S =0 for S € R-gmod, then we get for A € P, with (h;,A) > 0,
(7.2) SOC(E{(Cp ©85)) = Cpp,. 0 (EiCir 0 8),

up to grading shift.
We set _ _
B(R-gmod) := {L| L is a self-dual simple module in R-gmod}.
Lemma 7.3 ([5]). For any simple L € ﬁ-gmod, there exists a unique n € Z such that ¢" L is self-dual

simple. For a simple module L € R-gmod we define 6(L) to be this integer n.

Then by this lemma, we find that B(R- R-gmod) includes all simple modules in R- gmod up to grading
shift. For a simple object Cno®(S) € R- gmod we write simply Cx o S if there is no confusion.
Now let us define the Kashiwara operators F and E (ielon B(R gmod) by

(7.3) FACp 08) = ¢CFSC, o S,
S(CA0E;S) T ifE.
~ q CproE;S if ;S 0,
7.4 E(CroS8S)=3". =~ ~
o e {q‘“CA-Ar “EC SNy, o (ECh, 0S) IS =0,

where Cp o S is a self-dual simple module in R- gmod, the actions E:S and F;S are given in (4.2),

which is defined on the family of all self-dual simple modules in R-gmod and in (7.4) the module

E; Ca, oS is simple by Lemma 7.2. Note that for any m > 0, E’"(CA o S) *0, F’"(CA 0§)#0.
Let V¥ : B(R- gmod)—>B(oo) be as in Theorem 4.4. For Cp o S € B(R -gmod), we also define

&(Cp 0 8) = &(Y(S)) = (hi, woA), Wt(Cp ©8) = wt(W(S)) + woA — A,

(75 i(Cr 0 S) = £(¥(Ch 0 S)) + (h, W(Ci 0 S)).
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Theorem 7.4. The 6-tuple (B(R-gmod), wt, {&;}, {¢:}, {Ei}, {F;))ics is a crystal.

Here, by Proposition 6.2 we observe that there seems to exist a certain correspondence:

{CAIA € P} C R-gmod «—  H;
Ca=F' Fl e hy= FU 0 f(0);, ® (0), © - @ (0);,)
Together with the result of Proposition 3.12, we obtain the following:
Theorem 7.5. For any reduced longest word i = iiy - - - i, there exists an isomorphism of crystals:
¥:BR-gmod) — Bi=| ) B'(w)
heH;
CroS +— hp+¥(S) e B™ (),

where ¥ : B(R-gmod)— B(o) is the isomorphism of crystals given in Theorem 4.4, S is simple in
B(R-gmod) and for A = }; a;A; sethy = 3; ajh;.

8. APPLICATION AND FURTHER PROBLEMS
8.1. Operator a. Decfine the Q(g)-linear anti-automorphism * of U,(g) by

@ =g, e =e f=f

Theorem 8.1 ([2]). Set L*(c0) := {u* |u € L(c0)}, B*(c0) := {b* | b € B(c0)}. Then we have

L*(c0) = L(e), B*(0) = B(w0),

From the proof of Theorem 5.13 in [5] we get

Proposition 8.2 ([5]). For v = (vi,va, V1, Vm) € I (m 1= |B]) set V = (Vo Vi1, -+ + » V2, V1).
Define the automorphism a on R(8) by

ae(v)) = e(v), a(xie(v)) = xXp_ir1e(v), a(t;e(v)) = —7p_je(v).

Then, there exists the functor a : R-gmod — R-gmod such that a(C;) = Ci» (Vi € I), ai = id and
a~(X oY) = a(Y)oa(X) for X, Y € R-gmod. Furthermore, it is extended to the functor @ : R-gmod —
R-gmod which satisfies

(8.1) P =id, and AXoY)=aY)odaX) forX,Ye ﬁ—gmod.

Note that a(resp. @) induces the operation * on &(n) (resp. ﬁ;(n)) since a(L(i)) = L(i) and then
one has a(f;) = f; (resp. a(f;) = f;) on A,(n) (resp. A,(1n)). Now, we obtain the following:
Proposition 8.3. Leta: ﬁ-gmod - ﬁ-gmod be the functor as above. It yields
(8.2) d(B(R-gmod)) = B(R-gmod).

Here note that Proposition 8.3 can be seen as a generalization of Theorem 8.1.

Since as crystals B(ﬁ—gmod) =~ B; for any reduced longest word i, the proposition above gives
rise to the following problem.
Problem 1. Can we describe a-operation on B; = B;, ® - - - ® B, explicitly?

Of course, this problem is non-trivial since even for the case B(co) the explicit description has not
yet been done before in B;.
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8.2. Category %,. In [5], it has been shown that for an arbitrary symmetrizable Kac-Moody Lie
algebra and any Weyl group element w € W, there exists a subcategory %,, CR-gmod and it admits a
localization _

Gw=ClCT i €], (C; = M(WA;,A})
Indeed, note that for finite type Lie algebra setting, 6, = R-gmod.
Problem 2. We conjecture that the localization %} possess a crystal B(‘gv). If so, we also conjecture
that there is an isomorphism of crystals

B(%y)— B;, ®--® B,
where i; - - - i), is a reduced word of w.
8.3. Rigidity.

Definition 8.4. Let X, Y be objects in a monoidal category 7,and ¢ : X®Y —» landn: 1 > Y®X
morphisms in 7. We say that a pair (X, Y) is dual pair or X is a left dual to Y or Y is a right dual to
X if the following compositions are identities:

d®r, i id i
X2X0l Axgrex M iex=X v~y S rvexe? Hyel~y

We denote a right dual to X by D(X) and a left dual to X by D~!(X).

Theorem 8.5 ([5]). For any finite type R, ﬁ-gmod is rigid, i.e., every object in ﬁ-gmod has left and
right duals.

Note that in [6], it is shown that for any symmetrizable Kac-Moody setting the localized category
%, is rigid.
Problem 3. For a simple object Cp o S € B(ﬁ—gmod), describe the right and left duals explicitly:
Y(D(ChroS), WD (CroS) eB;
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