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Abstract
We consider Latin hexahedra satisfying a certain property similar to Latin
squares. We review basic properties of Latin hexahedra and study constructions
of such objects. In particular, constructions of separable Latin hexahedron are
discussed.

1 Latin Hexahedra and related combinatorial designs

The concept of a Latin hexahedron is introduced by Yamamura [5] in which Latin
hexahedra is shown to have close connection to combinatorial designs that are related
to one-factorization of the complete tripartite graph K(2k,2k,2k) and the complete
quadripartite graph K(n,n,n,n). We discuss properties of such combinatorial objects
and various constructions. A reader is referred to [8] for terminologies and results on
Latin hexahedra.

Let us recall the definitions and basic properties of a Latin hexahedron and related
concepts. Let A be an n x m matrix filled with integers in {1,2,3,...,k}, where k =
max(n,m). If no integer appears more than once in any row or column, then A is called
a Latin rectangle. A Latin square of order n is an n X n Latin rectangle. A reader is
referred to [I] for Latin squares.

A regular hexahedron of order n is a polyhedron consisting of six faces, each of
which forms an n x n matrix filled with integers in {1,2,3,...,4n}. A net of a hexahe-
dron is an arrangement of a non-overlapping edge-joined polygon which can be folded
along edges to become faces of the hexahedron. A circuit of a regular hexahedron of
order n is a 1 x 4n subarray in one of its nets. A circuit of a regular hexahedron of
order 2 is shown in Figure . We note that there exist precisely 3n circuits on a regular
hexahedron of order n. A regular hexahedron of order # is called Latin if every integer
in {1,2,3,...,4n} appears exactly once in every circuit. A Latin regular hexahedron of
order 2 and its net are shown in Figure .

A Sudoku Latin square is a 9 x 9 matrix filled with integers in {1,2,3,4,5,6,7,8,9}
such that each column, each row, and each of the nine 3 x 3 sub-matrices contain all
of the integers from 1 to 9. It appears in the number-placement puzzle. We intro-
duce a similar property into Latin regular hexahedra. Let L be a Latin regular hex-
ahedron of order n. We say L is a Latin sudoku regular hexahedron if every integer



Figure 1: Circuit of a regular hexahedron of order 2
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Figure 2: Latin regular hexahedron of order 2 and its net

in {1,2,3,...,4n} appears exactly once on each face. For example, a net in Figure
B gives a Latin sudoku regular hexahedron of order 4. We also say that L is a Latin
quasi-sudoku regular hexahedron with multiplicity m if every integer in {1,2,3,...,4n}
appears exactly m times on each face. Existence of a Latin regular hexahedron and a
Latin quasi-sudoku regular hexahedron is proved in [8].
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Figure 3: Net of a Latin sudoku regular hexahedron of order 4

Theorem 1.1 ([8]) Let n be a positive integer.

(1) A Latin regular hexahedron of order n exists if and only if n is even.

(2) There exists a Latin quasi-sudoku regular hexahedron of order 4n with multiplicity
n. In particular, there exists a Latin sudoku regular hexahedron of order 4.

Two proofs are given in [8]. The first one depends on Hall’s marriage theorem, on
the other hand, the second one is given by using related combinatorial structures called
a Latin three-axis design, which are described next. This proof provides a concrete
construction of such combinatorial designs.



We consider a combinatorial structure related to Latin hexahedra. It can be applied
to construct a Latin hexahedron as we see next. Suppose A,C,D are n X n squares.
We consider a combination obtained by pasting these squares along edges in three
dimensional space. Then the triple (A,C, D) is considered as a complex with three axes
op, oq and or shown in Figure B. The triple (A,C, D) is called a Latin three-axis design
of order n. Each face is coordinated by two of its axes. This implies that any subarray
of any net of the complex in Figure B is a Latin rectangle where Q represents the array
obtained from D by rotating % counterclockwise. Figure B shows a Latin three-axis
design of order 2.
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Figure 4: Latin three-axis design and its net
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Figure 5: Latin three-axis design of order 2

Next we introduce another combinatorial design. Suppose A,B,C,D,E ,F are n X n
squares. The sextuple (A,B,C,D,E F) is considered as a complex with four axes op,
o0q, or and os shown in Figure B. Each face is coordinated by two of its axes. If every
array in () is a Latin rectangle, we say that (A,B,C,D,E,F) is a Latin four-axis
design of order n.
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Existence of a Latin three-axis design and a Latin four-axis design are proved in [5].
We summarize results on existence of such combinatorial designs as Theorem 2.



Figure 6: Latin four-axis design

Theorem 1.2 ([S]) Let n be a positive integer.

(1) There exists no Latin three-axis design of order 2n — 1.
(2) There exists a Latin three-axis design of order 2n.

(3) There exists a Latin four-axis design of order n.

Latin three-axis design and a Latin four-axis design are closely related to pone-
factorization of the complete tripartite graph K (2n,2n,2n) and the complete quadripar-
tite graph K(n,n,n,n). Let us recall terminologies in graph theory. A subgraph of a
graph G is called a factor if it includes all of the vertices of G. (see [, 3, 8]). If every
vertex of a factor has degree £, then it is called a h-factor. Therefore, a 1-factor of a
graph G = (V,E) is a subgraph such that the set of vertices is V and every vertex has
exactly one edge incident on it. If E can be partitioned into disjoint subsets so that G
decomposes into 1-factors, then G is called one-factorizable. It is known that every
complete bipartite graph K(n,n) is one-factorizable. Likewise, a Latin three-axis de-
sign and a Latin four-axis design have close connection with one-factorization of the
complete tripartite graph and the complete quadripartite graph.

Theorem 1.3 ([S]) Let n be a positive integer.

(1) The complete tripartite graph K(2n,2n,2n) is one-factorizable if and only if there
exists a Latin three-axis design of side 2n.

(2) The complete quadripartite graph K(n,n,n,n) is one-factorizable if and only if
there exists a Latin four-axis design of side n.

Aa a direct consequence of Theorem [ and 3, we can conclude the existence of
one-factorization of the complete tripartite graph and the complete quadripartite graph
as follows.

Corollary 1.4 ([S]) Let n be a positive integer.
(1) The complete tripartite graph K (2n,2n,2n) is one-factorizable.
(2) The complete quadripartite graph K (n,n,n,n) is one-factorizable.

2 Construction of a Latin regular hexahedron using Latin
three-axis designs

The existence of a Latin regular hexahedron of order 2n has been already proved in
Theorem T2 in which Hall’s marriage theorem is used. We have another proof that



concretely construct a Latin regular hexahedron of order 2n using Latin three-axis de-
signs. We review such a construction.

Suppose L; and L, are Latin three-axis designs such that |L;| = {1,2,3,...,4n}
and |Ly| = {4n+ 1,4n+2,4n+3,...,8n}, nets of which are given in (), where
A,B,C,D,E and F are 2n x 2n arrays, respectively.
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We can obtain a Latin regular hexahedron pasting L; and L, along edges. Two of its
nets are shown in Figure [I. As a matter of fact, the Latin regular hexahedron given in
Figure D is constructed in this fashion.
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Figure 7: Nets of Latin regular hexahedron obtained by pasting L and L,

Let us call a Latin box separable if it can be constructed by pasting two three-
axis designs D and D, as above, and inseparable otherwise. We shall show every
Latin hexahedron is not necessarily separable, that is, there exists an inseparable Latin
hexahedron.

On the other hand, we have verified that all Latin boxes of side 2 are separable
by a computer experiment, that is, every Latin regular hexahedron of order 2 can be
constructed by pasting two disjoint three-axis designs and transposing integers on cells
in contrapositions.

Let L be a Latin sudoku box assembled by a development given in Figure B. Sup-
pose L is obtained from a Latin box L’ of side 4 that is obtained from three-axis designs
D) and D, with |D;|N|D;| = @ by the method given above and transposing integers
at contrapositions. We set P, = |D;| for i = 1,2, respectively. Then each P; (i = 1,2)
contains exactly 8 integers, respectively, and P, NP, = 0. Let L(i) be the set of in-
tegers placed at the contrapositions of the cells on which an integer i is placed on L.
Similarly, let L' (i) be the set of integers placed at the contrapositions of the cells on
which an integer i is placed on L’. Since L is obtained from L' by transposing in-
tegers placed on transpositions, we have L(i) = L'(i) for every i. We may assume
that 1 is located on Dy, that is, 1 belongs to P;. Checking Figure B, we can verify
the integers 2, 4, 8, 12 and 16 are placed at the contrapositions of the cells where
1 is placed on L. Therefore we have {2,4,8,12,16} = L(1) = L'(1) C P, because
1 € P; and the contrapositions of the cells where 1 is placed are located on D;. Sim-
ilarly we have {1,3,5,7,9,10,11,13,14,15} = L(2) UL(4) UL(8) UL(12) UL(16) =
L'(2)uL'(4)uL'(8) UL (12) UL'(16) C P,. We continue the process and obtain Ta-
ble O. It follows that P, = P, = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}, which
contradicts to that P; and P, are disjoint. See Table [. Consequently, L cannot be con-
structed from two three-axis designs by transposing integers at contrapositions. It fol-
lows that not every Latin regular hexahedron can be constructed in the method above.
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Figure 8: Inseparable Latin box

Pl

B2 4 8 12 16

Pyl 3 5 7 9 10 11 13 14 15

|2 4 6 7 8 9 10 11 12 13 14 15 16

1 23 4 5 6 7 8 9 10 11 12 13 14 15
hpLII1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 1: Partition
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