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Abstract.

The purpose of the present manuscript is to continue the survey
of the Hodge-Arakelov theory of elliptic curves (cf. [7, 8, 9, 10, 11])
that was begun in [12]. This theory is a sort of “Hodge theory of ellip-
tic curves” analogous to the classical complex and p-adic Hodge the-
ories, but which exists in the global arithmetic framework of Arakelov
theory. In particular, in the present manuscript, we focus on the as-
pects of the theory (cf. [9, 10, 11]) developed subsequent to those
discussed in [12], but prior to the conference “Algebraic Geometry
2000” held in Nagano, Japan, in July 2000. These developments
center around the natural connection that exists on the pair con-
sisting of the universal extension of an elliptic curve, equipped with
an ample line bundle. This connection gives rise to a natural ob-
ject — which we call the crystalline theta object — which exhibits
many interesting and unexpected properties. These properties al-
low one, in particular, to understand at a rigorous mathematical
level the (hitherto purely “philosophical”) relationship between the
classical Kodaira-Spencer morphism and the Galois-theoretic “arith-
metic Kodaira-Spencer morphism” of Hodge-Arakelov theory. They
also provide a method (under certain conditions) for “eliminating the
Gaussian poles,” which are the main obstruction to applying Hodge-
Arakelov theory to diophantine geometry. Finally, these techniques
allow one to give a new proof of the main result of [7] using charac-
teristic p methods. It is the hope of the author to survey more recent
developments (i.e., developments that occurred subsequent to “Alge-
braic Geometry 2000”) concerning the relationship between Hodge-
Arakelov theory and anabelian geometry (cf. [16]) in a sequel to the
present manuscript.
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§1. General Introduction

We begin our general introduction to the topics presented in the
present manuscript by reviewing the fundamental argument from al-
gebraic geometry whose arithmetic analogue is the central goal of the
Hodge-Arakelov theory of elliptic curves.

Let S be a smooth, proper, geometrically connected algebraic curve
over an algebraically closed field of characteristic zero k. Let

E → S

be a family of one-dimensional semi-abelian varieties whose generic fiber
is proper. Thus, (except for a finite number of exceptions) the fibers of
E → S are elliptic curves. Let us write

Σ ⊆ S

for the finite set of points over which the fiber of E → S fails to be an
elliptic curve, and

ωE
def
= ΩE/S |0E

for the restriction of the sheaf of relative differentials to the zero section
of E → S. Then the height of the family E → S is defined to be:

htE
def
= degS(ω

⊗2
E )

(i.e., the degree on S of the line bundle in parentheses). The height is a
measure of the arithmetic complexity of the family E → S. For instance,
the family is isotrivial (i.e., becomes trivial upon applying some finite
flat base extension T → S) if and only if htE = 0.

In some sense, the most important property of the height in this
context is the fact that (in the nonisotrivial case) it is universally bounded
by invariants depending only on the pair (S,Σ). This bound — “Szpiro’s
conjecture for function fields” — is as follows:
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(1) htE ≤ 2gS − 2 + |Σ|

(where gS is the genus of S, and |Σ| is the cardinality of Σ). The proof, in
the present geometric context, is the following simple argument: Write
Mell for the compactified moduli stack of elliptic curves over k, and
∞ ⊆ Mell for the divisor at infinity of this stack. Thus, E → S defines
a classifying morphism

κ : S → Mell

whose (logarithmic) derivative

dκ : ω⊗2
E

∼= κ∗ΩMell/k
(∞) → ΩS(Σ)

is nonzero (so long as we assume that the family E → S is nonisotrivial).
Thus, since dκ is a generically nonzero morphism between line bundles
on the curve S, the degree of its domain (i.e., htE) is ≤ the degree of its
range (i.e., 2gS − 2 + |Σ|), so we obtain the desired inequality.

Note that in the above argument, the most essential ingredient is
the Kodaira-Spencer morphism, i.e., the derivative dκ. Until recently,
no analogue of such a derivative existed in the “arithmetic case” (i.e., of
elliptic curves over number fields). On the other hand:

The Hodge-Arakelov theory of elliptic curves gives rise
to a natural analogue of the Kodaira-Spencer morphism
in the arithmetic context of an elliptic curve over a
number field.

A survey of the basic theory of this arithmetic Kodaira-Spencer mor-
phism, together with a detailed explanation of the sense in which it
may be regarded as being analogous to the classical geometric Kodaira-
Spencer morphism, may be found in [12].

At a more technical level, in some sense the most fundamental result
of Hodge-Arakelov theory is the following: Let E be an elliptic curve
over a field K of characteristic zero. Let d be a positive integer, and
η ∈ E(K) a torsion point of order not dividing d. Write

L def
= OE(d · [η])

for the line bundle on E corresponding to the divisor of multiplicity d
with support at the point η. Write

E† → E
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for the universal extension of the elliptic curve, i.e., the moduli space of
pairs (M,∇M) consisting of a degree zero line bundle M on E, equipped
with a connection ∇M. Thus, E† is an affine torsor on E under the
module ωE of invariant differentials on E. In particular, since E† is
(Zariski locally over E) the spectrum of a polynomial algebra in one
variable with coefficients in the sheaf of functions on E, it makes sense
to speak of the “relative degree over E” – which we refer to in this paper
as the torsorial degree – of a function on E†. Note that (since we are in
characteristic zero) the subscheme E†[d] ⊆ E† of d-torsion points of E†

maps isomorphically to the subscheme E[d] ⊆ E of d-torsion points of E.
Then in its simplest form, the main theorem of [7] states the following:

Theorem 1.1. (Simple Version of the Hodge-Arakelov Com-
parison Isomorphism) Let E be an elliptic curve over a field K of
characteristic zero. Write E† → E for its universal extension. Let d be
a positive integer, and η ∈ E(K) a torsion point whose order does not

divide d. Write L def
= OE(d · [η]). Then the natural map

Γ(E†,L)<d → L|E†[d]

given by restricting sections of L over E† whose torsorial degree is < d
to the d-torsion points E†[d] ⊆ E† is a bijection between K-vector
spaces of dimension d2.

The remainder of the main theorem essentially consists of specifying
precisely how one must modify the integral structure of Γ(E†,L)<d over
more general bases in order to obtain an isomorphism at the finite and
infinite primes of a number field, as well as for degenerating elliptic
curves.

The relationship between Theorem 1.1 and the classical Kodaira-
Spencer morphism is discussed in detail — albeit at a rather philosophi-
cal level — in [12], §1.3, 1.4. The analogue in the arithmetic case of the
geometric argument used above to prove (1) is discussed in [12], §1.5.1.
The upshot of this argument in the arithmetic case is that in order to
derive diophantine equalities analogous to (1) in the arithmetic case —
i.e., Szpiro’s conjecture — it is necessary to eliminate certain unwanted
poles — called Gaussian poles — that occur in the construction of the
arithmetic Kodaira-Spencer morphism.

In the present manuscript, we discuss the following further develop-
ments in the theory (cf. §3, 4):
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(i) a method for eliminating the Gaussian poles under certain con-
ditions (cf. Corollary 3.5);

(ii) an argument which shows that (under certain conditions) the
reduction in positive characteristic of the arithmetic Kodaira-
Spencer morphism coincides with the classical geometric Kodaira-
Spencer morphism (cf. Corollary 3.6);

(iii) a alternative proof of Theorem 1.1 using characteristic p meth-
ods (cf. Theorem 4.3).

Thus, development (i) brings us closer to the goal of applying Hodge-
Arakelov theory to proving Szpiro’s conjecture (for elliptic curves over
number fields). Unfortunately, the conditions under which the argu-
ment of (i) may be carried out do not hold (at least in the naive sense)
for elliptic curves over number fields. Nevertheless, there is substan-
tial hope that certain new constructions will allow us to realize these
conditions even for elliptic curves over number fields (cf. §3 for more
on this issue). Development (ii) is significant in that it shows that the
analogy between the arithmetic and classical geometric Kodaira-Spencer
morphisms is not just philosophy, but rigorous mathematics! Finally,
the significance of development (iii) is that it provides a much more con-
ceptual, as well as technically simpler proof of the “fundamental theorem
of Hodge-Arakelov theory” (i.e., Theorem 1.1).

Underlying all of these new developments (especially (i), (ii)) is the
theory of the crystalline theta object, to be discussed in §2. This object
is a locally free sheaf equipped with a connection and a Hodge filtration,
hence is reminiscent of the “MF∇-objects” of [2], §2. On the other
hand, many of its properties, such as “Griffiths semi-transversality” and
the vanishing of the (higher) p-curvatures, are somewhat different from
(and indeed, somewhat surprising from the point of view of the theory of)
MF∇-objects. Nevertheless, these properties are of crucial importance
in the arguments that underly developments (i), (ii).

§2. The Crystalline Theta Object

2.1. The Complex Analogue.

We begin the discussion of this § by motivating our construction in
the abstract algebraic case by first examining the complex analogue of
the abstract algebraic theory.

Let E be an elliptic curve over C (the field of complex numbers). In
this discussion of the complex analogue, we shall regard E as a complex
manifold (rather than an algebraic variety). Let us write OE (respec-
tively, OER

) for the sheaf of complex analytic (respectively, real analytic)
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complex-valued functions on E. In both the complex and real analytic
categories, we have exponential exact sequences:

0 −−−−→ 2πi · Z −−−−→ OE
exp−−−−→ O×

E −−−−→ 0

0 −−−−→ 2πi · Z −−−−→ OER

exp−−−−→ O×
ER

−−−−→ 0

Since (as is well-known from analysis) H1(E,OER
) = H2(E,OER

) =
H2(E,OE) = 0, taking cohomology thus gives rise to the following exact
sequences:

0 −−−−→ H1(E, 2πi · Z) −−−−→ H1(E,OE) −−−−→ H1(E,O×
E)

deg−−−−→ H2(E, 2πi · Z) = Z −−−−→ 0

0 −−−−→ H1(E,O×
ER

)
deg−−−−→ H2(E, 2πi · Z) = Z −−−−→ 0

In other words, (as is well-known) the isomorphism class of a holomor-
phic line bundle on E is not determined just by its degree (which is
a topological invariant), but also has continuous holomorphic moduli
(given by H1(E,OE) 	= 0), while the isomorphism class of a real analytic
line bundle is completely determined by its degree. Thus, in particular,
the complex analytic pair (E,L) (i.e., a “polarized elliptic curve”) has
nontrivial moduli, and in fact, even if the moduli of E are held fixed,
L itself has nontrivial moduli. (Here, by “nontrivial moduli,” we mean
that there exist continuous families of such objects which are not lo-
cally isomorphic to the trivial family.) On the other hand, (if we write

LR
def
= L⊗OE

OER
, then) the real analytic pair (ER,LR) has trivial mod-

uli, i.e., continuous families of such objects are always locally isomorphic
to the trivial family. Put another way,

The real analytic pair (ER,LR) is a topological in-
variant of the polarized elliptic curve (E,L).

Note that once one admits that ER itself is a “topological invari-
ant” of E (a fact which may be seen immediately by thinking of ER as
H1(E,S1), where S1 ⊆ C× is the unit circle), (one checks easily that)
the fact that LR is also a topological invariant follows essentially from
the fact that H1(E,OER

) = 0. Note that if one thinks of the universal
extension E† as the algebraic analogue of ER, then the analogue of this
fact in the algebraic context is given precisely by the (easily verified)
fact:
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H1(E†,OE†) = 0

(that is, the first cohomology module of the algebraic coherent sheaf
OE† vanishes). In §2.3 below, we would like to exploit this fact to show
that the pair (E†,L|E†) has a natural structure of crystal (valued in the
category of “polarized varieties,” or varieties equipped with an ample
line bundle), and that — by placing an appropriate integral structure
on E† — one may show that this crystal exists naturally not only in
characteristic 0, but also in mixed characteristic. Thus, in summary, the
analogy that we wish to assert here is the following:

topological invariance of (ER,LR) ←→ (E†,L|†E) is a crystal

In fact, it is useful here to recall that in some sense:

The essential spirit of the “Hodge-Arakelov Theory of
Elliptic Curves” may be summarized as being the Hodge
theory of the pairs (ER,LR) (at archimedean primes),

(E†,L|†E) (with appropriate integral structures — to be
discussed in §2.3 below — at non-archimedean primes),
as opposed to the “usual Hodge theory of an elliptic
curve” which may be thought of as the Hodge theory of
ER (at archimedean primes) or E† (at non-archimedean
primes).

In this connection, we note that the “Hodge-Arakelov theory of an el-
liptic curve at an archimedean prime” is discussed/reviewed in detail in
[7], Chapter VII, §4.

2.2. The Case of Ordinary p-adic Elliptic Curves.

Central to the theory of the mixed characteristic analogue of the
ideas presented in §2.1 is the theory of the étale integral structure on
the universal extension of an elliptic curve. In the present §, we would
like to review the definition of the étale integral structure and discuss
its structure in the case of an ordinary p-adic elliptic curve.

Let us work over a formal neighborhood of the point at infinity on
the moduli stack of elliptic curves — i.e., say, the spectrum of a ring of
power series of the form

S
def
= Spec(O[[q]])

where O is a Dedekind domain of mixed characteristic and q an indeter-

minate. Write Ŝ for the completion of S with respect to the q-adic topol-
ogy, and E → S for the tautological degenerating elliptic curve (more
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precisely: one-dimensional semi-abelian scheme), with “q-parameter”
equal to q. Then we have natural isomorphisms

E|Ŝ ∼= Gm; ωE = OS · d log(U); E†|Ŝ ∼= Gm × A1

where we write U for the usual multiplicative coordinate on Gm (cf.
[7], Chapter III, Theorem 2.1; the discussion of [7], Chapter III, §6, for
more details). If we write “T” for the standard coordinate on this affine
line, then near infinity, the standard integral structure on E† may be
described as that given by ⊕

r≥0

OGm · T r

On the other hand:

Definition 2.1. The étale integral structure on E† (near infinity) is
given by

⊕
r≥0

OGm ·
(
T

r

)

where
(
T
r

) def
= 1

r!T (T − 1) · . . . · (T − (r − 1))).

Moreover, although the above definition of this integral structure is
only valid near infinity, this integral structure extends uniquely over the
entire (compactified) moduli stack of elliptic curves Mell (over Z) — cf.
[9], §1. (Note that this uniqueness is a consequence of the fact that Mell

is a regular scheme of dimension 2.)
Thus, given a family of elliptic curves E → S over an arbitrary Z-

flat base S, we obtain a naturally defined “étale integral structure” on
the universal extension E†, i.e., a group scheme

E†
et → S

(which is not of finite type over S).
Next, we would like to examine this étale integral structure in more

detail in the case of a family of ordinary p-adic elliptic curves. Thus,
let S be a p-adic formal scheme which is formally smooth over Zp, and
assume also that we are given a family of ordinary elliptic curves

E → S

such that the associated classifying morphism S → (Mell)Zp is formally
(i.e., relative to the p-adic topology) étale. (Here, by “ordinary,” we
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mean that the fibers of E → S over all the points of SFp have nonzero
Hasse invariant.) For n ≥ 1, write

E[pn]
def
= Ker([pn] : E → E)

for the kernel of multiplication by pn on E. Then, as is well-known (cf.,
e.g., [6], p. 150), there is a unique exact sequence

0 → E[pn]μ → E[pn] → E[pn]et → 0

of finite flat group schemes overE such that E[pn]μ (respectively, E[pn]et)
is étale locally isomorphic to μpn (respectively, Z/pnZ).

Let us write:

EFn def
= E/E[pn]μ

Then since EFn → S is a family of elliptic curves, and the classifying
morphism associated to E → S is étale, it follows that EFn → S defines
a morphism:

Φn
S : S → S

One checks easily that ΦS
def
= Φ1

S is a lifting of the Frobenius morphism
in characteristic p, and that Φn

S is the result of iterating ΦS a total of n
times (as the notation suggests). The morphism

V : EF → E

given by forming the quotient of EF by the image in EF of E[p] will be
referred to as the the Verschiebung morphism associated to E. For any
n ≥ 1, the morphism

Vn : EFn → E

given by forming the quotient of EFn

by the image in EFn

of E[pn] is
easily seen to be equal (as the notation suggests) to the “n-th iterate”
(i.e., up to various appropriate base changes by iterates of ΦS) of V.
Note that the kernel of Vn may be identified with E[pn]et. In particular,
it follows that Vn is étale of degree pn.

Thus, we obtain a tower

. . . → EFn → EFn−1 → . . . → EF → E

of étale isogenies of degree p. Let us denote the p-adic completion of the
inverse limit of this system of isogenies by EF∞

. Thus, in particular, we
have a natural morphism
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EF∞ → E

In [9], §2.2, a certain canonical section

κ[pn] : EFn ⊗ Z/pnZ → E† ⊗ Z/pnZ

is constructed of the universal extension of E over EFn

. This section is
the “ordinary analogue” of the section near infinity (cf. the discussion
at the beginning of the present §2.2) given by sending T 
→ 0. Letting
n → ∞, we thus obtain a morphism

κ[p∞] : EF∞ → (E†)∧

(where “∧” denotes p-adic completion). Finally, by computing near
infinity, one shows that this morphism in fact factors uniquely through
the étale integral structure, i.e., determines a morphism:

κ∞
et : EF∞ → (E†

et)
∧

Theorem 2.2. (Explicit Description of the Étale Integral Struc-
ture of an Ordinary Elliptic Curve) The natural morphism

κ∞
et : EF∞ → (E†

et)
∧

from the p-adic completion of the “Verschiebung tower” of E to the p-
adic completion of the universal extension of E equipped with the étale
integral structure is an isomorphism.

We refer to [9], §2.2, for more details. The essential idea of the proof
is to apply the following well-known bijection (due to Mahler — cf., e.g.,
[5], §3.2):

Comb(Zp)
∧ ∼→ Cont(Zp,Zp)

from the p-adic completion of the free Zp-module Comb(Zp) on the gen-

erators
(
T
r

)
to the space of continuous functions Zp → Zp (given by

evaluating the indeterminate T on elements of Zp).

Remark 2.3. One way to think of the content of Theorem 2.2 is as the
assertion that:

The étale integral structure on E† is very closely related
to the p-adic Hodge theory of E.
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Since E†
et is defined globally over Z whenever E is defined globally over Z,

Theorem 2.2 may also be taken as asserting that E†
et enjoys the following

remarkable interpretation:

The universal extension of an elliptic curve equipped
with the étale integral structure is a natural globalization
over Z of the (very local!) p-adic Hodge theory of the
elliptic curve.

This interpretation is very much in line with the general philosophy of
Hodge-Arakelov theory (cf., e.g., [12], §1.3).

2.3. Integral Structures and Connections.

Let

f : E → S

be a family of elliptic curves over a scheme S. In order to formulate
the various versions of the comparison isomorphism of Hodge-Arakelov
theory (cf., e.g., Theorem 1.1) properly in mixed characteristic, it is nec-
essary to consider not only the universal extension E†, but also certain
E†-torsors — which we shall refer to as Hodge torsors — as follows. Let
L be a line bundle on E. For simplicity, we assume that the (relative)
degree (over S) of L is one. Then we define

EL → E

to be the ωE-torsor over E parametrizing (over an open U ⊆ E) the
(OS-linear) connections ∇L on the line bundle L. Often to simplify the
notation (as well as to emphasize the analogy with E†), we will denote
EL by

E∗

(where we think of the “∗” as being set equal to L).
Then E∗ admits a natural E†-action, defined as follows. If ∇L is the

connection corresponding to a section of E∗ → E over some open U ⊆ E,
and ∇α is a connection on the degree zero line bundle OE([0E ] − [α])
for some point α ∈ E(S), then we let the point (α,∇α) of E

†(S) act on
E∗ by

∇L 
→ (T ∗
α∇L)⊗∇α

— where we denote by Tα : E → E the morphism “translation by α,”
and we observe that
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(T ∗
αL)⊗OE([0E ]− [α])

∼→ L
(by the elementary theory of line bundles on elliptic curves), so (T ∗

α∇L)⊗
∇α defines a connection on L over T ∗

αU , i.e., a section of E∗ → E
over T ∗

αU , as desired. Thus, we obtain an action of E† on E∗ which
is compatible (via the projections E† → E, E∗ → E) with the usual
translation action of E on itself. Moreover, it is an easy exercise to show
that the action of E† on E∗ defines a structure of E†-torsor on E∗.

When S is Z-flat, and L is the degree one line bundle defined by a
torsion point η ∈ E(S), then there is also a natural analogue of the étale
integral structure on E† (cf. §2.2) for E∗. For simplicity, we restrict
ourselves here to the case where ∗ = OE([0E ]). Then (since (Mell)Z
is connected and regular of dimension two) the étale integral structure
on E∗ is uniquely determined over arbitrary S once it is determined
“near infinity,” i.e., in the case S = Spec(Z[[q]]). Now, as we saw at the
beginning of §2.2, the standard integral structure on E† is given (near
infinity) by: ⊕

r≥0

OGm
· T r

Relative to this notation, the standard integral structure on E∗ is given
by:

⊕
r≥0

OGm · (T − 1

2
)r

Thus, just as the étale integral structure on E† is given by:

⊕
r≥0

OGm ·
(
T

r

)

it should not surprise the reader that the étale integral structure on E∗

is given by:

⊕
r≥0

OGm
·
(
T − 1

2

r

)

Here, we note that in the case of a more general torsion point η ∈
E(O[[q1/N ]]) (where O is the ring of integers of some number field), the
“1
2” is replaced by a rational number of the form β − 1

2 , where β ∈ Q is
any representative of the unique class in Q/Z such that — if we think of
E(O[[q1/N ]]) as Gm(O[[q1/N ]][q−1])/qZ via the Schottky uniformization
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of the Tate curve E — then η is equal to the point determined by ζ · qβ
for some root of unity ζ.

Just as in the case of E†, the étale integral structure on E∗ extends
over all of (Mell)Z. At primes other than 2, this follows immediately
from the case of E†. On the other hand, at the prime 2, this extension
result is much more difficult to prove (cf. [9], §8.2, 8.3) and requires
various complicated 2-adic computations involving higher p-curvatures
(where p = 2). At any rate, once this extension is made, one obtains an
S-scheme (which is not of finite type over S)

E∗
et

equipped with a natural structure of E†
et-torsor.

Next, let us assume that S is smooth of finite type over Z. In this
situation, it is proven in [9], Lemma 5.1, that the well-known connection

on E† determines natural connections on E†
et and E∗

et. Moreover, by
using the fact (cf. [9], Theorem 4.3) that

f∗(OE∗
et
) = OS ; R1f∗(OE∗

et
) = 0

(where, by abuse of notation, we denote all structure morphisms to S by
“f”) one derives (cf. [9], Theorem 5.2) the following fundamental (i.e.,
relative to the theory of [9]) result (cf. the discussion of §2.1):

Theorem 2.4. Let ε ∈ E∗
et(S) be a horizontal point of E∗

et. Then re-
striction to ε defines a natural bijection between connections (over Z) on
the pair (E∗

et,L|E∗
et
) and connections on the line bundle L|ε on S.

Remark 2.5. Typically, in the situations that we are interested in, there
will be a natural choice of connection on L|ε, so we shall not discuss
this technical issue further in this survey. Thus, (once one chooses a
connection on L|ε) there is a natural choice of connection on (E∗

et,L|E∗
et
).

In particular, we thus obtain a natural crystal valued in the category of
schemes equipped with an ample line bundle on the crystalline site of
PD-thickenings of S over Z.

Before proceeding, we observe that the crucial fact

f∗(OE∗
et
) = OS ; R1f∗(OE∗

et
) = 0

— which is immediate in characteristic 0 — holds in mixed characteristic
only for the étale integral structure, not for the standard integral struc-
ture on E∗. This is the technical reason for the appearance of the étale
integral structure in Theorem 2.4. It is an interesting coincidence that
this integral structure just happens to be the same integral structure as
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the integral structure that was applied in [7] to make the comparison
isomorphism (cf. Theorem 1.1) valid in mixed characteristic.

Once one has a connection on the pair (E∗
et,L|E∗

et
), the next natural

step is to consider the resulting connection ∇V on the locally free (albeit
of infinite rank!) sheaf

V def
= f∗(L|E∗

et
)

on S. Note that by considering the “torsorial degree” of sections of L
over E∗

et (i.e., relative degree over E), one obtains a natural “Hodge
filtration”

F r(V) ⊆ V
whose subquotients are given by:

(F r+1/F r)(V) = 1

r!
· τ⊗r

E ⊗OS f∗(L)

(where f∗(L) is the push-forward of the original line bundle L on E).
The triple

(V , F r(V),∇V)

is referred to as the crystalline theta object (cf. [9], Theorem 8.1) and is
the main object of study in [9].

2.4. Comparison Isomorphism at Infinity.

In this §, we would like to take a closer look at the crystalline theta
object introduced in §2.3 in a neighborhood of infinity, i.e., over the base
S = Spec(Z[[q]]). In this case, if we think of the tautological elliptic

curve over US
def
= S[q−1], i.e., the Tate curve, as the quotient

Gm/qZ

and write U for the standard multiplicative coordinate on Gm, then

sections of V def
= f∗(L|E∗

et
) may be thought of as linear combinations of

the theta function

Θ
def
=

∑
k∈Z

(−1)k · q 1
2k

2− 1
2k · Uk− 1

2 · θ

(where “U− 1
2 ·θ” is a certain natural trivialization of L over Gm, and we

note that the exponent of q is always integral) and its derivatives (i.e.,
the result of applying polynomials (with OS-coefficients) in (U ·∂/∂U)).
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In fact, in the present context, it is natural to consider certain spe-
cific derivatives (i.e., “congruence canonical Schottky-Weierstrass zeta
functions” — cf. [9], §6) of the theta function, as follows. For integers
r ≥ 0, let

λr
def
=

⌊r
2
− 1

2

⌋
(i.e., the greatest integer ≤ the number inside the “�−�”);

F r(Z)
def
= {0− λr, 1− λr, . . . , r − 1− λr} ⊆ Z

Thus, F r+1(Z) ⊇ F r(Z) is obtained from F r(Z) by appending one more
integer “k[r]” directly to the left/right of F r(Z) (where “left/right” de-
pends only on the parity of r). In particular, the map Z≥0 → Z given
by

r 
→ k[r]

is a bijection. Also, let us write:

Ψ(k)
def
=

1

2
k2 − 1

2
k

Then a topological (with respect to the q-adic topology) OŜ-basis of V
is given by ζCG

0 , ζCG
1 , . . . , ζCG

r , . . . ∈ V , where we define:

ζCG
r =

∑
k∈Z

(
k + λr

r

)
· (−1)k · q 1

2k
2− 1

2k · Uk− 1
2 · θ

(cf. [7], Chapter V, Theorem 4.8).
Next, let us recall that the integral structure on E∗

et was defined by:

⊕
r≥0

OGm ·
(
T − 1

2

r

)

hence that sending T 
→ 0 defines a q-adic section

κGm : (Gm)Ŝ → E∗
et|Ŝ

(at least after one inverts 2). Then pulling back via κGm and applying

the trivialization of L|Gm given by “U− 1
2 · θ” yields a natural evaluation

morphism:

Ξ : V → L|(Gm)Ŝ

∼→ O(Gm)Ŝ
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which is, in fact, integral over Z (cf. [9], Theorem 6.1). Moreover,
the connection ∇V is projectively compatible — that is, compatible up
to a possible “error term” consisting of a scalar-valued (logarithmic)
differential on S (cf. [9], Theorem 6.1, for more details) — with the
natural connection on O(Gm)Ŝ

(regarded as a quasi-coherent OŜ-module)

arising from the fact that (Gm)Ŝ arises by pulling back to Ŝ the Z-scheme
Gm (i.e., put another way, the unique connection for which integral
powers of U are horizontal).

Next, let us observe (cf. [7], Chapter V, Theorem 4.8) that the
sections ζCG

r introduced above have the following congruence property:

Ξ(ζCG
r ) ≡ 0 (mod qΨ(k[r]))

Thus, it is natural to consider the sections

ζ̃CG
r

def
= q−Ψ(k[r]) · ζCG

r ∈ q−∞ · V
which define a new integral structure on V, which we denote by

VGP

— where the “GP” stands for “Gaussian poles,” i.e., the poles arising
from the q−Ψ(k[r]) — cf. [7], Chapter VI, Theorem 4.1 and the Remarks

following that theorem. In particular, the ζ̃CG
r form a topological OŜ-

basis for VGP, and Ξ factors through VGP to form a morphism:

ΞGP : VGP → O(Gm)Ŝ

Now we have the following Schottky-theoretic analogue (i.e., d-torsion
points are replaced by “Gm”) of the original Hodge-Arakelov comparison
isomorphism (cf., Theorem 1.1):

Theorem 2.6. (Schottky-Theoretic Hodge-Arakelov Compari-
son Isomorphism) The evaluation map introduced above is an isomor-
phism:

ΞGP : VGP ∼→ O(Gm)Ŝ

which is projectively horizontal with respect to the natural (loga-
rithmic) connection ∇V (cf. Theorem 2.4) on the left and the trivial
connection (i.e., for which the integral powers of U are horizontal) on
the right.

Proof. This is essentially a combination of [9], Theorems 6.1, 6.2.
The main idea is that, since the integral powers of U form a topological
OŜ-basis ofO(Gm)Ŝ

, it suffices to prove the result modulo q, in which case
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it essentially follows from the fact that the binomial coefficient functions
form a Z-basis of the space of integer-valued polynomial functions on
Z. Q.E.D.

A number of interesting corollaries may be read off of Theorem 2.6,
as follows. The first such corollary is the computation of the monodromy
of (V,∇V) at the point at infinity, i.e., V (q) ⊆ S (cf. [9], Corollary 6.3).
More important from the point of view of the further development of the
theory is the vanishing of the p-curvature (cf. [3], §5,6, for a discussion
of the notion of “p-curvature”) — cf. [9], Corollary 6.4.

In fact, in the present context, in addition to the p-curvature, the
higher p-curvatures of the pair (V,∇V) may also be defined (cf. [9],
§7.1). Then one has the following result (cf. [9], Corollary 7.6):

Corollary 2.7. All of the higher p-curvatures of the crystalline theta
object vanish (over an arbitrary Z-smooth base S).

Proof. Note that since these higher p-curvatures all form sections
of locally free sheaves (at least in, say, the universal case S = (Mell)Z)
it suffices to check that they are zero in a neighborhood of infinity, i.e.,
for the present S = Spec(Z[[q]]). Thus, we may apply the isomorphism
of Theorem 2.6, so Corollary 2.7 follows from the fact that O(Gm)Ŝ

is

(topologically) generated by its horizontal sections. Q.E.D.

In more down-to-earth terms, Corollary 2.7 may be interpreted as
follows. It follows from the general theory of integrable connections that
in any PD formal neighborhood (where, “PD” stands for “puissances
divisées,” i.e., divided powers) of a point of S, sections of V may be PD
formally integrated to form horizontal sections of (V,∇V) in the given PD
formal neighborhood. In general, such horizontal sections are not defined
on a formal neighborhood of the given point of S, i.e., (if, for instance,
t is a local coordinate on a relatively one-dimensional smooth S over Z,
then) such horizontal sections are only defined once one introduces the
divided powers:

tn

n!

(where n ≥ 0 is an integer). To state then that “all the higher p-
curvatures vanish” means that such horizontal sections exist as formal
power series in t with integral coefficients.

The above discussion motivates the following point of view. Near
infinity, the horizontal sections of the above discussion are simply the
integral powers of U . Thus, the classical theta expansion
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Θ
def
=

∑
k∈Z

(−1)k · q 1
2k

2− 1
2k · Uk− 1

2 · θ

may be thought of (in the present context) as the “expansion of a gen-
erator of F 1(V) in terms of local horizontal sections of (V ,∇V).” In
particular, if one takes this point of view, then it is natural to consider
the expansion of a generator of F 1(V) in terms of local horizontal sec-
tions of (V ,∇V) at points of (Mell)Z other than the point at infinity.
These crystalline theta expansions are discussion in more detail in [9],
§7.2.

2.5. The Associated Kodaira-Spencer Morphism.

Let

f : E → S

be a family of elliptic curves over a smooth Z-scheme S. We shall write
(V, F r(V),∇V) for the associated crystalline theta object (cf. §2.3).

In this §, we would like to consider the relationship between ∇V and
F r(V). The first, most fundamental property of this relationship is that,
unlike the MF∇-objects of [2], §2, which satisfy Griffiths transversality,
i.e., the connection maps F r into F r+1, the crystalline theta object only
satisfies the following weaker property (cf. [9], Theorem 8.1):

Theorem 2.8. (Griffiths Semi-transversality) The crystalline theta
object satisfies “Griffiths semi-transversality,” i.e., ∇V maps F r(V) into
F r+2(V) for all integers r ≥ 0.

Remark 2.9. The reason that the crystalline theta object is only “semi-
transversal” is the following: The connection of Theorem 2.4 is defined
in two steps. If one thinks in terms of isomorphisms between pull-backs
to “nearby points” that differ by a square nilpotent ideal, first one must
establish the isomorphism between the two pull-backs of E∗

et. This causes
the Hodge filtration to jump once. Then (once one has an isomorphism
between the underlying schemes, i.e., between the two pull-backs of E∗

et)
one must establish an isomorphism between the two pull-backs of L.
This causes the Hodge filtration to jump once more. We refer to the
discussion of [9], §8.1, for more details.

Thus, by analogy to the usual Kodaira-Spencer morphism in the
Griffiths-transversal case (which measures the extent to which the con-
nection fails to preserve the Hodge filtration, i.e., map F r into F r), it is
natural to define the Kodaira-Spencer morphism of the crystalline theta
object as follows: By Theorem 2.8, ∇V defines a morphism:
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F 1(V) → F 3(V)⊗OS
ΩS/Z

If we then compose with the projection F 3 � F 3/F 2, then we obtain
an OS-linear morphism:

κV : F 1(V) → (F 3/F 2)(V)⊗OS
ΩS/Z

∼→ 1

2
· τ⊗2

E ⊗OS
F 1(V)⊗OS

ΩS/Z

Moreover, since F 1(V) = f∗OE([0E ]) is a line bundle, it follows that we
may regard κV as an OS-linear morphism:

ω⊗2
E → 1

2
· ΩS/Z

On the other hand, we recall that the “classical Kodaira-Spencer mor-
phism” of the family E → S is defined as follows: If we write

E def
= R1fDR,∗OE

for the first relative de Rham cohomology module of E → S, and
F 1(E) ⊆ E (respectively,∇E) for its Hodge filtration (respectively, Gauss-
Manin connection), then ∇E defines a morphism

F 1(E) → E ⊗OS ΩS/Z

which may be composed with the projection E � E/F 1(E) ∼→ F 1(E)⊗OS

τ⊗2
E to obtain a morphism:

κE : F 1(E) → F 1(E)⊗OS
τ⊗2
E ⊗OS

ΩS/Z

Since F 1(E) = ωE is a line bundle, κE may thus be regarded as a mor-
phism:

ω⊗2
E → ΩS/Z

Then we have the following result (cf. [9], Theorem 8.1):

Theorem 2.10. (The Kodaira-Spencer Morphism of the Crys-
talline Theta Object) The Kodaira-Spencer morphism

κV : ω⊗2
E → 1

2
· ΩS/Z

associated to the crystalline theta object (V, F r(V),∇V) is equal to 1
2

times the classical Kodaira-Spencer morphism

κE : ω⊗2
E → ΩS/Z
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associated to the relative first de Rham cohomology module of the family
E → S.

Proof. It suffices to prove this result in the universal case, i.e., when
S = (Mell)Z. Moreover, the asserted equality clearly holds over all of
(Mell)Z if and only if it holds in a neighborhood of infinity. Thus, we
may assume that S = Spec(Z[[q]]). Now the main idea is to consider the
theta expansion:

Θ
def
=

∑
k∈Z

(−1)k · q 1
2k

2− 1
2k · Uk · (U− 1

2 · θ)

By Theorem 2.6, the connection ∇V amounts (in the context of such
expansions) to the (logarithmic) partial derivative q · ∂/∂q. On the
other hand, generators of F r(V) for r > 1 are obtained by taking vari-
ous derivatives of Θ with respect to U . Since applying q · ∂/∂q to the
k-th term of the expansion amounts to multiplying the k-th term by
1
2k

2 − 1
2k, it follows that (if we ignore the trivialization “(U− 1

2 · θ),”
then) applying q ·∂/∂q to the k-th term of the expansion gives the same
result as applying 1

2 (U · ∂/∂U)2 − 1
2 (U · ∂/∂U) to this term. That is to

say, we have:

{
q · ∂/∂q

}
·Θ =

{1
2
(U · ∂/∂U)2 − 1

2
(U · ∂/∂U)

}
·Θ

On the other hand, near infinity, the classical Kodaira-Spencer mor-
phism amounts to the identification of “q · ∂/∂q” with “(U · ∂/∂U)2.”
This completes the proof of the asserted equality. Q.E.D.

Remark 2.11. The vanishing of the p-curvatures (cf. Corollary 2.7) in
the presence of a Kodaira-Spencer morphism which is an isomorphism
(cf. Theorem 2.10) is somewhat surprising from the point of view of
the classical theory of MF∇-objects arising from families of varieties, in
which vanishing of the p-curvature is related to vanishing of the Kodaira-
Spencer morphism (cf. [4]).

§3. Lagrangian Galois Actions

In this §, we apply the theory of §2 to

(i) show how to eliminate the Gaussian poles from (a certain ver-
sion of) the arithmetic Kodaira-Spencer morphism under cer-
tain conditions (cf. Corollary 3.5);
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(ii) show that the reduction in positive characteristic of (a cer-
tain version of) the arithmetic Kodaira-Spencer morphism co-
incides with the classical geometric Kodaira-Spencer morphism
(cf. Corollary 3.6).

The ideas surveyed in this § are discussed in more detail in [10], §2 (in
the case of odd p); [11], §3 (in the case of p = 2). The key idea here
is that the theory of the crystalline theta object allows one to study the
(globally defined) discrete arithmetic Kodaira-Spencer morphism from
a (local p-adic) continuous point of view.

Let p be an odd prime. Let K
def
= Qp(ζp), where ζp is a primitive

p-th root of unity. Write OK (respectively, m; k) for the ring of integers
of K (respectively, maximal ideal of OK ; residue field of OK);

US
def
= S\V (q) ⊆ S

def
= Spec(OK [[q]])

and

E → S

for the tautological degenerating elliptic curve (more precisely: one-
dimensional semi-abelian scheme) with “q-parameter” equal to q over
S. Also, let us write:

Z
def
= Spec(OK [[q

1
p ]])

Thus, over Q, ZQ → SQ is finite, étale over (US)Q, and Galois, with
Galois group

G = Fp(1)

(where the “(1)” denotes a Tate twist). As is well-known, over US , the
p-torsion points of E → S fit into a natural exact sequence:

0 → μp|US
→ E[p]|US

→ Fp|US
→ 0

which splits over UZ
def
= US×SZ. In the following discussion, we consider

the particular splitting

H|UZ ⊆ E[p]|UZ

(i.e., subgroup scheme H|UZ that projects isomorphically onto Fp|UZ ) of

this exact sequence defined by the p-th root of q given by q
1
p .

Next, let us write C → S for the unique semi-stable model compact-
ifying E → S. Thus, C is regular, and the complement of its unique
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node is equal to E. On the other hand, CZ
def
= C ×S Z is no longer

regular. Let us denote by

C ′
Z → Z

the unique regular semi-stable model over Z compactifying E|UZ
. Thus,

the complement

E′
Z → Z

of the nodes of C ′
Z has a natural group scheme structure whose special

fiber (i.e., fiber over V (q
1
p )) is a disjoint union of p copies of Gm.

Next, let us observe that H|UZ
determines (by taking the closure in

E′
Z) a closed subgroup scheme

H ⊆ E′
Z

of E′
Z . We may then form the quotient:

EZ ⊆ E′
Z � EH

def
= E′

Z/H

Thus, EH → Z is a one-dimensional semi-abelian scheme with “q-

parameter” equal to q
1
p . Let us write

LH
def
= OEH

([0EH
])

and L′
Z

def
= LH |E′

Z
; LZ

def
= L′

Z |EZ . Moreover, it may be shown (cf. [10],

§2.1, for more details) that, if we denote by ε ∈ EZ(Z) the unique section
of order 2, then although a priori,

Lε
def
= LZ |ε

appears only to be defined over Z, in fact, it admits a natural G-action
(compatible with the G-action on OZ), as if it arose as the pull-back to
Z of a line bundle on S.

On the other hand, note (cf. the exact sequence discussed above)
that μp may be regarded as a closed subgroup scheme:

(μp)Z ⊆ EH

In addition, one has a natural closed subgroup scheme

{±1} ↪→ EH

so we shall write “(−μp)Z ⊆ EH” for the translate of (μp)Z by the
element “−1.”
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If we now substitute the pair (EH ,LH) into the theory of §2.3, 2.4,
we obtain the corresponding crystalline theta object

(VH , F r(VH),∇VH
)

over Z by considering sections of LH over the Hodge torsor equipped
with its étale integral structure E∗

H,et associated to this pair. Moreover,
it follows immediately from the definition of the integral structure on
E∗

H,et that the subgroup schemes (μp)Z , {±1} ⊆ EH lift naturally to
closed subschemes

(μp)Z , {±1} ⊆ E∗
H,et

hence that we obtain a natural lifting

(−μp)Z ⊆ E∗
H,et

of (−μp)Z ⊆ EH . On the other hand, by the theory of theta groups (cf.,
e.g., [7], Chapter IV, §1), we have a natural theta trivialization

LH |(−μp)Z
∼→ Lε ⊗OZ O(μp)Z

of the restriction of LH to (−μp)Z .
In particular, if we restrict sections of LH over E∗

H,et to (−μp)Z and
then apply the theta trivialization, we obtain a morphism

ΞVH
: VH → Lε ⊗OZ

O(μp)Z

whose restriction

ΞHDR : HDR → Lε ⊗OZ O(μp)Z

toHDR
def
= F p(VH) ⊆ VH is “essentially” (i.e., up to takingH-invariants)

the restriction morphism appearing in the original Hodge-Arakelov Com-
parison Isomorphism (cf. Theorem 1.1). That is to say, it follows from
the main theorem of [7] that:

ΞHDR |UZ
is an isomorphism.

(In order to make it an isomorphism over Z, one must introduce the
“Gaussian poles” on HDR.) In particular, since the Galois group G acts
naturally on the range of ΞHDR , we get a natural action of G on the
domain of ΞHDR , at least over UZ .

Definition 3.1. This action of G on HDR|UZ will be referred to as the
Lagrangian Galois action on HDR.
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Remark 3.2. Note, in particular, that, unlike the Galois actions con-
sidered in [7], Chapter IX, §3; [10], §1 (cf. [12], §1.4.1, for a survey of
this theory), the Lagrangian Galois action depends on the choice of the
subgroup H. In fact, however, the choice of different splittings H does
not affect the present theory very much. What is, however, essential
here, is the existence of the natural multiplicative subgroup scheme:

μp|US
⊆ E[p]|US

Indeed, this is the essential element of the present discussion in a “neigh-
borhood of infinity” that does not exist in the number field case. We will
say more on this later (cf. Remark 3.7 below).

Remark 3.3. Just as was done in [12], §1.4.1, for the usual Galois action,
once one has defined the Lagrangian Galois action, one may consider
the corresponding Lagrangian arithmetic Kodaira-Spencer morphism by
looking at the extent to which the Hodge filtration F r(HDR) is preserved
by the action of G. We leave it to the reader to make the routine details
(entirely similar to [12], §1.4.1) explicit. For more on this Lagrangian
arithmetic Kodaira-Spencer morphism, we refer to Corollary 3.6 below.

Next, let us write

Z log; Slog

for the log schemes obtained by equipping Z (respectively, S) with the

log structure defined by the divisor V (q
1
p ) ⊆ Z (respectively, V (q) ⊆ S)

and

Inf(Z log ⊗ k/OK)

for the site of infinitesimal thickenings of Z log ⊗ k over OK . Note that
here, we do not assume that we are given a divided power structure
on the ideal defining a thickening. Since, however, all the higher p-
curvatures of (VH ,∇VH

) vanish (cf. Corollary 2.7), it follows that the

p-adic completion (V̂H ,∇V̂H
) of (VH ,∇VH

) defines a crystal on the site

Inf(Z log ⊗ k/OK).
In particular, since elements σ ∈ G are all congruent to the iden-

tity morphism on Z log modulo m, it follows from the general theory of
crystals on sites of thickenings that σ defines an automorphism∫

σ

: V̂H
∼→ V̂H

which we denote by
∫
σ
, by analogy to “integration/parallel transport

along the (closed) path σ” in the classical complex case. Now, taking
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into account the functoriality/naturality of all the definitions involved,
we obtain the following fundamental result (cf. [10], Theorem 2.4):

Theorem 3.4. (The Crystalline Nature of the Lagrangian Galois
Action) For any σ ∈ G, the following diagram commutes:

V̂H

ΞV̂H−−−−→ Lε ⊗OZ
O(μp)Z

∫
σ

⏐� ⏐�σ

V̂H

ΞV̂H−−−−→ Lε ⊗OZ O(μp)Z

(where the “hats” denote p-adic completion, and the vertical morphisms
are the natural morphisms associated to σ).

Put another way, Theorem 3.4 asserts that the Lagrangian Galois
action can be computed via “crystalline methods.” Thus, if one restricts

the commutative diagram of Theorem 3.4 toHDR ⊆ V̂H and then applies
a certain lemma (cf. [10], Lemma 2.6) derived from the theory of the
theta convolution (cf. [8]; [12], §2) to the effect that ΞV̂H

and ΞHDR have

the same image in Lε ⊗OZ
O(μp)Z

, one obtains the following result (cf.

[10], Corollary 2.5):

Corollary 3.5. (Elimination of Gaussian Poles) The Lagrangian
Galois action on HDR|UZ is, in fact, defined on HDR (i.e., without
Gaussian poles).

Finally, we would like to apply Theorem 3.4 to relate the Lagrangian
arithmetic Kodaira-Spencer morphism to the classical Kodaira-Spencer
morphism. To do this, we must consider the Lagrangian Galois action
modulo m2. First, we observe that it follows immediately from Theorems
2.8, 3.4 that for any σ ∈ G, the Lagrangian Galois action of σ on HDR

maps

F 1(HDR) → F 3(HDR)⊗OK
(OK/m2)

in such a way that modulo m, F 1(HDR) maps into F 1(HDR). In partic-
ular, if we compose this map with the projection F 3 � F 3/F 2 (cf. the
discussion of §2.5), then we obtain an OZ-linear morphism

F 1(HDR)⊗OK k → (F 3/F 2)(HDR)⊗OK (m/m2)
∼→ (τ⊗2

EH
⊗OZ F 1(HDR))⊗OK (m/m2)
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— i.e., if we let σ ∈ G vary, we obtain a homomorphism

κG : G = Fp(1)

→ HomOZ (F
1(HDR)⊗OK k, (τ⊗2

EH
⊗OZ F 1(HDR))⊗OK (m/m2))

= τ⊗2
EH

⊗OK
(m/m2)

On the other hand, if we forget about families of elliptic curves and
form the natural exact sequence of differentials associated to the triple
Z log → Slog → Spec(OK), we obtain an extension of G-modules:

0 → ΩOK/Zp
⊗OK

OZ = (p−1 ·m · OZ)⊗OK
(OK/mp−2) → ΩZlog/Zp

→ ΩZlog/Slog = ΩZlog/OK
⊗ Fp → 0

(where all differentials involving Slog, Z log are understood to be q-
adically continuous). By considering the extent to which sections of
ΩZlog/OK

⊗ Fp lift to G-invariant sections of ΩZlog/Zp
, we thus obtain a

homomorphism

G⊗Fp (ΩZlog/OK
⊗ Fp) → (p−1 ·m · OZ)⊗OK (OK/mp−2)

whose composite with the morphism induced by the projection m �
m/m2 is easily verified to be an isomorphism

δ : G⊗Fp OZ⊗k
∼→ ΘZlog/OK

⊗OK
m/m2

(cf. the theory of [1], I., §4) relating the Galois group G to the (log-

arithmic) tangent bundle ΘZlog/OK

def
= HomOZ

(ΩZlog/OK
,OZ) modulo

m.
Thus, if we combine δ with κG, we obtain a morphism:

κδ
G : ΘZlog/OK

⊗OK
k → τ⊗2

EH
⊗OK

k

On the other hand, if we compute κδ
G by means of Theorems 2.10, 3.4,

it follows that:

Corollary 3.6. (Relation to the Classical Kodaira-Spencer Mor-
phism) The morphism

κδ
G : ΘZlog/OK

⊗OK
k → τ⊗2

EH
⊗OK

k
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constructed by considering the Lagrangian Galois action modulo m2 and
applying the natural isomorphism

δ : G⊗Fp OZ⊗k
∼→ ΘZlog/OK

⊗OK m/m2

between the Galois group G and the (logarithmic) tangent bundle modulo
m is equal to 1

2 the classical Kodaira-Spencer morphism associated to the
family EH → Z.

Remark 3.7. From the point of view of applications to diophantine ge-
ometry (cf. [12], §1.5.1), one would like to develop an analogue of the
theory of the present § over number fields — i.e., as opposed to over

“formal neighborhoods of infinity” (cf. the base S
def
= Spec(OK [[q]])), as

in the present discussion. Indeed, as discussed in [12], §1.5.1, the main
essential “missing link” necessary to apply Hodge-Arakelov theory to
diophantine geometry is the elimination of the Gaussian poles — i.e.,
the number field analogue of Corollary 3.5. As discussed above (cf. Re-
mark 3.2), the main ingredient that one needs in order to realize such
a theory over number fields is an analogue over number fields of the
multiplicative subgroup scheme:

μp|US ⊆ E[p]|US

— i.e., a “global multiplicative subspace” of the Tate module (of an ellip-
tic curve over a number field). A first step towards realizing such a global
multiplicative subspace is taken in [10], §3, where a global multiplicative
subspace is constructed over the base:

(Mell)Q

It is then proposed in loc. cit. that perhaps by restricting this subspace
over (Mell)Q to a Q-valued point, one may achieve the goal of construct-
ing a global multiplicative subspace for elliptic curves over Q. Unfor-
tunately, this operation of restriction is not so straightforward, since it
involves numerous intricacies related to the issue of keeping track of base-
points (of the various fundamental groups involved). Moreover, this issue
of keeping track of basepoints appears to be related to Grothendieck’s
anabelian geometry. At the time of writing, the author is optimistic
that by applying the anabelian theory of [15]; [16]; and [18], Chapter
XII, §2, these technical problems may be resolved and hence that a nat-
ural global multiplicative subspace for elliptic curves over number fields
may be constructed. It is the hope of the author to expose these ideas
(cf. [17]) in a future sequel to the present manuscript.
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§4. Hodge-Arakelov Theory in Positive Characteristic

In this §, we explain how a certain extension of the theory of §2.2
for ordinary elliptic curves to supersingular elliptic curves in positive
characteristic can be used to give an alternate proof of Theorem 1.1.
More details on the theory discussed here may be found in [11], §1, 2.

Let

E → S

be a family of elliptic curves over an Fp-scheme S such that the associ-
ated classifying morphism

S → (Mell)Fp

is étale. In the following discussion, we will write ΦS : S → S for the
Frobenius morphism on S, and denote the result of base-changing objects
over S via ΦS by means of a superscript F. Thus, the morphism

[p] : E → E

(multiplication by p) factors as a composite of morphisms:

E
ΦE−−−−→ EF V−−−−→ E

where ΦE is the relative Frobenius morphism of E → S, and V is the
Verschiebung morphism. As is well-known, the kernels of ΦE and V are
Cartier dual to one another:

E[ΦE ]
∼→ EF [V]∗

Next, let us observe that the pull-back

V∗E† → EF

of the universal extension E† → E via V admits a canonical section:

κ : EF → V∗E†

Indeed, if we can show that the ωE-torsor V∗E† → EF is trivial locally
on S, then κ may be defined as the unique section that takes the origin
0EF of EF to the origin of V∗E† (which is determined by the origin 0E†

of E†). Thus, it suffices to show that the ωE-torsor in question is trivial
locally on S. Since R1f∗(ωE) (where, by abuse of notation, we denote
all structure morphisms to S by f) is a line bundle on S, it suffices to
prove this local triviality in the case that E → S is ordinary. But then,
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V∗ induces an isomorphism ωE
∼→ ωEF , so it follows that the morphism

(again induced by V∗)

OS
∼= R1f∗(ωE |E) → R1f∗(ωEF |EF ) ∼= OS

(where the isomorphisms on the two ends are the “trace maps” of the
“residues and duality theory” of E, EF) is given by multiplication by
p = deg(V). Since we are working in characteristic p, this completes the
proof that the ωE-torsor V∗E† → EF is trivial (locally on S).

Next, let us consider structure sheaves. Let us regard O†
E as a quasi-

coherent sheaf of OE-algebras (via the projection E† → E). Similarly,
V : EF → E allows us to regard OEF as a coherent sheaf of OE-algebras.
Thus, the morphism κ : EF → V∗E† induces a morphism of quasi-
coherent OE-modules:

κ∗ : O†
E → OEF

Let us write O<p
E† ⊆ O†

E for the coherent subsheaf consisting of sections
whose torsorial degree (i.e., relative degree over E) is < p. Thus, if we
restrict κ∗ to O<p

E† , we obtain a morphism

O<p
E† → OEF

between locally free OE-modules of rank p. Now one has the following
positive characteristic, degree < p version of Theorem 2.2:

Theorem 4.1. (Verschiebung-Theoretic Analogue of the Hodge-
Arakelov Comparison Isomorphism) The morphism

O<p
E† → OEF

is an isomorphism.

Proof. First, we remark that the above discussion extends natu-
rally to degenerating elliptic curves and hence is compatible with all
natural integral structures in a neighborhood of infinity. For more de-
tails on this issue, we refer the reader to [11], §1.

Next, we observe that it essentially follows from Theorem 2.2 that
the morphism in question is an isomorphism over the ordinary locus in
S. Indeed, this is a consequence of the fact that the Fp-vector space of
all (set-theoretic) functions on Fp is spanned by the polynomial function
on Fp of degree < p. Thus, in particular, the morphism in question is

an isomorphism over a dense open substack of (Mell)Fp .
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Thus, (by working over the proper stack (Mell)Fp) it suffices to con-
sider determinants. That is to say, it suffices to show (strictly speaking,
not just over (Mell)Fp , but also over (Mell)Fp) that:

det(O<p
E† ) = det(OEF ) ∈ Pic(E)Q

def
= Pic(E)⊗Z Q

Since E† → E is an ωE-torsor, it follows immediately that

det(O<p
E† ) =

p−1∑
j=0

j · [τE ] = −1

2
p(p− 1) · [ωE ]

(where we think of Pic(E)Q as an additive group). On the other hand,

since EF [V] ∼→ E[ΦE ]
∗, we have:

OEF [V]
∼→ HomOE

(OE[ΦE ],OE)

(as coherent OE-modules). Thus, since EF → E is a EF [V ]-torsor, we
conclude that:

det(OEF ) = det(OEF [V]) = −det(OE[ΦE ]) = −
p−1∑
j=0

j·[ωE ] = −1

2
p(p−1)·[ωE ]

(since E[ΦE ] ⊆ E is just an infinitesimal neighborhood of the origin 0E).
This completes the proof. Q.E.D.

Remark 4.2. A version of Theorem 4.1 where “< p” is replaced by “<
pn” (where n ≥ 1 is an integer) is given in [11], Theorem 1.1.

Next, we consider line bundles. Let

η ∈ E(S)

be a torsion point of order prime to p. Write ηF
def
= ΦE(η) ∈ EF(S) and

set:

LF def
= OEF ([ηF ]); M def

= Φ∗
E(LF)

Thus, LF (respectively, M) is a line bundle of degree 1 (respectively,
degree p) on EF (respectively, E). Since the order of η is prime to
p, it follows that ηF does not intersect 0EF , hence that we have an
isomorphism

f∗(LF)
∼→ LF |0EF
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given by restricting sections over EF to 0EF . Now we are ready to
apply the method of the above discussion to prove the following positive
characteristic version of Theorem 1.1:

Theorem 4.3. (Positive Characteristic Version of the Hodge-
Arakelov Comparison Isomorphism) The natural restriction mor-
phisms

ΞEF : f∗(LF |V∗E†)<p → LF |EF [V]

and
ΞE : f∗(M|[p]∗E†)<p → M|E[p]

(where the superscripted “< p’s” denote the subsheaves of sections of
torsorial degree < p) induced by κ are isomorphisms.

Proof. First, we observe that by the theory of theta groups (applied
to descent via the Frobenius morphism ΦE : E → EF) the bijectivity of
ΞEF is equivalent to that of ΞE . We refer to [11], §2, for more details.

Next, we observe that this discussion extends to the case of degener-
ating elliptic curves (cf. [11], §2, for more details). Thus, we may work
over the proper stack (Mell)Fp , so (just as in the proof of Theorem 4.1)
it suffices to show that ΞEF is generically an isomorphism and that the
determinant bundles associated to its domain and range define the same
element of Pic((Mell)Fp)Q.

The fact that ΞEF (or, equivalently, ΞE) is an isomorphism over an
open dense substack of (Mell)Fp follows from the theory of the compar-
ison isomorphism near infinity developed in [7], Chapter V (cf. [11], §2,
for more details).

On the other hand, the isomorphism

f∗(LF)
∼→ LF |0EF

implies that (just as in the proof of Theorem 4.1) the determinants of
the domain and range of ΞEF are both equal to:

−
p−1∑
j=0

j · [ωE ] = −1

2
p(p− 1) · [ωE ]

This completes the proof. Q.E.D.

Remark 4.4. Thus, although in the above proof of Theorem 4.3, we use
the (relatively easy) portion of the theory of [7] concerning the com-
parison isomorphism near infinity, the intricate degree computations of
[7], Chapter VI, §3, are not used in the proof of Theorem 4.3. Also,
we observe that although Theorem 4.3 is a positive characteristic result,
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reduction modulo p implies Theorem 1.1, at least in the case d = p.
Moreover, since the truth of the characteristic zero result Theorem 1.1
for arbitrary d is equivalent to the equality of the degrees of two specific
line bundles, both of which are polynomials in d (cf. the complicated
degree computations of [7], Chapter VI), the fact that these two polyno-
mials are equal whenever d is a prime number implies that they are equal
for all d. Thus, in summary, the above technique yields a simple proof of
Theorem 1.1 for arbitrary d. We refer to [11], §2, for more details.

Remark 4.5. One way to interpret the preceding Remark 4.4 is the fol-
lowing:

The characteristic p methods (involving the Frobenius
and Verschiebung morphisms) of the above discussion
yield a new proof of the various combinatorial identities
inherent in the computation of degrees in [7], Chapter
VI, proof of Theorem 3.1.

This situation is rather reminiscent of the situation of [14], Chapter V
— cf., especially, the second Remark following Corollary 1.3. Namely,
in that case, as well, characteristic p methods (involving Frobenius and
Verschiebung) give rise to various nontrivial combinatorial identities. It
would be interesting if this sort of phenomenon could be understood
more clearly at a conceptual level.

Remark 4.6. One interesting feature of the above proof is the crucial
use of the Frobenius morphism ΦE : E → EF . Put another way, this
amounts to the use of the subgroup scheme E[ΦE ] ⊆ E (i.e., the ker-
nel of ΦE), which, of course, does not exist in characteristic zero. Note
that this subgroup scheme is essentially the same as the “multiplicative
subspace” that played an essential role in the theory surveyed in §3.
That is to say, it is interesting to note that just as in the context of
§3, the crucial arithmetic object that one wants over a number field is
a “global multiplicative subspace,” in the above proof, the crucial arith-
metic object that makes the proof work (in positive! characteristic) is
the “global multiplicative subspace” E[ΦE ] ⊆ E (which is defined over
all of (Mell)Fp).

Remark 4.7. Another interesting and key point in the above proof is
the fact that, unlike the case in characteristic zero (where the structure
sheaf of a finite flat group scheme on a proper curve always has degree
zero):

In positive characteristic, the structure sheaf of a finite
flat group scheme on a proper curve can have nonzero
degree.
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In fact, it is precisely because of this phenomenon that in order to make
the comparison isomorphism hold in characteristic zero over the proper
object (Mell)Q, it is necessary to introduce the Gaussian poles (cf., e.g.,
[7], Introduction, §1).
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