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Abstract:

The purpose of the present manuscript is to give a survey of the Hodge-Arakelov
theory of elliptic curves (cf. [Mzk1,2]) — i.e., a sort of “Hodge theory of elliptic
curves” analogous to the classical complex and p-adic Hodge theories, but which
exists in the global arithmetic framework of Arakelov theory — as this theory ex-
isted at the time of the workshop on “Galois Actions and Geometry” held at the
Mathematical Sciences Research Institute (MSRI) at Berkeley, USA, in October
1999. Since then, various further important developments have occurred in this
theory (cf. [Mzk3,4,5], etc.), but we shall not discuss these developments in detail
in the present manuscript.
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Section 1: The Discretization of Local Hodge Theories

§1.1. The Main Theorem

The fundamental result of the Hodge-Arakelov theory of elliptic curves is a
Comparison Theorem (cf. Theorem A below) for elliptic curves, which states
roughly that:

The space of “polynomial functions” of degree (roughly) < d on
the universal extension of an elliptic curve maps isomorphically
via restriction to the space of (set-theoretic) functions on the
d-torsion points of the universal extension.

This rough statement is essentially precise for (smooth) elliptic curves over fields of
characteristic zero (cf. Theorem Asimple). For elliptic curves in mixed characteristic
and degenerating elliptic curves, this statement may be made precise (i.e., the
restriction map becomes an isomorphism) if one modifies the “integral structure”
on the space of polynomial functions in an appropriate fashion (cf. Theorem A).
Similarly, in the case of elliptic curves over the complex numbers, one can ask
whether or not one obtains an isometry if one puts natural Hermitian metrics on
the spaces involved. In [Mzk1], we also compute what modification to these metrics
is necessary to obtain an isometry (or something very close to an isometry).

In characteristic zero, the universal extension of an elliptic curve may be re-
garded as the de Rham cohomology of the elliptic curve, with coefficients in the
sheaf of invertible functions on the curve. On the other hand, the torsion points of
the elliptic curve may be regarded as a portion of the étale cohomology of the elliptic
curve. Thus, one may regard this Comparison Theorem as a sort of isomorphism
between the de Rham and étale cohomologies of the elliptic curve, given by consid-
ering functions on each of the respective cohomology spaces. When regarded from
this point of view, this Comparison Theorem may be thought of as a sort of discrete
or Arakelov-theoretic analogue of the usual comparison theorems between de Rham
and étale/singular cohomology in the complex and p-adic cases. This analogy with
the “classical” local comparison theorems can be made very precise, and is one of
the main topics of [Mzk1], Chapter IX.

Using this point of view, we apply the Comparison Theorem to
construct a global/Arakelov-theoretic analogue for elliptic curves
over number fields of the Kodaira-Spencer morphism of a family
of elliptic curves over a geometric base.

This arithmetic Kodaira-Spencer morphism will be discussed in detail in §1.4.

Suppose that E is an elliptic curve over a field K of characteristic zero. Let d
be a positive integer, and η ∈ E(K) a torsion point of order not dividing d. Write

L def= OE(d · [η])
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for the line bundle on E corresponding to the divisor of multiplicity d with support
at the point η. Write

E† → E

for the universal extension of the elliptic curve, i.e., the moduli space of pairs
(M,∇M) consisting of a degree zero line bundle M on E, together with a con-
nection ∇M. Thus, E† is an affine torsor on E under the module ωE of invariant
differentials on E. In particular, since E† is (Zariski locally over E) the spectrum
of a polynomial algebra in one variable with coefficients in the sheaf of functions
on E, it makes sense to speak of the “relative degree over E” – which we refer to
in this paper as the torsorial degree – of a function on E†. Note that (since we are
in characteristic zero) the subscheme E†[d] ⊆ E† of d-torsion points of E† maps
isomorphically to the subscheme E[d] ⊆ E of d-torsion points of E. Then in its
simplest form, the main theorem of [Mzk1] states the following:

Theorem Asimple. Let E be an elliptic curve over a field K of characteristic
zero. Write E† → E for its universal extension. Let d be a positive integer, and
η ∈ E(K) a torsion point whose order does not divide d. Write L def= OE(d · [η]).
Then the natural map

Γ(E†,L)<d → L|E†[d]

given by restricting sections of L over E† whose torsorial degree is < d to the d-
torsion points E†[d] ⊆ E† is a bijection between K-vector spaces of dimension
d2.

The remainder of the main theorem essentially consists of specifying precisely how
one must modify the integral structure of Γ(E†,L)<d over more general bases in
order to obtain an isomorphism at the finite and infinite primes of a number field,
as well as for degenerating elliptic curves.

Let us first consider the integral structures on the left-hand (de Rham side) of
the isomorphism of Theorem Asimple necessary to make this isomorphism extend
to an isomorphism at finite primes and for degenerating elliptic curves (i.e., as the
“q-parameter” goes to zero). These integral structures may be described as follows.
Let us work over a formal neighborhood of the point at infinity on the moduli stack
of elliptic curves — i.e., say, the spectrum of a ring of power series of the form

S
def= Spec(O[[q

1
N ]])

where O is a Dedekind domain of mixed characteristic, q an indeterminate, and
N a positive integer. Write Ŝ for the completion of S with respect to the q-adic
topology, and E → S for the tautological degenerating elliptic curve (more precisely:
one-dimensional semi-abelian scheme), with “q-parameter” equal to q. Then we
have natural isomorphisms
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E|
�S
∼= Gm; ωE = OS · d log(U); E†|

�S
∼= Gm × A1

where we write U for the usual multiplicative coordinate on Gm (cf. [Mzk1], Chap-
ter III, Theorem 2.1; the discussion of [Mzk1], Chapter III, §6, for more details). If
we write “T” for the standard coordinate on this affine line, then near infinity, the
standard integral structure on E† may be described as that given by

⊕
r≥0

OGm
· T r

On the other hand, the “étale integral structure” on E† — i.e., the integral structure
on E† that makes the restriction morphism of Theorem Asimple an isomorphism in
mixed characteristic — is given by

⊕
r≥0

OGm
·
(

d · {T − (iχ/n)}
r

)

where iχ/n ∈ Q is an invariant determined by the torsion point η, and
(
X
r

) def=
1
r!X(X − 1) · . . . · (X − (r − 1))). Although the above definition of this integral
structure is only valid near infinity, this integral structure may, in fact, be extended
over the entire moduli stack of elliptic curves (over Z). This fact is discussed in
[Mzk1], Chapter V, §3, and [Mzk3], §9. Near infinity, one must further modify this
integral structure by introducing certain poles — which we refer to as Gaussian
poles (since they essentially look like “the exponential of a quadratic function”) —

⊕
r≥0

OGm
·
(

d · {T − (iχ/n)}
r

)
· q−ar

where

ar ≈ r2

8d

(for a precise discussion of ar, cf. [Mzk1], Chapter VI, Theorem 3.1, (3); [Mzk1],
Chapter V, §4).

We are now ready to state the more general version of the comparison isomor-
phism (albeit in a somewhat “digested form”). For a more precise (and much more
lengthy and technical statement!), we refer to [Mzk1], Introduction, Theorem A. In
the remainder of this paper, we will use the following

Notation and Conventions:

We will denote by (Mlog

ell )Z the log moduli stack of log elliptic curves over Z (cf.
[Mzk1], Chapter III, Definition 1.1), where the log structure is that defined by the
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divisor at infinity. The open substack of (Mell)Z parametrizing (smooth) elliptic
curves will be denoted by (Mell)Z ⊆ (Mell)Z.

Theorem A. (The Hodge-Arakelov Comparison Isomorphism) If one
equips the left-hand side (de Rham side) of the restriction morphism of Theorem
Asimple with the “étale integral structure” and “Gaussian poles” just discussed, then
this restriction morphism becomes an isomorphism over the entire moduli stack
(Mell)Z, except possibly over the schematic intersection of the torsion point η with
the scheme E[d] ⊆ E of d-torsion points. Moreover, at archimedean primes,
the left and right hand sides of this restriction morphism admit natural Hermitian
metrics with respect to which the deviation of the restriction morphism from being
an isometry may be estimated using Hermite, Legendre, and binomial coefficient
polynomials (cf. the discussion below, as well as [Mzk1], Introduction, Theorem A,
for more details).

Before continuing, we remark that the factor of 1
8d appearing in the Gaussian

poles in the exponent may be justified by the following calculation: On the one
hand, if one thinks in terms of degrees of vector bundles on (Mell)C, the degree of
the left-hand side of the comparison isomorphism (without Gaussian poles!) goes
roughly as

d−1∑
j=0

deg(τ⊗j
E ) =

d−1∑
j=0

j · deg(τE) ≈ 1
2
d2 · deg(τE) = −1

2
d2 · 1

12
log(q) = −d2

24
· log(q)

where “log(q)” is a symbol that stands for the element in Pic((Mell)C) defined by
the divisor at infinity. (It turns out that the contribution to the degree by the line
bundle L is negligible.) On the other hand, the sum of the degrees resulting from
the Gaussian poles is

d−1∑
j=0

j2

8d
· log(q) ≈ 1

3
d3 · 1

8d
· log(q) =

d2

24
· log(q)

In other words, the factor of 1
8d is just enough to make the total degree 0. Since the

restriction of L to the torsion points is (essentially) a “torsion line bundle” (i.e.,
some tensor power of it is trivial), the degree of the range of the evaluation map is
zero – i.e., the factor of 1

8d is just enough to make the degrees of the domain and
range of the evaluation map of Theorem A equal (which is natural, since we want
this evaluation map to be an isomorphism). In fact,

It turns out that the original proof (cf. [Mzk1], Chapter VI, §3)
of the characteristic zero portion of Theorem A (i.e., Theorem
Asimple), is based on precisely this sort of “summation of degrees”
argument.
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In this proof, however, in order to get an exact isomorphism, it is necessary to
compute all the degrees involved precisely. This computation requires a substan-
tial amount of work (involving, for instance, the theory of [Zh]) and is carried out
in [Mzk1], Chapters IV, V, VI. An alternative — and, in the opinion of the au-
thor, much simpler and more elegant (albeit somewhat less explicit!) — proof of
the characteristic zero portion of Theorem A using characteristic p methods (i.e.,
“Frobenius and Verschiebung”) is given in [Mzk5].

On the other hand, the key point of the archimedean portion of Theorem A
is the comparison of what we refer to as the étale and de Rham metrics || ∼ ||et,
|| ∼ ||DR (which are naturally defined on the range and domain of the comparison
isomorphism, respectively). Unfortunately, we are unable to prove a simple sharp
result that they always coincide (relative to the comparison isomorphism). Instead,
we choose three natural “domains of investigation” – which we refer to as models –
where we estimate the difference between these two metrics using a particular system
of functions which are well-adapted to the domain of investigation in question. One
of the most important features of these three models is that they each have natural
scaling factors associated to them. The three models, along with their natural
scaling factors, and natural domains of applicability are as follows:

Hermite Model (scaling factor = d
1
2 ) : nondegenerating E, fixed r < d

Legendre Model (scaling factor = d) : nondegenerating E, varying r < d

Binomial Model (scaling factor = 1) : degenerating E

It is interesting to observe that the exponents appearing in these scaling factors,
i.e., 0, 1

2 , 1, which we refer to as slopes, are precisely the same as the slopes that
appear when one considers the action of Frobenius on the crystalline cohomology
of an elliptic curve at a finite prime – cf. the discussions at the end of [Mzk1],
Chapter VII, §3, 6, for more on this analogy.

§1.2. Technical Roots

Let K be an algebraically closed field of characteristic 0. Let E be an elliptic
curve over K. Let L be the line bundle of Theorem Asimple. Then instead of
considering sections of L over E†, one can consider sections of L over E. Such
sections may be restricted to L|E[d]. Moreover, by the theory of algebraic theta
functions (cf. [Mumf1,2,3]), the restriction L|E[d] of L to the d-torsion points E[d] ⊆
E admits a canonical trivialization

L|E[d]
∼= L|0E

⊗K OE[d]

(where 0E ∈ E(K) is the zero element) — at least when d is odd. Thus, by
composing the restriction morphism with this trivialization, we obtain a morphism
(as in [Mumf1,2,3]):
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Γ(E,L) ↪→ L|E[d]
∼= L|0E

⊗K OE[d]

i.e., one may think of sections of L over E as functions on E[d]. These functions
are Mumford’s “algebraic theta functions.”

Now let us observe that dimK(Γ(E,L)) = d, while dimK(L|0E
⊗K OE[d]) = d2.

That is to say, Mumford’s theory only addresses a fraction (more precisely: 1
d) of

the functions in L|0E
⊗K OE[d]. Thus, it is natural to ask:

Is there a natural extension of Mumford’s theory that allows one
to give meaning to all the functions of L|0E

⊗K OE[d] as some
sort of “global” sections of L?

Theorem Asimple provides a natural, affirmative answer to this question: i.e., it
states that these functions may be interpreted naturally as the sections of L over
the universal extension E† of torsorial degree < d.

In more classical terms, to consider the universal extension amounts essen-
tially to considering the derivatives of (classical) theta functions (cf., e.g., [Katz1],
Appendix C). For instance, if one takes K = C, and writes

θτ (z) def=
∑
n∈Z

eπiτ ·n2 · e2πiz·n

for the “standard theta function” (where z ∈ C, τ ∈ H
def= {w ∈ C | Im(w) > 0}),

then up to the operation of taking the Fourier expansion, this theta function is
essentially a “Gaussian eπiτ ·n2

,” and its derivatives P ( ∂
∂z ) · θτ (z) (where P (−) is a

polynomial with coefficients in C) are given by polynomial multiples of (which are
equivalent to derivatives of) the Gaussian:

P (2πi · n) · eπiτ ·n2

Just as theta functions are the “fundamental functions on an elliptic curve” (more
precisely: generate the space of sections of L over E), these derivatives are the “fun-
damental functions on the universal extension of the elliptic curve” (more precisely:
generate the space of sections of L over E†). This point of view is discussed in more
detail in [Mzk1], Chapter III, §5, 6, 7; [Mzk1], Chapter VII, §6. As one knows from
elementary analysis, the most natural polynomial multiples/derivatives of a Gauss-
ian are those given by the Hermite polynomials. It is thus natural to expect that
the Hermite polynomials should appear naturally in the portion of this theory con-
cerning the behavior of the comparison isomorphism at archimedean primes. This
intuition is made rigorous in the theory of [Mzk1], Chapters IX, X. In fact, more
generally:

The essential model that permeates the Hodge-Arakelov theory of
elliptic curves is that of the Gaussian and its derivatives. This
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model may be seen especially in the “Gaussian poles,” as well as
in the “Hermite model” at the infinite prime (cf. §1.1, Theorem
A).

In the classical theory over C, the most basic derivative of the theta function is
the so-called Weierstrass zeta function (cf. [Katz1], Appendix C). It should thus
not be surprising to the reader that various generalizations of the Weierstrass zeta
function – which we refer to as Schottky-Weierstrass zeta functions (cf. [Mzk1],
Chapter III, §6, 7) – play a fundamental role in [Mzk1].

So far, in the above discussion, we concentrated on smooth elliptic curves. On
the other hand, when one wishes to consider degenerating elliptic curves, Zhang has
constructed a theory of metrized line bundles on such degenerating elliptic curves
(cf. [Zh]). In this theory, one can consider the curvatures of such metrized line
bundles, as well as intersection numbers between two metrized line bundles in a
fashion entirely similar to Arakelov intersection theory. Using Zhang’s theory of
metrized line bundles, it is not difficult to extend Mumford’s theory of algebraic
theta functions in a natural fashion to metrized ample line bundles on degenerating
elliptic curves (cf., e.g., [Mzk1], Chapter IV, §5, for more details). Unfortunately,
however, just as Mumford’s theory only addresses sections over the original elliptic
curve (as opposed to over the universal extension, as discussed above), Zhang’s
theory also only deals with the theory of metrized line bundles over the original
(degenerating) elliptic curve. Thus, it is natural to ask whether one can generalize
Theorem Asimple to the case of degenerating elliptic curves in such a way that the
resulting generalization of the portion of Γ(E†,L) arising from sections over E is
compatible with Zhang’s theory of metrized line bundles (and their sections) over
E. In other words, it is natural to ask:

Can one “de Rham-ify” the theory of [Zh], so that it addresses
the “metric” behavior of sections of L not only over E, but over
E†, as well?

An affirmative answer to this question is given by the theory of Gaussian poles, or
“analytic torsion at the divisor at infinity” – cf. [Mzk1], Chapters V, VI.

Another way to view the relation to Zhang’s theory is the following. One
consequence of the theory of [Zh] is the construction of a natural “metric” (or
integral structure) on the space ωE of invariant differentials on a (degenerating)
elliptic curve. If we regard ωE as a line bundle on the compactified moduli space
of elliptic curves, then Zhang’s “admissible metric” on ωE essentially amounts to
the (metrized) line bundle ωE(− 1

12 · ∞) (where ∞ is the divisor at infinity of the
moduli space), i.e., the line bundle ωE with integral structure at infinity modified
by tensoring with O(− 1

12 ·∞). Moreover, it follows from Zhang’s theory that there
is a natural trivialization

ωE(− 1
12

· ∞) ∼= O
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of this metrized line bundle over the moduli space. The 12-th tensor power of this
trivialization is the cuspidal modular form usually denoted “Δ” ([KM], Chapter
8, §8.1). Similarly, Theorem A states that by allowing “Gaussian poles” in the
sections of Γ(E†,L), one gets a natural isomorphism between Γ(E†,L) (with this
modified integral structure) and a vector bundle which is trivial (in characteristic
zero) over some finite log étale covering of the compactified moduli (log) stack of
elliptic curves. That is to say,

One may regard the theory of Gaussian poles/analytic torsion at
the divisor at infinity in Theorem A as a sort of “GL2-analogue”
of the isomorphism of line bundles (i.e., Gm-torsors) ωE(− 1

12 ·
∞) ∼= O — or, alternatively, a GL2-analogue of the modular
form Δ.

Note: The reason that we mention “GL2” is that the vector bundle on the “étale
side” of the comparison isomorphism of Theorem A arises naturally (at least in
characteristic zero) from a representation (defined by the Galois action on the d-
torsion points) of the fundamental group of the moduli stack of elliptic curves into
GL2, whereas the isomorphism ωE(− 1

12 · ∞) ∼= O naturally corresponds to an
abelian representation (i.e., a representation into Gm which is, in fact, of order 12)
of this fundamental group – cf. [KM], Chapter 8, §8.1.

§1.3. Conceptual Roots

§1.3.1 From Absolute Differentiation to Comparison Isomorphisms

Let K be either a number field (i.e., a finite extension of Q) or a function field in
one variable over some coefficient field k (which we assume to be algebraically closed
in K). Let S be the unique one-dimensional regular scheme whose closed points
s correspond naturally (via Zariski localization of S at s) to the set of all discrete
valuations of K (where in the function field case we assume that the elements of
k× are units for the valuations). We shall call S the complete model of K. Of
course, in the number field case, it is natural to “formally append” to S the set of
archimedean valuations of K.

Let

E → S

be a one-dimensional, generically proper semi-abelian scheme over S, i.e., EK
def=

E ×S K is an elliptic curve over K with semi-stable reduction everywhere. Then
E defines a classifying morphism

α : S → (Mell)Z
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to the compactified moduli stack of (log) elliptic curves over Z. It is natural to
endow S with the log structure arising from the set of closed points at which
E → S has bad reduction. Then α extends to a morphism αlog : Slog → (Mlog

ell )Z

in the logarithmic category.

Now, in the function field case, if we differentiate α, we obtain the Kodaira-
Spencer morphism of E → S:

κE : ω⊗2
E

∼= α∗Ω
(Mlog

ell )Z

→ ΩSlog/k

(where ωE is the restriction to the identity section of E → S of the relative cotan-
gent bundle of E over S). Since ωE is naturally the pull-back via α of an ample line
bundle on (Mell)Z, and κE is typically nonzero (for instance, it is always nonzero if
K is of characteristic zero and E → S is not isotrivial (i.e., trivial after restriction
to a finite covering of S)), the existence of the Kodaira-Spencer morphism κE gives
rise to a bound on the height of E → S by the degree of ΩSlog/k. The thrust of
a family of conjectures due to Vojta (cf. [Lang], [Vojta]) is that this bound (or at
least, a bound roughly similar to this bound) in the geometric case (i.e., the case
when K is a function field) also holds in the “arithmetic case” (i.e., the case when
K is a number field). Thus,

In order to prove Vojta’s Conjecture in the arithmetic case, it is
natural to attempt to construct some sort of arithmetic analogue
of the Kodaira-Spencer morphism.

Indeed, this point of view of approaching the verification of some inequality by first
trying to construct “the theory underlying the inequality” is reminiscent of the
approach to proving the Weil Conjectures (which may be thought of as inequalities
concerning the number of rational points of varieties over finite fields) by attempting
to construct a “Weil cohomology theory” for varieties over finite fields which has
enough “good properties” to allow a natural proof of the Weil Conjectures.

Of course, if one tries to construct any sort of naive analogue of the Kodaira-
Spencer morphism in the arithmetic case, one immediately runs into a multitude
of fundamental obstacles. In some sense, these obstacles revolve around the fact
that the ring of rational integers Z does not admit “a field of absolute constants”
F1 ⊆ Z. If such a field of absolute constants existed, then one could consider
“absolute differentials ΩZ/F1 ,” or

“ΩOK/F1”

Moreover, since moduli spaces tend to be rather absolute and fundamental objects,
it is natural to imagine that if one had a field of absolute constants “F1,” then
(Mell)Z should descend naturally to an object (Mell)F1 over F1, so that one could
differentiate the classifying morphism α : S → (Mell)Z in the arithmetic case, as
well, to obtain an arithmetic Kodaira-Spencer morphism
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“κE : ω⊗2
E

∼= α∗Ω
(Mlog

ell )F1
→ ΩSlog/F1

”

and then use this arithmetic Kodaira-Spencer morphism to prove Vojta’s Conjec-
ture concerning the heights of elliptic curves. (Note: In this case, Vojta’s Conjecture
is also referred to as “Szpiro’s Conjecture.”)

Unfortunately, this sort of “absolute field of constants F1” does not, of course,
exist in any naive sense. Thus, it is natural to look for a more indirect, abstract
approach. In the geometric case, when k = C, the algebraic curve S defines a
Riemann surface San. Let us write US ⊆ S for the open subobject where the log
structure of Slog is trivial. Then the first singular cohomology module of the fibers
of E → S naturally forms a local system

H1
sing(E/S, Z)

on the Riemann surface Uan
S . One the other hand, the first de Rham cohomology

module of the fibers of E → S forms a rank two vector bundle

H1
DR(E/S,OE)

on Uan
S . This de Rham cohomology admits a Hodge filtration, which may be thought

of as a natural exact sequence:

0 → ωE → H1
DR(E/S,OE) → τE → 0

Moreover, this vector bundle H1
DR(E/S,OE) on Uan

S admits a connection ∇DR —
called the Gauss-Manin connection — which allows one to differentiate sections of
H1

DR(E/S,OE). Using this connection ∇DR to differentiate the Hodge filtration
gives rise to a natural morphism

ΘSlog/k → τ⊗2
E

(where ΘSlog/k is the dual to ΩSlog/k) which is dual to the Kodaira-Spencer mor-
phism κE . Thus,

Another way to think of our search for “F1” or “a notion of ab-
solute differentiation” is as the search for an arithmetic analogue
of the Gauss-Manin connection ∇DR on the de Rham cohomology
H1

DR(E/S,OE).

This is the first step towards raising our search for an arithmetic Kodaira-Spencer
morphism to a more abstract level.

Next, let us recall that the de Rham isomorphism defines a natural isomorphism
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H1
DR(E/S,OE) ∼= H1

sing(E/S, Z) ⊗Z OUan
S

(in the complex analytic category) over Uan
S . Moreover, the sections of H1

DR(E/S,OE)
defined (via this isomorphism) by sections of H1

sing(E/S, Z) are horizontal for ∇DR.
Thus, we conclude that:

To construct the Gauss-Manin connection ∇DR, it is enough to
know the de Rham isomorphism between de Rham and singular
cohomology.

The de Rham isomorphism is a special case of the general notion of a Comparison
Isomorphism between de Rham and singular/étale cohomology. In the last few
decades, this sort of Comparison Isomorphism has been constructed over p-adic
bases, as well (cf., e.g., [Falt1,2], [Hyodo]). In the arithmetic case, we would like
to construct some sort of analogue of the Kodaira-Spencer morphism over S which
also has natural integrality properties at the archimedean places, as well (since we
would like to use it conclude inequalities concerning the height of the elliptic curve
EK). Put another way, we would like to construct some sort of arithmetic Kodaira-
Spencer morphism in the context of Arakelov theory. Thus, in summary, the above
discussion suggests that:

In order to construct this sort of arithmetic Kodaira-Spencer
morphism, a natural approach is to attempt to construct some
sort of Comparison Isomorphism in the “Arakelov the-
ater,” analogous to the well-known complex and p-adic Com-
parison Isomorphisms between de Rham and étale/singular co-
homology.

The construction of such an Arakelov-theoretic Comparison Theorem is the main
goal of the Hodge-Arakelov theory of elliptic curves. To a certain extent, this goal
is achieved by Theorem A (cf. §1.1). For a detailed explanation of the sense in
which the Comparison Isomorphism of Theorem A is analogous to the well-known
complex and p-adic Comparison Isomorphisms, we refer to [Mzk1], Chapter IX. Un-
fortunately, however, for various technical reasons, the arithmetic Kodaira-Spencer
morphism that naturally arises from Theorem A is not well enough understood at
the time of writing to allow its application to a proof of Vojta’s Conjectures (for
more on these “technical reasons,” cf. §1.5.1 below). In the remainder of the present
§1.3, we would like to explain in detail how we were led to Theorem A as a global,
Arakelov-theoretic analogue of the well-known “local Comparison Isomorphisms.”

§1.3.2 A Function-Theoretic Comparison Isomorphism

In §1.3.1, we saw that one way to think about absolute differentiation or an
absolute/arithmetic Kodaira-Spencer morphism is to regard such objects as natural
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consequences of a “global Hodge theory,” or Comparison Isomorphism between the
de Rham and étale cohomologies of an elliptic curve. The question then arises:

Just what form should such a Global Comparison Isomorphism
— i.e., in suggestive notation

H1
DR(E) ⊗ ?? ∼= H1

et(E) ⊗ ??

— take?

For instance, over C, such a comparison isomorphism exists naturally over C, i.e.,
when one takes ?? = C. In the p-adic case, one must introduce rings of p-adic periods
such as BdR, Bcrys (cf., e.g., [Falt2]) in order to obtain such an isomorphism. Thus,
we would like to know over if there is some sort of natural “ring of global periods”
over which we may expect to obtain our global comparison isomorphism.

In fact, in the comparison isomorphism obtained in [Mzk1] (cf. §1.1, Theorem
A), unlike the situation over complex and p-adic bases, we do not work over some
“global ring of periods.” Instead, the situation is somewhat more complicated.
Roughly speaking, what we end up doing is the following:

In the Hodge-Arakelov Comparison Isomorphism, we obtain a
comparison isomorphism between the de Rham and étale coho-
mologies of an elliptic curve by considering functions on the
de Rham and étale cohomologies of the elliptic curve and then
constructing an isomorphism between the two resulting function
spaces which is (essentially) an isometry with respect to nat-
ural metrics on these function spaces at all the primes of the
base.

Indeed, for instance over a number field, the de Rham cohomology and étale coho-
mology are finite modules over very different sorts of rings (i.e., the ring of integers
of the number field in the de Rham case; the profinite completion of Z, or one of its
quotients in the étale case), and it is difficult to imagine the existence of a natural
“global arithmetic ring” containing both of these two types of rings. (Note here
that unlike the case with Shimura varieties, the adèles are not a natural choice here
for a number of reasons. Indeed, to consider the adèles here roughly amounts to
simply forming the direct product of the various local (i.e., complex and p-adic)
comparison isomorphisms, which is not very interesting in the sense that such a
simple direct product does not result in any natural global structures.) Thus:

The idea here is to abandon the hope of obtaining a global lin-
ear isomorphism between the de Rham and étale cohomology
modules, and instead to look for an isomorphism (as mentioned
above) between the corresponding function spaces which does not
necessarily arise from a linear morphism between modules.
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In the present §, we explain how we were led to look for such a “function-theoretic
comparison isomorphism,” while in §1.3.3 below, we examine the meaning of the
nonlinearity of this sort of comparison isomorphism.

In order to understand the motivating circumstances that naturally lead to the
introduction of this sort of function-theoretic point of view, we must first return to
the discussion of the case over the complexes in §1.3.1 above. Thus, in the following
discussion, we use the notation of the discussion of the complex case in §1.3.1. One
more indirect way to think about the existence of the Kodaira-Spencer morphism
is the following. Recall the exact sequence

0 → ωE → H1
DR(E/S,OE) → τE → 0

which in fact exists naturally over San. The Gauss-Manin connection ∇DR acts on
the middle term of this exact sequence (as a connection with logarithmic poles at
the points of bad reduction), but does not preserve the image of ωE . One important
consequence of this fact is that:

(If one imposes certain “natural logarithmic conditions” on the
splitting at points of bad reduction, then) this exact sequence does
not split.

Indeed, if this exact sequence split, then one could use this splitting to obtain a con-
nection on ωE induced by ∇DR. Moreover, if the “natural logarithmic conditions”
are satisfied, it would follow that this connection on ωE has zero monodromy at
the points of bad reduction, i.e., that the connection is regular over all of San. But
since ωE is the pull-back to S of an ample line bundle on (Mell)Z, it follows (so long
as E → S is not isotrivial) that deg(ωE) 
= 0, hence that the line bundle ωE cannot
admit an everywhere regular connection. That is, we obtain a contradiction.

Another (essentially equivalent) way to think about the relationship between
the fact that the above exact sequence does not split and the existence of the
Kodaira-Spencer morphism is the following. If one considers the ω⊗2

E -torsor of
splittings of the above exact sequence (together with the “natural logarithmic con-
ditions” at the points of bad reduction), we obtain a class

η ∈ H1
c (S, ω⊗2

E )

where the subscript “c” stands for “cohomology with compact support.” (The rea-
son that we get a class with compact support is because of the “natural logarithmic
conditions” at the points of bad reduction.) On the other hand, if we apply the
functor H1

c (−) to the Kodaira-Spencer morphism, we obtain a morphism

H1
c (S, ω⊗2

E ) → H1
c (S,ΩSlog/k) = H1

c (S,ΩS/k) ∼= k

Moreover, the image of η under this morphism can easily be shown to be the element
of H1

c (S,ΩS/k) ∼= k which is the degree of the classifying morphism α : S → (Mell)C,
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i.e., deg(α) ∈ Z ⊆ C = k, which is nonzero (so long as E → S is not isotrivial).
This implies that η is nonzero.

Thus, in summary,

An indirect way to “witness the existence of the Kodaira-Spencer
morphism” is to observe that the above exact sequence does not
split, i.e., that the ω⊗2

E -torsor of splittings of this sequence is
nontrivial.

This point of view is discussed in more detail in [Mzk7], Introduction, §2.3. Also, we
observe that this nonsplitting of the above exact sequence may also be regarded as a
sort of “stability of the (vector bundle plus connection) pair” (H1

DR(E/S,OE),∇DR).
This type of stability of a bundle equipped with connection is referred to as “crys-
stability” in [Mzk7] — cf. [Mzk7], Introduction, §1.3; [Mzk7], Chapter I, for more
details.

Fig. 1: The split case.

Now let us return to the arithmetic case. In this case, S = Spec(OK) (where
OK is the ring of integers of a number field K). Moreover, we have a natural exact
sequence of OK-modules:

0 → ωE → H1
DR(E/S,OE) → τE → 0
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which extends naturally to an exact sequence of OK-modules with Hermitian met-
rics at the infinite primes, i.e., an exact sequence of arithmetic vector bundles on
S (where S denotes the formal union of S with the set of infinite primes of K)
in the sense of Arakelov theory. Then one can consider whether or not this exact
sequence of arithmetic vector bundles splits. Moreover, just as in the complex case,
one can think of this issue as the issue of whether or not a certain Arakelov-theoretic
ω⊗2

E -torsor splits. (The notion and basic properties of torsors in Arakelov-theory
are discussed in [Mzk1], Chapter I.) Thus,

One way to regard the issue of constructing an arithmetic Kodaira-
Spencer morphism is as the issue of constructing a theory that
proves that/explains why this Arakelov-theoretic ω⊗2

E -torsor does
not split.

Indeed, the nonsplitting of this torsor is very closely related to the Conjectures of
Vojta and Szpiro — in fact, the existence of (for instance, an infinite number of)
counterexamples to these conjectures would imply (in an infinite number of cases)
the splitting of this torsor (cf. [Mzk1], Chapter I, Theorem 2.4; [Mzk1], Chapter I,
§4).
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Fig. 2: The non-split case.

From a more elementary point of view, the nonsplitting of this torsor may be
thought of in the following fashion. First of all, an arithmetic vector bundle over S
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may be thought of as an (OK -) lattice in a real or complex vector space. Thus, for
instance, in the case K = Q, one may think of H1

DR(E/S,OE) as a lattice in R2,
while the arithmetic line bundles ωE and τE may be thought of as lattices in R.
In the case of arithmetic line bundles, to say that the degree of the arithmetic line
bundle (cf. [Mzk1], Chapter I, §1) is large (respectively, small) amounts to saying
that the points of the lattice are rather densely (respectively, sparsely) distributed.
Note that since ωE is the pull-back to S of an ample line bundle (Mell)Z, its degree
tends to be rather large. Thus, to say that the torsor in question splits is to say
that H1

DR(E/S,OE) looks rather like the lattice of Fig. 1, i.e., it is dense in one
direction and sparse in another (roughly orthogonal) direction. We would like to
show that H1

DR(E/S,OE) looks more like the lattice in Fig. 2, i.e.:

We would like to show that the lattice corresponding to H1
DR(E/S,OE)

is roughly equidistributed in all directions.

Since we are thinking about comparison isomorphisms, it is thus tempting to think
of the comparison isomorphism as something which guarantees that the “distribu-
tion of matter” in the lattice H1

DR(E/S,OE) is as even in all directions as the
“distribution of matter” in the étale cohomology of E. Also, it is natural to think
of the “distribution of matter issues” involving the étale cohomology, or torsion
points, of E as being related to the action of Galois. (The action of Galois on the
torsion points is discussed in [Mzk4].) Thus, in summary:

It is natural to expect that the global comparison isomorphism
should be some sort of equivalence between “distributions of mat-
ter” in the de Rham and étale cohomologies of an elliptic curve.

Typically, in analytic number theory, probability theory, and other field of mathe-
matics where “distributions of matter” must be measured precisely, it is customary
to measure them by thinking about functions — i.e., so-called “test functions” —
(and the resulting function spaces) on the spaces where these distributions of matter
occur. It is for this reason that the author was led to the conclusion that:

The proper formulation for a global comparison isomorphism should
be some sort of isometric (for metrics at all the primes of a
number field) isomorphism between spaces of functions on the de
Rham and étale cohomologies of an elliptic curve.

This is precisely what is obtained in Theorem A.

§1.3.3 The Meaning of Nonlinearity

In §1.3.2 above, we saw that one of the central ideas of [Mzk1] is that to obtain
a “global Hodge theory,” one must sacrifice linearity = additivity, and instead look
for isometric isomorphisms between spaces of functions on the de Rham and étale
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cohomology. Put another way, this approach amounts to abandoning the idea that
the de Rham and étale cohomologies are modules, and instead thinking of them
as (nonlinear) geometric objects. Thus, one appropriate name for this approach
might be “geometric motive theory.” This approach contrasts sharply with typical
approaches to the “theory of motives” or to “global Hodge theories” which tend
to revolve around additivity/linearization, and involve such “linear” techniques as
the introduction of derived categories that contain motives. In some sense, since
we set out to develop a global Hodge theory in the context of Arakelov theory,
the nonlinearity of the Comparison Isomorphism of Theorem A is perhaps not
so surprising: Indeed, many objects in Arakelov theory which are analogues of
“linear” objects in usual scheme theory become “nonlinear” when treated in the
context of Arakelov theory. Perhaps the most basic example of this phenomenon
is the fact that in Arakelov theory, the space of global sections of an arithmetic
line bundle is not closed under addition. This makes it difficult and unnatural (if
not impossible) to do homological algebra (e.g., involving derived categories) in the
context of Arakelov theory.

Another way to think about the nonlinearity of the Hodge-Arakelov Compar-
ison Isomorphism is that it is natural considering that the fundamental algebraic
object that encodes the “symmetries of the Gaussian,” namely, the Heisenberg al-
gebra — i.e., the Lie algebra generated by 1, x, y, and the relations [x, y] = 1,
[x, 1] = [y, 1] = 0 (the étale counterpart of which is the theta groups of Mumford) —
is closely related to nonlinear geometries. In the field of noncommutative geometry,
the object that represents these symmetries is known as the noncommutative torus.
Since the Gaussian and its derivatives lie at the technical heart of the theory of
[Mzk1], it is thus not surprising that the nonabelian nature of the symmetries of
the Gaussian should manifest itself in the theory. In fact, in the portion of the
theory of [Mzk1] at archimedean primes, it turns out that the Comparison Isomor-
phism in some sense amounts to a function-theoretic splitting of the exact sequence
0 → d · Z → Z → Z/d · Z → 0, i.e., a function-theoretic version of a bijection

(Z/d · Z) × (d · Z) ∼= Z

This sort of splitting is somewhat reminiscent of the “splitting” inherent in re-
garding Z as being some sort of “polynomial algebra over F1.” Moreover, this
archimedean portion of the theory is also (not surprisingly) closely related to the
derivatives of the Gaussian and the symmetries encoded in the Heisenberg algebra.
Thus, in summary:

It is as if the symmetries/twist inherent in the inclusion “F1 ⊆
Z” are precisely the symmetries/twist encoded in the noncommu-
tative torus (of noncommutative geometry).

We refer to the discussion of [Mzk1], Chapter VIII, §0, for more details on this
point of view.



SURVEY OF HODGE-ARAKELOV THEORY 19

§1.3.4 Hodge Theory at Finite Resolution

So far, we have discussed the idea that the appropriate way to think about
Comparison Isomorphisms is to regard them as (isometric) isomorphisms between
spaces of functions on the de Rham and étale cohomologies of an elliptic curve.
The question then arises: How does one define such a natural isomorphism? The
key idea here is the following:

Comparison Isomorphisms should be defined as evaluation maps,
given by evaluating functions on the universal extension of an el-
liptic curve — which is a sort of “H1

DR(E,O×
E ),” i.e., a kind of

de Rham cohomology of the elliptic curve — at the torsion points
of the universal extension (which may naturally be identified with
the étale cohomology of the elliptic curve).

In fact, one of the main observations that led to the development of the theory of
[Mzk1] is the following:

The classical Comparison Isomorphisms over complex and p-adic
bases may be formulated precisely as evaluation maps of certain
functions on the universal extension at the torsion points (or the
“singular cohomology analogue of torsion points”) of the univer-
sal extension.

This key observation is discussed in detail in [Mzk1], Chapter IX, §1, 2. In the com-
plex case, it amounts to an essentially trivial reformulation of the classical theory.
Perhaps the best way to summarize this reformulation is to state that the subspace
of functions on the “singular cohomology analogue of torsion points” arising from
the theta functions on the elliptic curve is itself a sort of “function-theoretic” rep-
resentation of the Hodge filtration induced (by the de Rham isomorphism) on the
singular cohomology with complex coefficients of an elliptic curve. In fact, this ob-
servation more than any other played an essential role in convincing the author that
(roughly speaking) “theta functions naturally define the Comparison Isomorphism”
(hence that any global Comparison Isomorphism should involve theta functions).
In the p-adic case, this “key observation” amounts to what is usually referred to as
the p-adic period map (cf., e.g., [Coln], [Colz1,2], [Font], [Wint]; the beginning of
[Mzk1], Chapter IX, §2) of elliptic curves (or abelian varieties).

Thus, in summary, the complex, p-adic, and Hodge-Arakelov Comparison Iso-
morphisms may all be formulated along very similar lines, i.e., as evaluation maps
of functions on the universal extension at the torsion points of the universal exten-
sion. Of course, the difference between the Hodge-Arakelov Comparison Isomor-
phism and its local (i.e., complex and p-adic) counterparts is that unlike in the local
case, where the spaces of torsion points involved are “completed at some prime,” in
the Hodge-Arakelov case, we work with a discrete set of torsion points. It is for this
reason that we find it natural to think of the theory of [Mzk1] as a “discretization”
of the well-known local comparison isomorphisms. Another way that one might
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think of the theory of [Mzk1] is as a “Hodge theory at finite resolution” (where we
use the term “resolution” as in discussions of the number of “pixels” (i.e., “picture
elements, dots”) of a computer screen).

At this point, the reader might feel motivated to pose the following question:

If the Hodge-Arakelov Comparison Isomorphism is indeed a com-
parison isomorphism analogous to the complex and p-adic com-
parison isomorphisms, then what sorts of “global periods” does
it give rise to?

For instance, in the case of the complex comparison isomorphism, the most basic
period is the period of the Tate motive, i.e., of H1 of Gm, namely, 2πi. In the
p-adic case, the corresponding period is the copy of Zp(1) that sits naturally inside
Bcrys. The analogous “period” resulting from the theory of Theorem A, then, is
the following: Let U be the standard multiplicative coordinate on Gm. Then U − 1
forms a section of some ample line bundle on Gm, hence may be thought of as a
sort of “theta function” (cf. especially, the Schottky uniformization of an elliptic
curve, as in [Mumf4], §5). Then, roughly speaking, the “discretized Hodge theory”
of [Mzk1] amounts essentially — from the point of view of periods — to thinking of
the period “2πi” as

lim
n→∞ n · (U − 1)|U=exp(2πi/n)

i.e., the evaluation of a theta function at an n-torsion point, for some large n. For
the elliptic curve analogue (at archimedean primes) of this representation of 2πi,
we refer especially to [Mzk1], Chapter VII, §5, 6.

In fact, another way to interpret the theory of [Mzk1] is the following. First, let
us observe that the classical complex comparison isomorphism (i.e., the de Rham
isomorphism) is centered around “differentiation” and “integration,” i.e., calculus
on the elliptic curve. Moreover, in some sense, the most fundamental aspect of
calculus as opposed to algebraic geometry on the elliptic curve is the use of real
analytic functions on the elliptic curve. In the present context, however, we wish
to keep everything “arithmetic” and “global” over a number field. Thus, instead of
performing calculus on the underlying real analytic manifold of a (complex) elliptic
curve, we approximate this classical sort of calculus by performing calculus on a
finite (but “large”) set of torsion points of the elliptic curve. That is to say:

We regard the set of torsion points as an approximation of the
underlying real analytic manifold of an elliptic curve.

Indeed, this notion of “discrete torsion calculus” is one of the key ideas of
[Mzk1]. For instance, the universal extension of a complex elliptic curve has a
canonical real analytic splitting (cf. [Mzk1], Chapter III, Definition 3.2), which is
fundamental to the Hodge theory of the elliptic curve (cf., e.g., [Mzk7], Introduction,
§0.7, 0.8). Since this splitting passes through the torsion points of the universal
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extension (and, in fact, is equal to the closure of these torsion points in the complex
topology), it is thus natural to regard the torsion points of the universal extension as
a “discrete torsion calculus approximation” to the canonical real analytic splitting
(cf. Remark 1 following [Mzk1], Chapter III, Definition 3.2). This “discrete torsion
calculus” point of view may also be seen in the use of the operator “δ” in [Mzk1],
Chapter III, §6,7 (cf. also [Mzk1], Chapter V, §4), as well as in the discussion of
the “discrete Tchebycheff polynomials” in [Mzk1], Chapter VII, §3.

§1.3.5 Relationship to Ordinary Frobenius Liftings and Anabelian Vari-
eties

Finally, before proceeding, we present one more approach to thinking about
“absolute differentiation over F1.” Perhaps the most naive approach to defining
the derivative of a number n ∈ Z (cf. [Ihara]) is to fix a prime number p, and then
to compare n with its Teichmüller representative [n]p ∈ Zp. The idea here is that
Teichmüller representatives should somehow represent something analogous to a
“field of constants” inside Zp. Thus, we obtain a correspondence

p �→ 1
p
(n − [n]p)

Unfortunately, if one starts from this naive point of view, it seems to be very
difficult to prove interesting global results concerning this correspondence, much
less to apply it to proving interesting results in diophantine geometry.

Thus, it is natural to attempt to recast this naive approach in a form that is
more amenable to globalization. To do this, let us first note that to consider Te-
ichmüller representatives is very closely related to considering the natural Frobenius
morphism

ΦA : A → A

on the ring of Witt vectors A
def= W (Fp). In fact, the Teichmüller representatives

in A are precisely the elements which satisfy the equation:

ΦA(a) = ap

Put another way, if a is a unit, then it may be thought of as an element ∈ Gm(A).
Moreover, Gm is equipped with its own natural Frobenius action ΦGm

, given by
U �→ Up (where U is the standard multiplicative coordinate on Gm). Thus, the
Teichmüller representatives are given by those elements of a ∈ Gm(A) such that

ΦA(a) = ΦGm
(a)

In fact, this sort of situation where one has a natural Frobenius action on a p-adic
(formal) scheme, and one considers natural p-adic liftings of points on this scheme
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modulo p which are characterized by the property that they are taken to their
Frobenius (i.e., ΦA) conjugates by the given action of Frobenius occurs elsewhere
in arithmetic geometry. Perhaps the most well-known example of this situation
(after Gm) is the Serre-Tate theory of liftings of ordinary abelian varieties (cf.,
e.g., [Katz2], as well as [Mzk7], Introduction, §0). Recently, this theory has been
generalized to the case of moduli of hyperbolic curves ([Mzk6,7]). We refer to the
Introductions of [Mzk6,7] for more on this phenomenon. In the theory of [Mzk6,7],
this sort of natural Frobenius action on a p-adic (formal) scheme is referred to as
an ordinary Frobenius lifting.

The theory of ordinary Frobenius liftings is itself a special (and, in some sense,
the simplest) case of p-adic Hodge theory. Thus, in summary, from this point
of view, the naive approach discussed above (involving the correspondence p �→
1
p (n − [n]p)) may be thought of as the approach given by “looking at the p-adic
Hodge theory of Gm at each prime p.” In particular, the relationship between
the approach of [Mzk1] and the above naive approach may be thought of as the
difference between discretizing the various local p-adic Hodge theories into a global
Arakelov-theoretic theory (as discussed in §1.3.1 – 1.3.4 above) and looking at the
full completed p-adic Hodge theories individually.

In fact, there is another important difference between the approach of [Mzk1]
and the above naive approach — namely, the difference between Gm and Mlog

ell

(the log moduli stack of log elliptic curves). That is to say, unlike the example
discussed above, which is essentially concerned with rational points of Gm, the
theory of [Mzk1] concerns “absolute differentiation for points of Mlog

ell .” At the
present time, the author does not know of an analogous approach to “globally
discretizing” the local Hodge theories of Gm (i.e., of doing for Gm what is done
for Mlog

ell in [Mzk1]). Also, it is interesting to observe that, unlike many theories
for elliptic curves which generalize in a fairly straightforward manner to abelian
varieties of higher dimension, it is not so clear how to generalize the theory of [Mzk1]
to higher-dimensional abelian varieties (cf. §1.5.2 below). Thus, it is tempting to
conjecture that perhaps the existence of the theory of [Mzk1] in the case of Mlog

ell

is somehow related to the anabelian nature of Mlog

ell (cf. [Mzk8], [IN]). That is to
say, one central feature of anabelian varieties is a certain “extraordinary rigidity”
exhibited by their p-adic Hodge theory (cf. [Groth]; the Introduction to [Mzk8]). In
particular, it is tempting to suspect that this sort of rigidity or coherence is what
allows one to discretize the various local Hodge theories into a coherent global
theory. Another interesting observation in this direction is that the theta groups
that play an essential role in [Mzk1] are essentially the same as/intimately related
to the quotient

π1(E − pt.)/[π1(E − pt.), [π1(E − pt.), π1(E − pt.)]]

of the fundamental group π1(E − pt.) of an elliptic curve with one point removed
(which is itself an anabelian variety). This sort of quotient of the fundamental
group plays a central role in [Mzk8].
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Finally, we remark that one point of view related to the discussion of the
preceding paragraph is the following: One fundamental obstacle to “differentiating
an integer n ∈ Z (or Q-rational point of Gm) over F1” is that the residue fields
Fp at the different points of Spec(Z) differ, thus making it difficult to compare
the value of n at distinct points of Spec(Z). On the other hand, the theory of
[Mzk1] — which involves differentiating Z-valued points of the moduli stack of log
elliptic curves Mlog

ell — gets around this problem effectively by taking the set of d-
torsion points as one’s absolute constants that do not vary even as the residue field
varies. Note that relative to the discussion of §1.3.4, this set of torsion points should
be regarded as a discrete analogue/approximation to the underlying real analytic
manifold (which, of course, remains constant) of a family of complex elliptic curves.

§1.4. The Arithmetic Kodaira-Spencer Morphism

§1.4.1 Construction

In this §, we observe that one can apply the Hodge-Arakelov Comparison
Theorem (§1.1, Theorem A) to construct an arithmetic version of the well-known
Kodaira-Spencer morphism of a family of elliptic curves E → S:

κarith
E : Π̃S → Filt(HDR)(S)

Roughly speaking, this arithmetic Kodaira-Spencer morphism is a canonical map
from the algebraic fundamental groupoid Π̃S of SQ

def= S ⊗Z Q — i.e., the étale local
system on SQ whose fiber at a geometric point s is the fundamental group π1(SQ, s),
with basepoint at s — to a flag variety of filtrations of a module which is a certain
analogue of the de Rham cohomology of the elliptic curve.

This arithmetic Kodaira-Spencer morphism has certain remarkable integrality
properties (in the Arakelov sense) at all the primes (both finite and infinite) of a
number field; it is constructed in detail in [Mzk1], Chapter IX, §3 (cf. also [Mzk4],
§1, where a certain technical error made in [Mzk1], Chapter IX, §3, is corrected).
This construction will be surveyed in the remainder of the present §. In §1.4.2
below, we give a construction of the Kodaira-Spencer morphism in the complex
case which is entirely analogous to the construction given in the arithmetic case
in [Mzk1], Chapter IX, §3, but which shows quite explicitly how this construction
is related (in the complex case) to the “classical Kodaira-Spencer morphism” that
appears in the theory of moduli of algebraic varieties. Also, we remark that a
similar treatment of the classical Kodaira-Spencer morphism may be given in the
p-adic context (cf. [Mzk1], Chapter IX, §2), but we will not discuss this aspect of
the theory in the present manuscript.

Conceptually speaking, the main point in all of these constructions consists, as
depicted in the following diagram:
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Kodaira-Spencer morphism:

motion in base-space �→ induced deformation of Hodge filtration

of the idea that the Kodaira-Spencer morphism is the map which associates to a
“motion” in the base-space of a family of elliptic curves, the deformation in the
Hodge filtration of the de Rham cohomology of the elliptic curve induced by the
motion. More concretely, the main idea consists of a certain “recipe” for construct-
ing “Kodaira-Spencer-type morphisms” out of “comparison isomorphisms between
de Rham and étale/singular cohomology.” In the present §, we carry out this recipe
in the case when the comparison isomorphism is the the Hodge-Arakelov Compari-
son Isomorphism (§1.1, Theorem A); in §1.4.2 below, we discuss a certain approach
to the well-known comparison isomorphism for elliptic curves in the complex case,
which, on the one hand, makes the connection with the classical Kodaira-Spencer
morphism explicit, and, on the other hand, shows how the Hodge-Arakelov Com-
parison Isomorphism is entirely analogous to the well-known complex comparison
isomorphism.

For simplicity, in the following discussion, we let S be a Q-scheme of finite
type, and

E → S

a family of elliptic curves over S. Also, we use the notation

Π̃S

for the étale local system on S determined by the association

s �→ π1(S, s)

(where s is a geometric point of S).

Next, let us observe that (for d ≥ 1 an integer) we have a natural (OS-linear)
action of Π̃S on

E[d] → S

(where E[d] ⊆ E is the closed subscheme of d-torsion points of E → S). Indeed,
if s is a geometric point of S, then the restriction of this action to the fibers
at s is simply the usual action arising from the classical theory of the algebraic
fundamental group. That is to say, according to this theory, one has a natural
action of Π̃S |s = π1(S, s) on E[d]|s arising from the fact that E[d]|s is the result of
applying the fiber functor defined by s to the finite étale covering E[d] → S. The
natural action of the algebraic fundamental groupoid on E[d] is discussed in detail
in [Mzk4], §1. Also, we remark that the dependence of this natural action on the
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basepoint s is essential (a fact overlooked in [Mzk1], Chapter IX, §3), which is why
one must use the local system Π̃S , as opposed to the “static” fundamental group
for a fixed basepoint.

Remark. One interesting observation relative to the appearance of the algebraic
fundamental groupoid (i.e., as opposed to group) in the correct formulation of the
arithmetic Kodaira-Spencer morphism (cf. [Mzk4], Corollary 1.6) is the follow-
ing. In the analogy asserted in [Mzk1] between the arithmetic Kodaira-Spencer
morphism of [Mzk1], Chapter IX, §3, and the usual geometric Kodaira-Spencer
morphism, the Galois group/fundamental group(oid) of the base plays the role of
the tangent bundle of the base. On the other hand, the tangent bundle of the base
(typically) does not admit a canonical global trivialization, but instead varies from
point to point — i.e., at a given point, it consists of infinitesimal motions originat-
ing from that point. Thus, it is natural that the arithmetic analogue of the tangent
bundle should be not the “static” fundamental group, but instead the fundamental
groupoid, which varies from point to point, and indeed, at a given point, consists of
paths (which may be thought of as a sort of “motion”) originating from that point.

Now suppose (cf. §1.1, Theorem Asimple) that we are also given a torsion point
η ∈ E(K) whose order does not divide d. Write

L def= OE(d · [η])

In the following discussion, we would also like to assume (for simplicity) that d is
odd. Then by Mumford’s theory of theta groups, one has a natural isomorphism

L|E[d]
∼= L|0E

⊗OS
OE[d]

(where 0E ∈ E(S) is the origin of E) — which we shall refer to as the “theta
trivialization” of L over E[d]. In particular, since the natural action of Π̃S on E[d]
is OS-linear, one thus obtains (via this “theta trivialization”) a natural action of
Π̃S on L|E[d].

On the other hand (cf. §1.1, Theorem Asimple), we have a natural isomorphism

HDR
def= f∗(L|E†)<d ∼→L|E[d]

(where, by abuse of notation, all structure morphisms to S are denoted by f). Thus,
the action of Π̃S on L|E[d] gives rise to a natural action of Π̃S on HDR. Moreover,
since HDR is also equipped with a Hodge filtration F r(HDR) (given by considering
sections of L|E† of torsorial degree < r), one may consider the extent to which this
Hodge filtration is fixed by Π̃S . If we write

Filt(HDR) → S



26 SHINICHI MOCHIZUKI

for the flag variety over S of filtrations of HDR of the “same type” (i.e., such that
the subobject of index r has the same rank as F r(HDR)), then the correspondence

σ �→ {F r(HDR)}σ

(where σ is an étale local section of Π̃S , and “{F r(HDR)}σ” denotes the filtration of
HDR obtained by acting on the Hodge filtration of HDR by σ) defines a morphism

κarith
E : Π̃S → Filt(HDR)(S)

— which (cf. the discussion in the complex case in §1.4.2 below) we refer to as the
arithmetic Kodaira-Spencer morphism of the family of elliptic curves E → S.

When S is flat over Z — i.e., for instance, when S is the spectrum of a (Zariski
localization) of the ring of integers OF of a number field F — this morphism κarith

E

has various strong integrality properties at both nonarchimedean (i.e., “p-adic”)
and archimedean primes, inherited from the integrality properties of the comparison
isomorphism of §1.1, Theorem A. These integrality properties are discussed in more
detail in [Mzk1], Chapter IX, §3.

§1.4.2 Complex Analogue

In this §, we review the de Rham isomorphism of a complex elliptic curve,
showing how this isomorphism may be regarded as being analogous in a fairly
precise sense to the Comparison Isomorphism of §1.1, Theorem A. We then discuss
the theory of the Kodaira-Spencer morphism of a family of complex elliptic curves
in the universal case, but we formulate this theory in a somewhat novel fashion,
showing how the Kodaira-Spencer morphism may be derived directly from the de
Rham isomorphism in a rather geometric way. This formulation will allow us to
make the connection with the global arithmetic theory of §1.4.1; [Mzk1], Chapter
IX, §3.

We begin our discussion by considering a single elliptic curve E over C. Fre-
quently in the following discussion, we shall also write “E” for the complex manifold
defined by the original algebraic curve. Recall (cf. [Mzk1], Chapter III, §3) that
we have a commutative diagram

H1
DR(E,OE) = Ẽ† ∼= H1

sing(E, C) ⊇ H1
sing(E, 2πi · R) ⊇ H1

sing(E, 2πi · Z)⏐⏐�exp

⏐⏐�exp

⏐⏐�exp

⏐⏐�exp

H1
DR(E,O×

E ) = E† ∼= H1
sing(E, C×) ⊇ H1

sing(E, S1) = ER ⊇ identity elt.

Here, the horizontal isomorphisms are the de Rham isomorphisms relating de Rham
cohomology to singular cohomology. Note that in characteristic zero, line bundles
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with connection are necessarily of degree zero, so E† may be naturally identi-
fied with H1

DR(E,O×
E ), the group of line bundles equipped with a connection on

E. (Similarly, the (topological) universal cover Ẽ† of E† may be identified with
H1

DR(E,OE).) The vertical maps are the morphisms induced on cohomology by
the exponential map; S1 ⊆ C× is the unit circle (equipped with its usual group
structure). Finally, ER ⊆ E† is the real analytic submanifold (discussed in [Mzk1],
Chapter III, §3) which is equal to the closure of the torsion points of E† and maps
bijectively onto E via the natural projection E† → E.

Here, we would like to consider the issue of precisely how the de Rham iso-
morphisms of the above diagram are defined. Of course, there are many possible
definitions for these isomorphisms, but the point that we would like to make here
is the following:

If one thinks of H1
sing(E, S1) = ER (respectively, Tv(E) def=

H1
sing(E, 2πi · R)) as the “v-divisible group of torsion points of

E” (respectively, the “v-adic Tate module”) — where v = ∞ is
the archimedean prime of Q — then, roughly speaking, one may
think of the de Rham isomorphisms as being given by the diagram

Hol. fns. on H1
DR(E,OE) = Ẽ† “ ∼= ” Real an. fns. on H1

sing(E, 2πi · R)⋃ ⋃
Hol. fns. on H1

DR(E,O×
E ) = E† “ ∼= ” Real an. fns. on H1

sing(E, S1) = ER

where the horizontal isomorphisms “∼=” are given by restricting
holomorphic functions on E†, Ẽ† to real analytic functions on the
“∞-adic torsion points/Tate module” ER, T∞(E) def= H1

sing(E, 2πi·
R).

Here, we say “roughly speaking” (and write “∼=”) for the following reason: Al-
though this restriction morphism is injective, the correspondence between holomor-
phic functions on the de Rham objects E†, Ẽ† and real analytic functions on the
v-adic torsion point objects ER, T∞(E) is, strictly speaking, only true on an “in-
finitesimal neighborhood” of ER ⊆ E†, T∞(E) ⊆ Ẽ†. (That is to say, although
a real analytic function on ER always corresponds to a holomorphic function on
some open neighborhood of ER in E†, whether or not this holomorphic function
extends to a holomorphic function defined over all of E† involves subtle convergence
issues and, in fact, is not always the case.) Thus, here, in order to get a precise
statement, we shall work with polynomial functions on Ẽ† and T∞(E). Then one
sees immediately that the de Rham isomorphism of the first commutative diagram
of this § may be formulated as the isomorphism

HolomPoly(Ẽ†) ∼= Real AnPoly(T∞(E))
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given by restricting holomorphic polynomials on Ẽ† to the ∞-adic torsion points
so as to obtain real analytic polynomials on T∞(E). When formulated from this
point of view, one sees that the Comparison Isomorphism of §1.1, Theorem A,
is analogous in a very direct sense to the classical de Rham isomorphism in the
complex case, i.e.:

Both may be thought of as being bijections between algebraic/holomorphic
functions on de Rham-type objects and arbitrary/real analytic
functions on torsion points – bijections given by restricting al-
gebraic/holomorphic functions on de Rham-type objects to the
torsion points lying inside those de Rham-type objects.

This observation may be thought of as the philosophical starting point of the theory
of [Mzk1].

Remark. Note that the collection of “holomorphic functions on H1
DR(E,OE)” in-

cludes, in particular, the theta functions (cf., e.g., [Mumf4], §3) associated to the
elliptic curve E. Moreover, these functions are “fairly representative of” (roughly
speaking, “generate”) the set of all holomorphic functions on H1

DR(E,OE) that arise
by pull-back via the projection H1

DR(E,OE) → H1(E,OE) (defined by the Hodge
filtration) from holomorphic functions on H1(E,OE). This observation played a
fundamental motivating role in the development of the theory of [Mzk1].

Next, we shift gears and discuss various versions of the Kodaira-Spencer mor-
phism for the universal family of complex elliptic curves. First, let us write H

def=
{z ∈ C | Im(z) > 0} for the upper half-plane, and

EH → H

for the universal family of complex elliptic curves over H. That is to say, over a
point z ∈ H, the fiber Ez of this family is given by Ez = C/ < 1, z > (where
< 1, z > denotes the Z-submodule generated by 1, z).

Let us fix a “base-point” z0 ∈ H. Write

H1
DR(Ez0)

def= H1
DR(Ez0 ,OEz0

)

Thus, H1
DR(Ez0) is a two-dimensional complex vector space. Recall that, in fact,

the correspondence z �→ H1
DR(Ez) defines a rank two vector bundle E on H equipped

with a natural (integrable) connection (the “Gauss-Manin connection”). Since the
underlying topological space of H is contractible, parallel transport via this connec-
tion thus gives rise to a natural trivialization of this rank two vector bundle E , i.e.,
a natural isomorphism

E ∼= H × H1
DR(Ez0)
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Recall that the Hodge filtration of de Rham cohomology defines a subbundle
F 1(E) ⊆ E of rank one. This subbundle induces a natural holomorphic morphism

κH : H → P
def= P1(H1

DR(Ez0))

that maps a point z ∈ H to the subspace of H1
DR(Ez0) = H1

DR(Ez) defined by
F 1(E) ⊆ E at z.

Now let us recall that we have a natural action of SL2(R) on H given by linear
fractional transformations. This action allows us to define a morphism

κSL2 : SL2(R) → P

by letting κSL2(γ) def= κH(γ · z0) (for γ ∈ SL2(R)). If we then differentiate κSL2 at
z0, we obtain a morphism on tangent spaces that fits into a commutative diagram:

sl2(R)
κsl2−→ τP,p0⏐⏐� ⏐⏐κτ

sl2(R)/so2
∼= τH,z0

Here, the vertical morphism on top is the derivative of κSL2 at the origin of SL2(R);
τP,p0 (respectively, τH,z0) is the tangent space to P (respectively, H) at p0

def= κH(z0)
(respectively, z0). This vertical morphism clearly factors through the quotient
sl2(R) → sl2(R)/so2, where sl2(R) (respectively, so2) is the Lie algebra associated
to SL2(R) (respectively, the subgroup of SL2(R) that fixes z0). Moreover, all
tangent vectors to z0 ∈ H are obtained by acting by various elements of sl2(R) on
H at z0; thus, one may identify sl2(R)/so2 with τH,z0 (the vertical isomorphism on
the bottom).

Definition. We shall refer to κSL2 (respectively, κsl2 ; κτ ) as the group-theoretic
(respectively, Lie-theoretic; classical) Kodaira-Spencer morphism (of the family EH →
H at z0).

Thus, the “classical Kodaira-Spencer morphism” κτ is obtained (cf. the above
commutative diagram) simply by using the fact that κsl2 factors through the quo-
tient sl2(R) → sl2(R)/so2. One checks easily that this morphism is indeed the
usual Kodaira-Spencer morphism associated to the family EH → H. In particular,
κτ is an isomorphism.

The reason that we feel that it is natural also to regard κSL2 and κsl2 as
“Kodaira-Spencer morphisms” is the following: The essence of the notion of a
“Kodaira-Spencer morphism” is that of a correspondence that associates to a motion
in the base-space the induced deformation of the Hodge filtration of the de Rham
cohomology, i.e., symbolically,
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Kodaira-Spencer morphism:

motion in base-space �→ induced deformation of Hodge filtration

In the case of the “group-theoretic Kodaira-Spencer morphism” (respectively, “Lie-
theoretic Kodaira-Spencer morphism”; “classical Kodaira-Spencer morphism”), this
motion is a motion given by the “Lie group SL2(R) of motions of H” (respectively,
the Lie algebra associated to this Lie group of motions; a tangent vector in H).
That is to say, all three types of Kodaira-Spencer morphism discussed here fit into
the general pattern just described.

It turns out that the group-theoretic Kodaira-Spencer morphism is the version
which is most suited to generalization to the arithmetic case (cf. the discussions of
§2,3 below).

Finally, we make the connection between the theory of the Kodaira-Spencer
morphism just discussed and the function-theoretic approach to the de Rham iso-
morphism discussed at the beginning of this §. First of all, let us observe that the
action of SL2(R) on H lifts naturally to an action on E . Moreover, if one thinks of
SL2(R) as the group of unimodular (i.e., with determinant = 1) R-linear automor-
phisms of the two-dimensional R-vector space T∞(Ez0), that is, if one makes the
identification

SL2(R) = SL(T∞(Ez0))

then the action of SL2(R) on E ∼= H×H1
DR(Ez0) corresponds to the natural action

of SL(T∞(Ez0)) on H1
DR(Ez0) ∼= T∞(Ez0)⊗R C (where the isomorphism here is the

de Rham isomorphism). It thus follows that the group-theoretic Kodaira-Spencer
morphism κSL2 may also be defined as the morphism

SL2(R) = SL(T∞(Ez0)) → P = P(H1
DR(Ez0))

given by γ �→ γ ·p0, where the expression “γ ·p0” is relative to the natural action of
SL(T∞(Ez0)) on P = P(H1

DR(Ez0)) ∼= P(T∞(Ez0) ⊗R C) (where the isomorphism
here is that derived from the de Rham isomorphism). This approach to defining
κSL2 shows that:

The group-theoretic Kodaira-Spencer morphism κSL2 may essen-
tially be defined directly from the de Rham isomorphism.

This observation brings us one step closer to the discussion of the arithmetic case
in §3. In particular, in light of the above “function-theoretic approach to the de
Rham isomorphism,” it motivates the following point of view:

Note that (in the notation of the discussion at the beginning of this §) the
space HolomPoly(Ẽ†) of holomorphic polynomials on Ẽ† has a Hodge filtration
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. . . F d(HolomPoly(Ẽ†)) ⊆ . . . ⊆ HolomPoly(Ẽ†)

given by letting F d(HolomPoly(Ẽ†)) ⊆ HolomPoly(Ẽ†) denote the subspace of poly-
nomials whose “torsorial degree” (cf. [Mzk1], Chapter III, Definition 2.2), i.e., de-
gree as a polynomial in the relative variable of the torsor Ẽ† → Ẽ (where Ẽ is the
universal covering space of E), is < d. Note that relative to the “function-theoretic
de Rham isomorphism” HolomPoly(Ẽ†) ∼= Real AnPoly(T∞(E)), F d(HolomPoly(Ẽ†))
corresponds to the subspace of Real AnPoly(T∞(E)) annihilated by D

d
. (Here, D

is the usual “del-bar” operator of complex analysis on T∞(E) = ẼR, relative to the
complex structure on ẼR defined by Ẽ.) Let us write

Filt(HolomPoly(Ẽ†))

for the (infinite-dimensional) flag-manifold of C-linear filtrations {F d}d∈Z≥0 of HolomPoly(Ẽ†)
such that F 0 = 0. Then the “Hodge filtration” just defined determines a point

pfunc
E ∈ Filt(HolomPoly(Ẽ†))

Similarly, any one-dimensional complex quotient Ẽ† → Q defines a filtration of
HolomPoly(Ẽ†) (given by looking at the degree with respect to the variable corre-
sponding to the kernel of Ẽ† → Q). In particular, we get an immersion

P(Ẽ†) ↪→ Filt(HolomPoly(Ẽ†))

Thus, returning to the discussion of the group-theoretic Kodaira-Spencer mor-
phism, we see that we may think of the composite

κfunc
SL2

: SL2(R) = SL(T∞(Ez0)) → Filt(HolomPoly(Ẽ†))

of κSL2 with the inclusion P(Ẽ†) ↪→ Filt(HolomPoly(Ẽ†)) as being defined as fol-
lows:

The natural action of SL(T∞(Ez0)) on Real AnPoly(T∞(Ez0))
induces, via the “function-theoretic de Rham isomorphism”

Real AnPoly(T∞(Ez0)) ∼= HolomPoly(Ẽ†
z0

)

an action of SL(T∞(Ez0)) on HolomPoly(Ẽ†
z0

); then the “function-
theoretic version of the group-theoretic Kodaira-Spencer mor-
phism”
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κfunc
SL2

: SL(T∞(Ez0)) → Filt(HolomPoly(Ẽ†
z0

))

is defined by γ �→ γ · pfunc
Ez0

, where pfunc
Ez0

∈ Filt(HolomPoly(Ẽ†
z0

)) is

the natural point defined by the Hodge filtration on HolomPoly(Ẽ†
z0

).

It is this point of view that forms the basis of our approach to the arithmetic case,
as surveyed in §1.4.1.

Remark. The theory discussed above (cf. [Mzk1], Chapter IX, §1,2) generalizes
immediately to the case of higher-dimensional abelian varieties. Since, however,
the Hodge-Arakelov Comparison Theorem (§1.1, Theorem A) is only available (at
the time of writing) for elliptic curves, we restricted ourselves in the above discussion
to the case of elliptic curves.

§1.5. Future Directions

§1.5.1 Gaussian Poles and Diophantine Applications

In some sense, the most fundamental outstanding problem left unsolved in
[Mzk1] is the following:

How can one get rid of the Gaussian poles (cf. §1)?

For instance, if one could get rid of the Gaussian poles in Theorem A, there
would be substantial hope of applying Theorem A to the ABC (or, equivalently,
Szpiro’s) Conjecture.

The main idea here is the following: Assume that we are given an elliptic
curve EK over a number field K, with everywhere semi-stable reduction. Also, let
us assume that all of the d-torsion points of EK are defined over K. The arithmetic
Kodaira-Spencer morphism (cf. §1.4) essentially consists of applying some sort of
Galois action to an Arakelov-theoretic vector bundle HDR on Spec(OK) and seeing
what effect this Galois action has on the natural Hodge filtration F r(HDR) on HDR.
If one ignores the Gaussian poles, the subquotients (F r+1/F r)(HDR) of this Hodge
filtration essentially (“as a function of r”) look like

τ⊗r
E

(tensored with some object which is essentially irrelevant since it is independent of
r). Thus, as long as the “arithmetic Kodaira-Spencer is nontrivial” (which it most
surely is!), the Galois action on HDR would give rise to nontrivial globally integral
(in the sense of Arakelov theory) morphisms
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OK = τ⊗0
E ≈ F 1(HDR) → (F r+1/F r)(HDR) ≈ τ⊗r

E

for some r > 1. That is to say, we would get a global integral section of some
positive power of τE = ω∨

E , which would imply a bound on the Arakelov-theoretic
degree of ωE , i.e., a bound on the height ht(EK) of the elliptic curve EK (since the
height ht(EK) is equal to twice the degree of ωE). Of course, one should not expect
to be able to get rid of the Gaussian poles without paying some sort of “tax.” If,
for instance, this tax is of the order of denominators of size ≈ D

r
2 on (F r+1/F r)

(where D > 0 is some real number independent of r), then we would obtain an
inequality

ht(EK) ≤ log(D)

Thus, if

D ≈ log(discK/Q)

(the log of the discriminant of K over Q), then we would obtain precisely the
inequality asserted in the ABC (or Szpiro’s) Conjecture. (Here, we note that since
the d-torsion points are assumed to be rational over K, and we typically expect that
we will want to take d of the order of ht(EK) (cf. [Mzk1], Chapter II), typically
log(discK/Q) will be approximately equal to the log discriminant of the minimal
field of definition of EK plus the logarithm of the primes of bad reduction of EK .
This is the form in which the ABC (or Szpiro’s) Conjecture is usually stated (cf.
[Lang], [Vojta]).)

The above sketch of an argument (i.e., that one might be able to apply Theorem
A to the ABC Conjecture if only one could get rid of the Gaussian poles) provides,
in the opinion of the author, strong motivation for investigating the issue of whether
or not one can somehow eliminate the Gaussian poles from Theorem A.

One approach to eliminating the Gaussian poles is the following: As discussed
in §1.2, in some sense, one may regard the theory of [Mzk1] as the theory of the
Gaussian and its derivatives. The classical example of the theory of the Gaussian
and its derivatives is the theory of Hermite functions. The Hermite functions, which
are various derivatives of the Gaussian, are not themselves polynomials, but rather
of the form:

(polynomial) · (Gaussian)

Thus, it is natural to divide the Hermite functions by the Gaussian, which then
gives us polynomials which are called the Hermite polynomials. In the theory of
[Mzk1], the original Gaussian corresponds (relative to taking the Fourier expansion)
to the algebraic theta functions of Mumford (i.e., before we consider derivatives);
the “unwanted” Gaussian that remains in the Hermite functions corresponds to



34 SHINICHI MOCHIZUKI

the Gaussian poles. Moreover, since multiplication and division correspond (after
taking the Fourier expansion) to convolution, it is natural to imagine that the
image of the “domain without Gaussian poles” of the Comparison Isomorphism
(of Theorem A) should correspond to those functions on the torsion points that
are in the image of (the morphism given by) convolution with the (original) theta
function — which we refer to as the “theta convolution” for short. Thus, it is natural
to conjecture that:

By studying the theta convolution, one might be able to construct
a Galois action like the one needed in the argument above, i.e.,
a “Galois action without Gaussian poles.”

In [Mzk2], we study this theta convolution, and obtain, in particular, a theta-
convoluted comparison isomorphism, which has the property that, in a neighbor-
hood of the divisor at infinity, when one works with an étale (i.e., isomorphic to
Z/dZ) Lagrangian subgroup, and a multiplicative (i.e., isomorphic to μd) restric-
tion subgroup, then the Gaussian poles vanish, as desired (cf. [Mzk2], especially
Remark 1 following Theorem 10.1, for more details). Even in the case of the theta-
convoluted comparison isomorphism, however, the Gaussian poles fail to vanish (in
a neighborhood of the divisor at infinity) if either the restriction subgroup fails to
be multiplicative or the Lagrangian subgroup fails to be étale.

At the time of writing, however, the author no longer believes the theory of
[Mzk2] to be a strong candidate for eliminating the Gaussian poles in the case
of elliptic curves over a number field. Instead, it is the sense of the author that
the approach of [Mzk4] provides the most promising candidate for achieving this
goal. Nevertheless, the theory of [Mzk2] is of interest in its own right, and will be
surveyed in §2 of the present paper.

§1.5.2 Higher Dimensional Abelian Varieties and Hyperbolic Curves

Once results such as Theorem A (of §1.1) have been established for elliptic
curves, it is natural to attempt to generalize such results to higher dimensional
abelian varieties and hyperbolic curves. Unfortunately, however, even in the case
of abelian varieties, where one expects the generalization to be relatively straight-
forward, one immediately runs into a number of problems. For instance, if one
considers sections of an ample line bundle L over the universal extension of an
abelian variety of dimension g, the dimension over the base field of the space of
global sections of torsorial degree < d is:

(
d − 1 + g

g

)
· dg < d2g

(where we assume that the dimension of the space of global sections of L over the
abelian variety itself is equal to dg) if g > 1. Thus, the naive generalization of
Theorem Asimple cannot possibly hold (i.e., since the two spaces between which one
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must construct an isomorphism have different dimensions). Nevertheless, it would
be interesting if someday this sort of technical problem could be overcome, and
the theory of [Mzk1] could be generalized to arbitrary abelian varieties. If such
a generalization could be realized, it would be interesting if, for instance, just as
the various models (Hermite, Legendre, Binomial) that occur in the archimedean
theory of the present paper correspond naturally to the possible slopes of the action
of Frobenius (on the first crystalline cohomology module of an elliptic curve) at
finite primes (cf. the discussion of this phenomenon in §1), it were the case that
the corresponding models in the archimedean theory for arbitrary abelian varieties
correspond to the possible Newton polygons of the action of Frobenius (on the
first crystalline cohomology module of an abelian variety of the dimension under
consideration) at finite primes.

Another natural direction in which to attempt to generalize the theory of
this paper would be to extend it to a global/Arakelov-theoretic Hodge theory of
hyperbolic curves. Indeed, the “complex Hodge theory of hyperbolic curves,” which
revolves around the Köbe uniformization of (the Riemann surfaces corresponding
to) such curves by the upper half-plane, has already been extended to the p-adic
case ([Mzk6,7]). Moreover, the theory of [Mzk6,7] may also be regarded as the
“hyperbolic curve analogue” of Serre-Tate theory. Thus, it is natural to attempt to
construct a “global Arakelov version” of [Mzk6,7], just as the theory of the present
paper in some sense constitutes a globalization of the Serre-Tate theory/p-adic
Hodge theory of elliptic curves (cf. Chapter IX, §2).

Section 2: The Theta Convolution

§2.1. Background

In [Mzk2], we continue our development of the theory of the Hodge-Arakelov
Comparison Isomorphism of [Mzk1]. Our main result concerns the invertibility of
the coefficients of the Fourier transform of an algebraic theta function. Using this
result, we obtain a modified version of the Hodge-Arakelov Comparison Isomor-
phism of [Mzk1], which we refer to as the Theta-Convoluted Comparison Isomor-
phism. The significance of this modified version is that the principle obstruction
to the application of the theory of [Mzk1] to diophantine geometry — namely, the
Gaussian poles — partially vanishes in the theta-convoluted context.

Perhaps the simplest way to explain the main idea of [Mzk2] is the follow-
ing: The theory of [Mzk1] may be thought of as a sort of discrete, scheme-theoretic
version of the theory of the classical Gaussian e−x2

(on the real line) and its deriva-
tives (cf. [Mzk1], Introduction, §2). More concretely, the theory of [Mzk1] may, in
essence, be thought of as the theory of the theta function

Θ def=
∑
n∈Z

qn2 · Un
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(where q is the q-parameter, and U is the standard multiplicative coordinate on
Gm) and its derivatives — i.e., functions of the form

∑
n∈Z

qn2 · P (n) · Un

for some polynomial P (−) with constant coefficients. From this point of view, the
“Gaussian poles” — which, as remarked above, constitute the principle obstruction
to the application of the theory of [Mzk1] to diophantine geometry — arise from
the factors of

qn2

appearing in the above series. Thus, if one could somehow “magically replace” the
above series by series of the form

∑
n∈Z

P (n) · Un

then there would be some hope of obtaining a theory without Gaussian poles. Put
another way,

One would like to divide the coefficient of Un in the usual series
for Θ and its derivatives by the factor qn2

.

If we think of these series as Fourier series (on the group Gm), then the “magical
replacement” referred to above may be expressed as convolution of the given series

∑
n∈Z

qn2 · P (n) · Un

with the series

∑
n∈Z

q−n2 · Un

— where we recall that, at the level of Fourier series, convolution of functions
corresponds to multiplication of Fourier coefficients.

Thus, in summary, if we refer to the map of functions

φ �→ φ ∗ Θ

(where “∗” denotes convolution) given by convolution with Θ as the theta convolu-
tion, we see that what we would really like to do is to apply to a given series
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∑
n∈Z

qn2 · P (n) · Un

the inverse of the theta convolution.

In order to do this, one must first resolve a number of technical obstacles:

(1) First of all, in order to consider the inverse of the theta convolu-
tion, one must first show that the theta convolution is invertible.
The above formal discussion shows that the theta convolution
is invertible in a “formal neighborhood of infinity” (of the mod-
uli stack of elliptic curves). In fact, however, in the context of
[Mzk1], one needs to know invertibility over the entire moduli
stack of elliptic curves (not just near infinity).

(2) In the context of [Mzk1], instead of working with the group Gm,
one is effectively working with the torsion subgroup μd ⊆ Gm (of
d-torsion points). Thus, one must prove that the rather transpar-
ent argument given above in the case of Gm may also be carried
out for the torsion subgroup μd — i.e., instead of dealing with the
“classical theta function Θ,” we must deal with Mumford’s alge-
braic theta functions, in which case the coefficients contain (in
addition to the easy to understand terms discussed above) other
less transparent terms arising from the discrepancy between μd

and Gm.

These technical obstances are resolved in the main theorem ([Mzk2], Theorem 9.1)
of [Mzk2] on the invertibility of the Fourier coefficients of Mumford’s algebraic theta
functions. This theorem will be discussed in more detail in §2.2 below.

Before proceeding, we would like to explain several ways to think about the
contents of [Mzk2]. First of all, the fact that the Fourier coefficients of Mumford’s
algebraic theta functions are invertible away from the divisor at infinity appears
(to the knowledge of the author) to be new (i.e., it does not seem to appear in the
classical theory of theta functions). Thus, one way to interpret [Mzk2], Theorem
9.1, is as a result which implies the existence of certain interesting, new modular
units. It would be interesting to see if this point of view can be pursued further (cf.
[Mzk2], the Remark following Theorem 9.1). For instance, it would be interesting
to try to compute these new modular units as (multiplicative) linear combinations
of well-known modular units, such as Siegel modular units.

Another way to think about the contents of [Mzk2] is the following. The
classical Fourier expansion of Θ discussed above arises from the Fourier expansion
of the restriction of the theta function to a certain particular cycle (or copy of the
circle S1) on the elliptic curve E in question. More explicitly, if one thinks of this
elliptic curve E as being

E = C×/qZ
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then this special cycle is the image of the natural copy of S1 ⊆ C×. In the present
context, we are considering discrete analogues of this classical complex theory, so
instead of working with this S1, we work with its d-torsion points (for some fixed
positive integer d), i.e., μd ⊆ S1 ⊆ C×.

On the other hand, in order to obtain a theory valid over the entire moduli stack
of elliptic curves, we must consider Fourier expansions of theta functions restricted
not just to this special cyclic subgroup of order d, i.e., μd ⊆ E, (with respect to
which the Fourier expansion is particularly simply and easy to understand), but
rather with respect to an arbitrary cyclic subgroup of order d. Viewed from the
classical complex theory, considering Fourier expansions arising from more general
restriction subgroups amounts to considering the functional equation of the theta
function. In the classical complex theory, Gauss sums arise naturally in the func-
tional equation of the theta function. Thus, it is not surprising that Gauss sums
(and, in particular, their invertibility) also play an important role in the theory of
[Mzk2].

In fact, returning to the theory of the Gaussian on the real line, one may
recall that one “important number” that arises in this theory is the integral of the
Gaussian (over the real line). This integral is (roughly speaking)

√
π. On the other

hand, in the theory of [Mzk2], Gaussians correspond to “discrete Gaussians” (cf.
[Mzk2], §2), so integrals of Gaussians correspond to “Gauss sums.” That is to say,
Gauss sums may be thought of as a sort of discrete analogue of

√
π. Thus, the

appearance of Gauss sums in the theory of [Mzk2] is also natural from the point of
view of the analogy of the theory of [Mzk1] with the classical theory of Gaussians
and their derivatives (cf. §1.2).

Indeed, this discussion of discrete analogues of Gaussians and
√

π leads one to
suspect that there is also a natural p-adic analogue of the theory of [Mzk2] involving
the p-adic ring of periods Bcrys. Since this ring of periods contains a certain copy
of Zp(1) which may be thought of as a “p-adic analogue of π,” it is thus natural to
suspect that in a p-adic analogue of the theory of [Mzk2], some “square root of this
copy of Zp(1)” — and, in particular, its invertibility — should play an analogously
important role to the role played by the invertibility of Gauss sums in [Mzk2].

§2.2. Statement of the Main Theorem

Let E/K, d, η, and L be as in Theorem Asimple. Also, for simplicity, we
assume in the present discussion that d is odd, and that we are given two subgroup
schemes G,H ⊆ E[d] which are étale locally isomorphic to Z/dZ and which satisfy
the condition

G × H = E[d]

Since d is odd, it follows from Mumford’s theory of algebraic theta functions (cf.,
e.g., [Mzk1], Chapter IV, §1) that we obtain natural actions of G, H on the pair
(E,L).
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In the context of [Mzk2], we refer to G (respectively, H) as the restriction
subgroup (respectively, Lagrangian subgroup) since we use it as the subgroup to
which we restrict sections of L (respectively, via which we descend sections of L to
E/H — cf. the theory of theta groups). Note, in particular, that since G acts on
the pair (E,L), we obtain a theta trivialization

L|G ∼= L|0E
⊗K OG

We are now ready to state the main result of [Mzk2]:

Theorem B. (Invertibility of the Fourier Coefficients of an Algebraic
Theta Function) Let E/K, d, η, L, G, and H be as above. In particular, we
assume here (for simplicity) that d is odd. Let s ∈ Γ(E,L)H be a generator of the
one-dimensional K-vector space of H-invariant sections of L over E. By Mumford’s
theory of algebraic theta functions, restricting s to G ⊆ E and applying the theta
trivialization (reviewed above) gives rise to an algebraic theta function

Θs ∈ L|G ∼= L|0E
⊗K OG

i.e., a function on the finite group scheme G. With this notation, the Fourier
coefficients of the function Θs on G are all inverbile.

In [Mzk2], Theorem 9.1, the case of even d is also addressed, as well as the
extent to which these Fourier coefficients are invertible in mixed characteristic and
near infinity (i.e., as the elliptic curve in question degenerates).

Theorem B is proven by comparing the degree of the line bundle (on the mod-
uli stack of elliptic curves) of which the norm of the Fourier transform (i.e., the
product of its coefficients) is a section to the degree of the zero locus of this norm
in a neighborhood of the divisor at infinity. A rather complicated (but entirely
elementary, “high school level”) calculation reveals that these two degrees coincide.
This coincidence of degrees implies that the norm is therefore invertible (in charac-
teristic 0) away from the divisor at infinity. This proof is thus reminiscent of the
proof of Theorem A given in [Mzk1], although the calculation used to prove the “co-
incidence of degrees” in [Mzk2] is somewhat more complicated than the calculation
that appears in [Mzk1] in the proof of Theorem A.

Finally, in [Mzk2], §10, we apply Theorem B as discussed in §2.1: That is,
now that we know (by Theorem B) that the theta convolution is invertible, we
compose the comparison isomorphism of Theorem A with the inverse of the theta
convolution to obtain a new “theta-convoluted comparison isomorphism.” Unfor-
tunately, however, even this new comparison isomorphism is not entirely free of
Gaussian poles. More precisely, of the various “points at infinity” of the moduli
stack of elliptic curves equipped with the data appearing in Theorem B (i.e., η, G,
H), those points at infinity for which the restriction subgroup G is multiplicative
(i.e., coincides with the subgroup μd ⊆ Gm � Gm/qZ = E) satisfy the property
that in a neighborhood of such points at infinity, the theta-convoluted comparison
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isomorphism is free of Gaussian poles. At the other points of infinity (which, inci-
dentally, constitute the overwhelming majority of points at infinity), however, even
the theta-convoluted comparison isomorphism fails to be free of Gaussian poles.
Thus, the theory of [Mzk2] is still not sufficient to allow one to apply the theory of
[Mzk1] to diophantine geometry (cf. also the discussion of §1.5.1).
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pp. 629-644.
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I: Construction de l’accouplement de périodes, Périodes p-Adiques, Astérisque
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