Arithmetic-geometric mean norm inequality for positive operators

Masatoshi Fujii

1. Introduction. First of all, this note is based on a joint work [10] with R.
Nakamoto.

The arithmetic-geometric mean inequality has been developed for positive operators
acting on a Hilbert space. We pay our attention to norm inequalities. We first recall the
Heinz inequality [12]: Let A and B be positive operators on a Hilbert space. Then

IAQ + QB[ = |A"QB" + A°QB'"||

holds for 0 < s < 1 and arbitrary operators (). In particular, as in the case s = %, we
have

2|A2QB?| < | AQ + QB (HIh)

It is understood as an arithmetic-geometric mean inequality by norm. Mclntosh [14] gave
an alternative as follows:

215QT| < [1S*SQ + QTT™|| (MI)

holds for arbitrary S, T and ). Moreover we discussed several norm inequalities equivalent
to them, e.g. Corach-Porta-Recht inequality [4]

|Re STS™!|| > ||T|| for selfadjoint S, T,
and
|Re A*T|| > ||AT A|| for A > 0 and selfadjoint 7,

see [5], [6], [7], [8], [9], [12] and [14].
Now the following inequality is quite standard as an arithmetic-geometric mean in-
equality by norm.

1
|AB] < ||§(A+B)H2 for A,B >0 (AGM)

It is known in [3] that it holds for positive semidefinite matrices. But we cannot find
a proof for positive operators. In this note, we give two proofs to it and discuss some
related inequalities.

2. A proof of (AGM). In this section, we give a proof to (AGM), which is based
on the proof for positive semidefinite matrices due to Bhatia and Kittaneh [3].



For convenience, we cite the following lemma:

Lemma 1. Let A, B > 0. Then
|A = Bl < max{||Al|, | B}

Proof. 1t is proved by —B < A — B < A.

Theorem 2. Let A, B > 0. Then
A|AB|| < [[(A+ B)?|.

Proof. The frame of our proof is just the same as that of Bhatia-Kittaneh. We put
Y = (A2 B3) and Q = A2B2. Then

. _ o (A Q
YY —A+BandYY—<Q* B)’

and so A +00" AQ+OB
2 +QQ" +

(Y Y)2 - (Q*A+ BQ* B2 + Q*Q) :

1 0

Next we take a unitary U = (0 1

) . Then, since

g AHOQ —(4Q+QB)
= (Lo Yoy g )

we have

Hence it implies that
I(Y"Y)? = U(YY)*U| = 2[|AQ + QB
Finally it follows from (HIh) and Lemma 2 that

4|AB| = 4] A2QB? |
< 2[|AQ + @B|
= [(YY)* - U(YY)'U||
< max{[|(Y*Y)?||, [U(Y"Y)*U|}
= [ Y)Y
= (YY)
= I(A+ B,

as desired.



3. A simple proof of (AGM). In this section, we present a simple proof of (AGM)
by the use of (HIh) and (MI). For convenience, we cite the latter again:

21SQT| < ||S*SQ + QTT™| (MI)
Proof of (AGM). It follows that
4| AB|| = 4/| A2 (A2 B2)B3|
< 2|AAZB? + A2 B2 B)||
= 2||Az(A+ B)B:|
= 2|A2(A + B)2(A+ B):Bz|
< |(A+ B)2A(A+ B)2 + (A+ B)2B(A + B)2
= [|(A+ B)?[,

as desired.

Remark. We may expect a generalization of Theorem 2 as follows:
4|AXB| < |[(A+ B)X(A+ B)|.

Unfortunately, we have a counterexample for this: We take

11 10
A=t = () wa xen

Then ||AXB|| = |AB|| = V2 and

4 2

I+ BxA+BI=1 (5 |

>H=5<4¢5=MMQBW

as required.

4. Weak (AGM) inequalities. It is well-known that ||A%B%|| < ||AB||% for
A, B > 0. So we remark that (AGM) implies that

2[AB| < [|A* + B?|
for A, B > 0. Moreover it is equivalent to a simple version of (MI), i.e.,
28T < ||S*S + 1T

via polar decompositions of S,7*. We here mention that the statement (i) in below is
shown by Tao [15] in the case of matrices.
Summing up, we have the following norm inequalities which are mutually equivalent.



Theorem 3. The following inequalities hold and mutually equivalent:
(1) K = (;} g) >0 = |K| > 2|X| for A, B >0 and arbitrary X.

(2) [|A = Bl < max{||A].,[|B] for A, B > 0.
(3) 2| XY*|| < [|X*X +Y*Y| and arbitrary S,T'.
(4) 2||AB| < ||A? + B?| for A, B > 0.

I -1 :
Proof. (1) = (2): Put U = \/% (I 7 ) Since

C1[A+B A-B\ . [A 0),.
Kl_E(A—B A+B>_U( >U20’

it follows from (1) that

A 0
4= Bl <l =1 (5 ) = maxlAlL 121,

(3): It is the same argument as a proof for (AGM) in Section 2. Put T' =

) =
(ii 8) and U = (é _OI> .Then it follows from (2) that

Y X* 0

= |TT* — UTT*U|

< max{|[TT"|, |[UTT"U]}
— 77| = |77

— | XX + YY),

. 0 Xy
2XY*| = 2| ( )

(3) & (4): It is obvious.

(3) = (1): Suppose that K = ()?* g) > 0. We may assume A > 0 by replacing A

to A4 ¢ for some ¢ > 0. Put R = A2 and S = A~2X. Then

0< R 0 A X\ (R 0\ (I RX
- \0 I)\X* B 0 I)] \X*R B )
I Z . . .
We here note that (Z* B) > 0 if and only if B > Z*Z. As a matter of fact, if

( ! Z) > 0, then it follows that

Z* B
o< (7 7) (%) (%)) = tBoe) 122
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Anyway we have B > (RX)*(RX) = X*A~'X, so that

A X A X R*R R*S « .
(e 2)020(3 enag ) 1= (Gp &9)I=1rmr+ 557

Applying (3), we have
|RR* + SS5™|| = 2||R*S|| = 2| X],

which completes the proof.

5. Positivity of operator matrices. The following result on the positivity of
operator matrices is used implicitly in this note. For convenience, we cite it with brief
proof.

Theorem 4. The following statements are mutually equivalent for A, B > 0 and

arbitrary X:
A X

W (x B
) (Az,z)(By,y) > [(Xy, x)|* for any vectors z,y.

) (Az,z) + (By,y) > 2|(Xy, x)| for any vectors z, y.
) B> X*(A+¢)7'X for all € > 0.
)

> 0.
2
3
4

X = A3 RB? for some contraction R.

(
(
(
(5

To prove this, we prepare a lemma for the basic case.

I X

Lemma 5. (1) Suppose B > 0. Then Y B

) > 0 if and only if B > X*X.

(2) Suppose A > 0. Then <5(4* )[(> > 0 if and only if A > X X*.

X* B
Proof. (1)IfBZX*X,then<[ X>>(I X >>O.

X* B) = \X* X*X )~
: I X
Conversely, if ( Yt B

o< (- ) (50).(50)) = o) = el

(2) Since (? é) (;‘ g) (? é) _ (ﬁ? "i) (2) follows from (1).

(3) We first note that (A X ) > (A X) > 0. Thus it follows from (2) and

(3) If <A X> > 0, then ||B||A > X X* and so ran A2 contains ran X.

) > 0, then we have

X* ||B] X* B
Douglas’ majorization theorem.



Proof of Theorem 4. (1) < (3): (1) is equivalent to (()?* ‘g) : (i)) = (Az,x) +

(By,y) + 2Re(Xy,x)| > 0 for any =,y € H, which implies (3). The reverse (3) = (1) is
shown by similar argument.

Next (3) = (2) is shown by replacing x to tx for arbitrary real numbers ¢, and (2) =
(3) is implied by AG mean inequality.

1

(1) & (4): We assume A > 0 for simplicity. Multiplying (AO
I 7

Z* B
(5) = (1): We note that if we put X = A2 RB2, then

A X\ (A 0\ [(I R\ [A: 0
X* B) \o Bx)\R I 0 Bz

(1) = (5) It is almost same as Ando’s proof in [1]:
Fix y € H. Tt follows from Lemma 5 (3) that Xy € ranAY2 or Xy = AY2z for a
unique z € ker A+. Hence we have

?) on both side, it

follows from the fact that ( ) > 0if and only if B > Z*Z.

(Az,2)(By,y) > [(Xy, ) > = |[(AV2z,2)|* = |(2, AY?2) 2,

so that
| BY2y|| > |(z,w)| for w € ranAY? with |jw]|| = 1.

Since z € ker A+, we have ||BY2y| > ||z||. Hence there exists a contraction W such that
WBY2y = 2, and so AY?W B2y = A2z = Xy, which completes the proof.

Now we point out that (AGM) is equivalent to

|A+ B|* 4AB _
4BA  ||A+B|?) =

: . . _ ((A+B)? 4AB
by virtue of (1) < (2) in Theorem 4. So we have a question: Is H = < ABA (A4 B)

positive? We give it a negative answer: We take
11 10
()

2 4

Then H = 15

.Sincele( >,>_‘O,WehaveHz0.

O W
O N W
VIS BN
O WO O

2
Another candidate of H is as follows: K = <(A +B) 4|45 )

AAB| (A+ B)?
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Unfortunately, it is “Negative”, too: We take the same matrices as above, i.e.,
11 10
=(11)7=600)

5 42
42 5

42

0
5
3

5

3 .
Then K = G .SmceK1:< )ZO,wehaveKZ‘O.
0

S O N W
N W OO

The Heinz-Kato inequality says that if an operator 7" satisfies T*T < A%, TT* < B2
for some A, B > 0, then
[(Tz,y) < [|A%z|[| BY|

holds for x,y € H and p,q € [0,1] with p+ ¢ = 1.
It is expressed as follows: If an operator T satisfies T*T < A%, TT* < B? for some

B* T .
A, B >0, then (T* A2p> >0 for x,y € H and p,q € [0,1] with p+ ¢ = 1.

The Heinz-Kato inequality is generalized by Furuta [11] as follows: If an operator
T = U|T| satisfies T*T < A%, TT* < B? for some A, B > 0, then

(TITP s, y) < [|APa|[| By

holds for z,y € H and p,q € [0,1] with p +¢ > 1.
B2 T|T|p+q—1> -

The inequality in the conclusion of it is expressed as ( (T|T|P+a-1)" A2

6. An application of a reverse Heinz inequality. First of all, we mention a
reverse Heinz inequality [12], [14]:

A QB ~A*QB || < |25— 1| AQ-QB] (RHI)

holds for s € [0, 1].
For reader’s convenience, we sketch a proof of (RHI):

Proof of (RHI). It suffices to show the case s € [%, 1]. Put
1
J={s¢e [5, 1]; (RHI) holds for s.}.

Since %,1 € J clearly, the convexity of J should be shown. So we suppose r,s € J with
r<s, A,B >0 and Q is an arbitrary operator. Put t = 1(r +s). Then s —t =t —r,
that is, s = 2t — r. Putting R = A"QB'~* — A'=*QB", it follows from (MI) that



|A'QBY — ATIQBY| = | AT RB|
S %HAQ(t—T)R_’_ RBQ(t—r)H

— %HASQBl—S . Al—rQB'r + ATQBl—'r o AI—SQBSH
1 —s —s s r —r —r r
< S{IIA'QBT - ATPQBY| + [AQBTT - ATTQB||}

S{(25 — DIIAQ - QB| + (2r — 1]} 4Q - QBI)

(2t - D]AQ — @B,

IN

as desired.
Now, Bhatia [2] gave the following estimation on the power of positive operators:
Theorem B. If A, B > al for some a > 0, then
|A" = B"|| < ra”"Y|A - B
holds for all r € [0, 1].

We propose an extension of Theorem B by the use of (RHI) as follows:

Theorem 6. If A, B > al for some a > 0, then
|A"Q = QB"|| < ra” '[|AQ — QB||
holds for all r € [0, 1] and arbitrary operators Q.
Proof. The point of the proof is (RHI):

IAQB" — A*QB'™| < |25 — 1][|AQ — QB|

holds for s € [0,1]. Put s = &~ for a given r € [0,1]. Since 2s —1 =7 and 1 — s = 5%,

we have

|47Q — QB[ = A" (4°QB" — A QBB
< A B AQBY — AT QB
< 25~ 1/][4Q - QB
—ra4Q - QB

as desired.



Appendix. In this talk, we posed the following figuare as a graphic proof of the
classical arithmetic-geometric mean inequality:

a+b
2
Vab
b/
a

After the talk, Ohwada, one of the organizers, informed an interesting improvement
of it in [13], precisely
2
< (a+0) < a+b.
24/2(a® + b?) 2

The middle term () in above appears in the figure as follows:

a-+b
2
(1) Vab
b/

It is easily generalized in the following way:

2v/ab

Proposition 7. If £ > 2 for given a > b > 0, then

k(a+b) _a+b
Vab < < :
¢ T2VEkP4+1 T 2

In particlar, the previous inequality is obtained by taking k =

a+b
a—1b
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