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��������� We develop the theory of Frobenioids associated to nonarchimedean
[mixed-characteristic] and archimedean local fields. In particular, we show that the

resulting Frobenioids satisfy the properties necessary to apply the main results of
the general theory of Frobenioids. Moreover, we show that the reciprocity map in the

nonarchimedean case, as well as a certain archimedean analogue of this reciprocity

map, admit natural Frobenioid-theoretic translations, which are, moreover, purely
category-theoretic, to a substantial extent [i.e., except for the extent to which this

category-theoreticity is obstructed by certain “Frobenius endomorphisms” of the rel-

evant Frobenioids]. Finally, we show that certain Frobenioids which naturally encode
the global arithmetic of a number field may be “grafted” [i.e., glued] onto the Frobe-

nioids associated to nonarchimedean and archimedean primes of the number field
to obtain “poly-Frobenioids”. These poly-Frobenioids encode, in a purely category-

theoretic fashion, most of the important aspects of the classical framework of the

arithmetic geometry of number fields.
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Introduction

In the present paper, we continue to develop the theory of Frobenioids, along
the lines of [Mzk5]. By comparison with the theory of [Mzk5], however, here we
introduce the following two new themes:
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(A) the localization of the global arithmetic Frobenioids associated to number
fields in [Mzk5], Example 6.3;

(B) the intertwining of the “étale-like” and “Frobenius-like” portions of the
structure of the local Frobenioids introduced in the course of (A).

Both of these themes may be regarded as “special cases” of the more general theme,
discussed in [Mzk5], §I2, of translating — via Frobenioids — into category-theoretic
language the familiar scheme-theoretic framework of arithmetic geometry over num-
ber fields.

The first theme (A) is also motivated by the ultimate goal of the author, dis-
cussed in [Mzk5], §I3, of developing a sort of “arithmetic Teichmüller theory for
number fields”. That is to say, if one thinks of Teichmüller theory as a sort of
“surgery operation” on the [“global”] objects under consideration, then it is natural
to require that these “global objects” be “dissectible into local objects”, so that one
is free to perform such “local dissections” in the course of a “surgery operation”.
[Indeed, here it may be helpful to recall that the classical theory of deformations
of proper curves proceeds precisely by “dissecting” a proper curve into “local affine
opens” whose deformation theory is “trivial” and then studying how these local
affine opens may be glued together in a fashion that deforms the original tauto-
logical gluing. Alternatively, in classical complex Teichmüller theory, Teichmüller
deformations of a Riemann surface are obtained by locally integrating the square
root of a given [global] square differential so as to obtain local holomorphic coordi-
nates, which one then proceeds to deform in a linear, real analytic fashion.]

With regard to the second theme (B), it is interesting to observe that this
theme runs, in some sense, in the opposite direction to the theme discussed in
[Mzk5], §I4, of distinguishing or separating out from one another the “étale-like”
and “Frobenius-like” portions of the structure of a Frobenioid. That is to say, the
content of this theme (B) is that, for certain special types of Frobenioids [i.e., that
arise in the localization theory of (A)], although the “étale-like” and “Frobenius-
like” portions of the Frobenioid are distinguishable or separable from one another,
they are, nonetheless, intertwined in a fairly essential way. In the case of the nonar-
chimedean local Frobenioids that arise in (A), this intertwining may be observed by
considering Frobenioid-theoretic versions of the Kummer and reciprocity maps that
occur in the classical theory of nonarchimedean [mixed-characteristic] local fields.
In the case of the archimedean local Frobenioids that arise in (A), this intertwining
may be observed by considering certain “circles” — i.e., copies of S1 — that occur
[under suitable conditions] in the base category and units of the Frobenioid.

In §1, we observe that by applying the theory of [Mzk5], it is an “easy exercise”
to define Frobenioids associated to p-adic local fields — which we refer to as p-adic
Frobenioids [cf. Example 1.1] — and to show that these Frobenioids satisfy the
properties necessary to apply the main results of the theory of [Mzk5] [cf. Theorem
1.2, (i); Example 1.4, (iii)]. We also observe that the theory of temperoids in [Mzk2]
furnishes [cf. Example 1.3] an example of a natural base category for these Frobe-
nioids — especially, for instance, if one is interested in the arithmetic of hyperbolic
curves [cf. Remark 5.6.2] — and discuss how base categories of Frobenioids at lo-
calizations of a number field may be modified slightly so as to reflect the geometry
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of such localizations [cf. Example 1.4, Proposition 1.5]. One important aspect of
the arithmetic of nonarchimedean [mixed-characteristic] local fields is the existence
of natural Kummer and reciprocity maps [cf. the discussion of theme (B) above]. In
§2 [cf. especially Theorem 2.4], we observe that the Frobenioid-theoretic versions
of these maps are “category-theoretic” to a substantial extent, but not completely
[cf. Remark 2.4.2] — a situation that reflects the existence of certain “Frobenius
[self-]equivalences” in the case of Frobenioids.

In §3, we take up the study of Frobenioids associated to archimedean local fields
— which we refer to as archimedean Frobenioids [cf. Example 3.3]. Again, by ap-
plying the general framework of [Mzk5], it is a relatively easy matter to define such
Frobenioids. Unlike the nonarchimedean case, however, the archimedean case ex-
hibits an additional “layer of complexity” — namely, the existence of non-isotropic
objects and non-co-angular morphisms, which reflect the “category-theoretic as-
pects” of the geometry of the circle S1 ⊆ C× [cf. Lemma 3.2; the Appendix].
Indeed, it is precisely the example of archimedean Frobenioids that motivated both
the terminology [e.g., “isotropic”, “co-angular”] and the results of this portion of
the general theory of Frobenioids in [Mzk5]. After showing that the archimedean
Frobenioids just defined satisfy the properties necessary to apply the main results
of the theory of [Mzk5] [cf. Theorem 3.6, (i), (ii); Remark 4.2.1], we proceed in §4
to discuss the base categories — which we refer to as angloids [cf. Example 3.3]
— obtained by “appending an extra copy of the circle to a given base category”
[cf. Proposition 4.1; Corollary 4.2]. This theory of angloids — in particular, the
natural homeomorphisms that one obtains between the “circle in the base angloid”
and the “circle in the group of units of the Frobenioid” — may, in some sense, be
regarded as an archimedean analogue of the theory of the reciprocity map in the
nonarchimedean case [cf. the discussion of theme (B) above; Remark 4.2.1]. Fi-
nally, we discuss [the “non-circular portion” of] typical base categories that occur
in the archimedean context — namely, temperoids [cf. Example 4.4] and categories
naturally associated to hyperbolic Riemann surfaces [cf. Example 4.3].

In §5, we take up the issue of “grafting” [i.e., gluing] the local Frobenioids
introduced in §1, §3 onto the global Frobenioids of [Mzk5], Example 6.3. We begin
by discussing this sort of “grafting operation” for categories in substantial general-
ity, and show, in particular, that, under suitable conditions, one may dissect such
a grafted category into its local and global components [cf. Proposition 5.2, (iv)].
Next, we consider categories — which we refer to as poly-Frobenioids — obtained
by grafting Frobenioids. By combining various generalities on “grafting” with the
extensive theory of [Mzk5], we obtain the result that “most natural aspects” of the
theory of poly-Frobenioids are category-theoretic [i.e., preserved by arbitrary equiv-
alences of categories between poly-Frobenioids satisfying certain conditions — cf.
Theorem 5.5]. Finally, we discuss in some detail the poly-Frobenioids obtained by
considering the localizations of number fields at nonarchimedean and archimedean
primes [cf. Example 5.6]. This example is, in some sense, representative of the
entire theory constituted by [Mzk5] and the present paper. In addition, it shows
[cf. Remark 5.6.1] that the theory of poly-Frobenioids is strictly more general than
the theory of Frobenioids [i.e., that “poly-Frobenioids are not just Frobenioids of a
certain special type in disguise”].
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Section 0: Notations and Conventions

In addition to the “Notations and Conventions” of [Mzk5], §0, we shall employ
the following “Notations and Conventions” in the present paper:

Categories:

If C is a category, and {φi : Ai → A}i∈I is a collection of arrows in C all of
which have codomain equal to A and nonempty [i.e., non-initial] domains, then we
shall say that this collection strongly (respectively, weakly) dissects A if, for every
pair of distinct elements i, j ∈ I, C fails to contain a pair of arrows ψi : B → Ai,
ψj : B → Aj (respectively, pair of arrows ψi : B → Ai, ψj : B → Aj such that
φi◦ψi = φj◦ψj), where B is a nonempty object of C. We shall say that an object A ∈
Ob(C) is strongly dissectible (respectively, weakly dissectible) if it admits a strongly
(respectively, weakly) dissecting pair of arrows. If A is not weakly (respectively, not
strongly) dissectible, then we shall say that it is strongly indissectible (respectively,
weakly indissectible). Thus, if A is strongly dissectible (respectively, indissectible),
then it is weakly dissectible (respectively, indissectible). If every object of C is
strongly dissectible (respectively, weakly dissectible; strongly indissectible; weakly
indissectible), then we shall say that C is of strongly dissectible (respectively, weakly
dissectible; strongly indissectible; weakly indissectible) type.

Observe that by considering appropriate pre-steps and pull-back morphisms as
in [Mzk5], Definition 1.3, (i), (b), (c), it follows immediately that [the underlying
category of] any Frobenioid over a base category of weakly indissectible (respec-
tively, strongly dissectible; weakly dissectible) type is itself of weakly indissectible
(respectively, strongly dissectible; weakly dissectible) type.

Let Φ : C → D be a functor between categories C, D. Then we shall say that Φ
is arrow-wise essentially surjective if it is surjective on abstract equivalence classes
[cf. [Mzk5], §0] of arrows. If, for every object B ∈ Ob(D), there exists an object
A ∈ Ob(C), together with a morphism Φ(A) → B in D, then we shall say that Φ
is relatively initial. If, for every object A ∈ Ob(C), the object Φ(A) is non-initial,
then we shall say that Φ is totally non-initial.

Let C be a category. If φ : A → B is a morphism of C, write

Cφ

for the category whose objects are factorizations

A
α−→ C

β−→ B

of φ, and whose morphisms

{A α1−→ C1
β1−→ B} −→ {A α2−→ C2

β2−→ B}
are morphisms ψ : C1 → C2 of C such that ψ ◦α1 = α2, β2 ◦ψ = β1. Also, we shall
write

C� ⊆ C
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for the subcategory of monomorphisms of C. We shall say that a morphism φ : A �
B of C� [i.e., a monomorphism of C] is totally ordered if the category of factoriza-
tions C�

φ of φ is equivalent to a category of the form Order(E) [cf. [Mzk5], §0],
where E is a totally ordered set [so E may be recovered as the set of isomorphism
classes of C�

φ , with the order relation determined by the arrows of C�
φ ]. If, in this

situation, E satisfies the property that for any a, b ∈ E such that a < b, there exists
a c ∈ E such that a < c < b, then we shall say that φ is continuously ordered. We
shall say that a morphism of C� [i.e., a monomorphism of C] is quasi-totally ordered
(respectively, quasi-continuously ordered) if it is an isomorphism or factors as a fi-
nite composite of totally ordered (respectively, continuously ordered) morphisms.
If every totally ordered morphism (respectively, continuously ordered morphism)
of C is an isomorphism, then we shall say that C is of strictly partially ordered
(respectively, discontinuously ordered) type. If every morphism of C is totally or-
dered (respectively, quasi-totally ordered; continuously ordered; quasi-continuously
ordered), then we shall say that C is of totally ordered (respectively, quasi-totally
ordered; continuously ordered; quasi-continuously ordered) type.

Let C, D, E be categories; Φ : C → E , Ψ : D → E functors. Then we shall refer
to as the category obtained by grafting D onto C [via Φ, Ψ] the category

C �E D
whose objects are objects of C or objects of D, and whose morphisms are defined as
follows: The morphisms B → A, where A, B ∈ Ob(C) (respectively, A, B ∈ Ob(D)),
are simply the morphisms B → A in C (respectively, D); such morphisms will be
referred to as homogeneous. The morphisms B → A, where A ∈ Ob(C), B ∈ Ob(D),
are the morphisms Ψ(B) → Φ(A) in E ; such morphisms will be referred to as
heterogeneous. If A ∈ Ob(C), B ∈ Ob(D), then there are no morphisms A → B.
Composition of morphisms is defined in the evident fashion. This completes the
definition of C �E D. Thus, there are natural full embeddings

C ↪→ C �E D; D ↪→ C �E D
— so we may regard C, D as full subcategories of C �E D.

Let I be a set. For each i ∈ I, let Ci be a category. Then we shall write∐
i∈I

Ci

for the category whose objects are objects of one of the Ci, and whose morphisms
A → B are the morphisms of Ci whenever A, B ∈ Ob(Ci) [so there are no morphisms
A → B whenever A ∈ Ob(Ci), B ∈ Ob(Cj), i �= j]. Thus, we have a natural functor∐

i∈I

Ci →
∏
i∈I

C�
i

[where “�” is as in [Mzk5], §0] given by sending an object A ∈ Ob(Ci) to the object
of the product category on the right whose component labeled i is A, and whose
other components are initial objects of the categories Cj , for j �= i.
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Section 1: Nonarchimedean Primes

In the present §1, we define and study the basic properties of certain Frobe-
nioids naturally associated to nonarchimedean [mixed-characteristic] local fields.

Let p ∈ Primes be a prime number [cf. [Mzk5], §0]; write

D0

for the full subcategory of connected objects of the Galois category of finite étale
coverings of Spec(Qp) [cf. [Mzk5], §0]. Thus, D0 is a connected, totally epimorphic
category, which is of FSM-, hence also of FSMFF-type [cf. [Mzk5], §0].

Example 1.1. p-adic Frobenioids.

(i) If Spec(K) ∈ Ob(D0) [i.e., K is a finite extension of Qp], then write OK ⊆ K
for the ring of integers of K, O×

K ⊆ OK for the group of units, and O�
K ⊆ OK for

the multiplicative monoid of nonzero elements. Also, we shall use the following
notation:

ord(O�
K) def= O�

K/O×
K ⊆ ord(K×) def= K×/O×

K

Thus, the assignment

Ob(D0) 	 Spec(K) 
→ ord(O�
K)rlf (∼= R≥0) ∈ Ob(Mon)

[where Mon is as in [Mzk5], §0; the superscript “rlf” is discussed in [Mzk5], Def-
inition 2.4, (i)] determines a monoid Φ0 on D0 [cf. [Mzk5], Definition 1.1, (ii)],
which is easily verified to be non-dilating [cf. [Mzk5], Definition 1.1, (i), (ii)] and
perf-factorial [cf. [Mzk5], Definition 2.4, (i)]; the assignment

Ob(D0) 	 Spec(K) 
→ K× ∈ Ob(Mon)

determines a group-like [cf. [Mzk5], Definition 1.1, (i), (ii)] monoid B0 on D0 to-
gether with a natural homomorphism of monoids

B0 → Φgp
0

[i.e., by considering the natural surjection K× � ord(K×)]. Thus, by [Mzk5],
Theorem 5.2, (ii), this data determines a [model] Frobenioid

C0

which is easily verified to be of rationally standard type [cf. [Mzk5], Theorem 5.2,
(iii)] over a slim base category D0 [cf. [Mzk1], Theorem 1.1.1, (ii); [Mzk5], Theorem
6.2, (iv); [Mzk5], Theorem 6.4, (i)]. If Λ is a monoid type [cf. [Mzk5], §0], then we
define the notation CΛ

0 as follows:

CZ
0

def= C0; CQ
0

def= Cpf
0 ; CR

0
def= Crlf

0
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[cf. [Mzk5], Propositions 3.2, 5.3]. Thus, CQ
0 (respectively, CR

0 ) is the model Frobe-
nioid associated to the data

ΦQ
0

def= Φ0; B
Q
0

def= B
pf
0 → Φgp

0

(respectively, ΦR
0

def= Φ0; BR
0

def= R · Φbirat
0 ↪→ Φgp

0 )

[cf. [Mzk5], Proposition 5.5, (iv)]. Note that the monoid ΦΛ
0 is isomorphic to the

constant monoid determined by R≥0 ∈ Ob(Mon) on D0; in particular, the Frobe-
nioid CR

0 may be naturally identified with the elementary Frobenioid determined by
this constant monoid. Also, we observe in passing that an object of C0 lying over
Spec(K) ∈ Ob(D0) may be thought of as a metrized line bundle on Spec(K) [i.e., a
K×-torsor V equipped with a “metric”, i.e., a choice of an element

μV ∈ ord(V )rlf

where we write ord(V ) def= V/O×
K (∼= Z), and the superscript “rlf” denotes the

result of changing the structure group of the ord(K×)-torsor ord(V ) via the ho-
momorphism ord(K×) → ord(K×) ⊗Z R] — cf. [Mzk5], Theorem 5.2, (i). Then a
morphism in C0 from a metrized line bundle (V, μV ) lying over Spec(K) ∈ Ob(D0)
to a metrized line bundle (W, μW ) lying over Spec(L) ∈ Ob(D0) consists of the fol-
lowing data: (a) a morphism Spec(K) → Spec(L) in D0; (b) an element d ∈ N≥1;
(c) an isomorphism of K×-torsors V ⊗d ∼→ W |K [where the “d-th tensor power”
and “restriction from L to K” are defined in the evident way] that is “integral”
with respect to the metrics μV ⊗d , μW |K induced on V ⊗d, W |K by μV , μW , re-
spectively [i.e., in the sense that μV ⊗d ∈ ord(V ⊗d)rlf maps to an element in the
ord(O�

K)rlf-orbit of μW |K ∈ ord(W |K)rlf].

(ii) Let D be a connected, totally epimorphic category, D → D0 a functor. Let

Φ ⊆ ΦΛ
0 |D (= Φ0|D)

be a monoprime [cf. [Mzk5], §0; the convention of [Mzk5], Definition 1.1, (ii)]
subfunctor in monoids such that the image of the resulting homomorphism of group-
like monoids on D

B
def= BΛ

0 |D ×(ΦΛ
0 )gp|D Φgp → Φgp

determines a subfunctor in nonzero monoids of Φgp [i.e., for every A ∈ Ob(D), the
homomorphism B(A) → Φgp(A) is nonzero]. We shall refer to as a p-adic Frobenioid
the Frobenioid

C
that arises as the model Frobenioid associated to this data Φ, B → Φgp [cf. [Mzk5],
Theorem 5.2, (ii)]. If it holds that

Φ(K) ⊆ Λ · ord(Q×
p ) (⊆ ord(K×) ⊗Z R = (ord(O�

K)rlf)gp)

(respectively, ord(K×) ⊆ Φ(K) (⊆ ord(K×) ⊗Z R = (ord(O�
K)rlf)gp))
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for every Spec(K) ∈ Ob(D0), then we shall say that Φ is absolutely primitive
(respectively, fieldwise saturated).

Theorem 1.2. (Basic Properties of p-adic Frobenioids) In the notation
and terminology of Example 1.1:

(i) If Λ = Z (respectively, Λ = R), then C is of unit-profinite (respectively,
unit-trivial) type. For arbitrary Λ, the Frobenioid C is of isotropic, model, Aut-
ample, Autsub-ample, End-ample, and quasi-Frobenius-trivial type, but not
of group-like type. If D is of FSMFF-type, then C is of rationally standard
type.

(ii) Let A ∈ Ob(C); AD
def= Base(A) ∈ Ob(D). Write A0 ∈ Ob(D0) for the

image of AD in D0. Then the natural action of AutC(A) on O�(A), O×(A) factors
through AutD0(A0). If, moreover, Λ ∈ {Z, Q}, then this factorization determines a
faithful action of the image of AutC(A) in AutD0(A0) on O�(A), O×(A).

(iii) If D admits a terminal object, then C admits a pseudo-terminal ob-
ject.

(iv) If D is slim, and Λ ∈ {Z, R}, then C is also slim.

(v) Suppose that Φ is absolutely primitive. Then C is of base-trivial type.
Moreover, the element p ∈ Q×

p determines a characteristic splitting [cf. [Mzk5],
Definition 2.3] on C.

Proof. First, we consider assertion (i). In light of the definition of C as a model
Frobenioid, it follows from [Mzk5], Theorem 5.2, (ii), that C is of isotropic and model
type. Since, for AD ∈ Ob(D), the monoid EndD(AD) acts trivially on Φ(AD), it fol-
lows immediately from the construction of a model Frobenioid [cf. [Mzk5], Theorem
5.2, (i)] that C is of Aut-ample, Autsub-ample, and End-ample type. Consideration
of the kernel of the homomorphism of group-like monoids on D

B → Φgp

reveals that if, moreover, Λ = Z (respectively, Λ = R), then C is of unit-profinite
(respectively, unit-trivial) type; since the image monoids of this homomorphism
are assumed to be nonzero, and Φ is monoprime [cf. Example 1.1, (ii)], it follows
immediately that C is of quasi-Frobenius-trivial and [strictly] rational type, but not
of group-like type. Thus, it follows immediately from [Mzk5], Theorem 5.2, (iii),
that if D is of FSMFF-type, then C is of rationally standard type. This completes the
proof of assertion (i). Assertions (ii), (iii) follow immediately from the construction
of a model Frobenioid [cf. Example 1.1, (i), (ii); [Mzk5], Theorem 5.2, (i)]. Assertion
(iv) follows formally from [Mzk5], Proposition 1.13, (iii) [since, by assertion (i) of the
present Theorem 1.2, “condition (b)” of loc. cit. is always satisfied by objects of C].
Finally, assertion (v) follows by observing that if Φ is absolutely primitive, then the
homomorphism B → Φgp considered above is surjective. Thus, it follows formally
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from the computation of isomorphism classes of C given in [Mzk5], Theorem 5.1, (i),
that C is of base-trivial type; moreover, it is immediate that the image of p ∈ Q×

p in
K× [for Spec(K) ∈ Ob(D0)] determines a characteristic splitting. This completes
the proof of Theorem 1.2. ©

Remark 1.2.1. We observe in passing that if Φ is absolutely primitive, then by
Theorem 1.2, (i), (v), it follows that C admits unit-linear Frobenius functors as in
[Mzk5], Proposition 2.5, (iii) [where one takes the “Λ” of loc. cit. to be Z], and
unit-wise Frobenius functors as in [Mzk5], Corollary 2.6. If, moreover, Λ = Z, then
C admits unit-wise Frobenius functors as in [Mzk5], Proposition 2.9, (ii).

Remark 1.2.2. Consider the functors “O�(−)”, “O×(−)” on D determined by
C [cf. [Mzk5], Proposition 2.2, (ii), (iii)]. Let

uD : (Ob(D) 	) AD 
→ uAD ∈ O×(AD)

be a “section” of the functor “O×(−)” [i.e., every arrow φ : AD → BD of D
maps uBD 
→ uAD ]. Suppose that Φ is absolutely primitive, and that Λ = Z [so
O�(AD)char = O�(AD)/O×(AD) ∼= Z≥0]. Then if τ is a characteristic splitting
on C, then it follows immediately that uD determines a new characteristic splitting
“uD · τ”, by taking

(uD · τ)(AD) def= (uAD · η)Z≥0 ⊆ O�(AD)

for η ∈ τ(AD) ⊆ O�(AD) a generator of τ(AD). Moreover, one obtains a unique
automorphism U of the data

(Φ, B → Φgp)

which is the identity on “O×(−)” [regarded as a subfunctor of B] and Φ, but which
maps τ [where we regard “O�(−)” as a subfunctor of B such that B = O�(−)gp]
to uD · τ . Thus, U induces a self-equivalence

ΨU : C ∼→ C

of the model Frobenioid C. In particular, ΨU exhibits an example of a situation
where p ∈ Q×

p is mapped to some p · u ∈ Q×
p , where u ∈ Z×

p — a situation which,
of course, never arises in conventional scheme theory [cf. the various Frobenius
functors discussed in Remark 1.2.1; [Mzk5], Introduction].

Example 1.3. Connected Quasi-temperoids.

(i) If Π is a topological group, then we shall write

Btemp(Π)

for the category whose objects are countable [i.e., of cardinality ≤ the cardinality of
the set of natural numbers], discrete sets equipped with a continuous Π-action and
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whose morphisms are morphisms of Π-sets [cf. [Mzk2], §3]. If Π may be written as
an inverse limit of an inverse system of surjections of countable discrete topological
groups, then we shall say that Π is tempered [cf. [Mzk2], Definition 3.1, (i)]. Thus,
if Π is profinite, then it is tempered, and there is a natural equivalence of categories
Btemp(Π)0 ∼→ B(Π)0 [where the superscript “0” is as in [Mzk5], §0]. If ZΠ(H) = {1}
for every open subgroup H ⊆ Π, then we shall say that Π is temp-slim [cf. [Mzk2],
Definition 3.4, (ii)]. Any category equivalent to a category of the form Btemp(Π) for
some tempered topological group Π will be referred to as a connected temperoid [cf.
[Mzk2], Definition 3.1, (ii)]. We recall that if Π is a tempered topological group, then
Π is temp-slim if and only if the category Btemp(Π) is slim [cf. [Mzk2], Corollary
3.3, Remark 3.4.1)]. In a similar vein, if Π is residually finite, then Btemp(Π)0 is
Frobenius-slim [cf. [Mzk5], Remark 3.1.2]. If Π◦ ⊆ Π is an open subgroup, then we
shall write

Btemp(Π, Π◦) ⊆ Btemp(Π)

for the full subcategory of objects that admit a morphism to the object Π/Π◦ [i.e.,
the set of cosets Π/Π◦ equipped with its natural Π-action from the left] of Btemp(Π).
Note that there is a natural equivalence of categories Btemp(Π◦) ∼→ Btemp(Π)Π/Π◦ ;
in particular, we obtain natural functors Btemp(Π◦) → Btemp(Π), Btemp(Π◦)0 →
Btemp(Π)0. A connected quasi-temperoid is a category that is equivalent to a cat-
egory of the form Btemp(Π, Π◦), where Π is a tempered topological group, and
Π◦ ⊆ Π is an open subgroup [cf. [Mzk2], Definition A.1, (i)]. One verifies im-
mediately that if E is a connected quasi-temperoid, then the category E0 (⊆ E) is
connected, totally epimorphic, of strongly indissectible type [cf. §0], and of FSM-
type [indeed, every monomorphism of E0 is an isomorphism], hence, in particular,
of FSMFF-type [cf. [Mzk5], §0].

(ii) Let φ : Π1 → Π2 be an open homomorphism of tempered topological groups
[i.e., φ is a continuous homomorphism, φ(Π1) is an open subgroup of Π2, and φ

induces an isomorphism of topological groups Π1/Ker(φ) ∼→ φ(Π1)]. Then observe
that φ induces a natural functor

φ∗ : Btemp(Π1)0 → Btemp(Π2)0

by composing the functor Btemp(φ(Π1))0 → Btemp(Π2)0 of (i) with the functor
Btemp(Π1)0 → Btemp(φ(Π1))0 obtained by mapping a Π1-set E to the φ(Π1)-set
E′ def= E/Ker(φ) given by taking the set of Ker(φ)-orbits of E. When φ is surjective,
one verifies immediately that the functor φ∗ is left adjoint to the pull-back functor
Btemp(Π2)0 → Btemp(Π1)0 [i.e., obtained by composing the Π2-action on a Π2-set
F2 with φ so as to obtain a Π1-set F1].

(iii) Let F = Qp or R; F̃ an algebraic closure of F . Then by (i), (ii), any
open homomorphism Π → Q from a tempered topological group Π, equipped with
an open subgroup Π◦ ⊆ Π, to a quotient GF � Q of the absolute Galois group
GF

def= Gal(F̃ /F ) of F determines a functor

Btemp(Π, Π◦)0 ↪→ Btemp(Π)0 → Btemp(Q)0 ↪→ Btemp(GF )0
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[where the middle arrow “→” is a functor as in (ii)] between connected, totally
epimorphic categories of FSM-type. In particular, when F = Qp, if we set D def=
Btemp(Π, Π◦)0, then we obtain a functor D → D0 = Btemp(GQp

)0 [cf. Example 1.1,
(ii)] which satisfies the hypotheses of Theorem 1.2, (i). That is to say, in this case,
the main results of the theory of [Mzk5] may be applied to the p-adic Frobenioids of
Example 1.1, (ii).

Example 1.4. Localizations of Number Fields.

(i) Often it is of interest to relate finite extensions of a local field to finite
extensions of number fields. This may be achieved as follows: Let F̃ be a Galois
extension of a number field F ; v a [not necessarily nonarchimedean!] valuation of F .
Write Fv for the completion of F at v, F̃v for the Galois extension of Fv determined
by F̃ /F , Dv ⊆ Gal(F̃ /F ) for the decomposition group of v in Gal(F̃ /F ) [which is
well-defined up to conjugation],

Q0

for the full subcategory of the Galois category of finite étale coverings of Spec(F )
determined by objects of the form Spec(F ′) → Spec(F ), where F ′ ⊆ F̃ is a finite
field extension of F , and

P0

for the full subcategory of connected objects of the Galois category of finite étale
coverings of Spec(Fv) determined by objects of the form Spec(F ′) → Spec(Fv),
where F ′ ⊆ F̃v is a finite field extension of Fv. Thus, restriction to Spec(Fv)
determines a natural functor

ρ : Q0 → P⊥
0

[where the superscript “⊥” is as in [Mzk5], §0; thus, P⊥
0 is naturally equivalent

to the full subcategory of the Galois category of finite étale coverings of Spec(Fv)
consisting of objects whose connected components form objects of P0]. Write

E0

for the category whose objects are triples

(P, Q, ι : P → ρ(Q))

— where P ∈ Ob(P0), Q ∈ Ob(Q0), and ι is an isomorphism in P⊥
0 of P onto a

connected component of ρ(Q) — and whose morphisms

(P, Q, ι : P → ρ(Q)) → (P ′, Q′, ι′ : P ′ → ρ(Q′))

are pairs of morphisms P → P ′, Q → Q′ in P0, Q0, respectively, that are compatible
with ι, ι′. Thus, E0 may be thought of as the category of “connected finite étale
coverings of Spec(Fv) equipped with a localization morphism [that satisfies certain
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properties] to a connected finite étale covering of Spec(F ) determined by a finite
subextension of the extension F̃ /F”.

(ii) One verifies immediately that the category E0 is connected and totally
epimorphic. Also, we have natural functors E0 → P0, E0 → Q0. One verifies
immediately that E0 → P0 is faithful and arrow-wise essentially surjective [cf. §0],
and that if E0 ∈ Ob(E0) projects to an object P0 ∈ Ob(P0), then the functor
E0 → P0 induces a bijection AutE0(E0)

∼→ AutP0(P0). Note that finite extensions
F1 ⊆ F2 ⊆ F̃ of F , together with a valuation v2 of F2 lying over a valuation v1 of F1

which, in turn, lies over v such that the local extension (F2)v2/(F1)v1 is trivial yield
examples of FSM-morphisms of E0 which are not isomorphisms. Conversely, one
verifies immediately that every FSM-morphism of E0 which is not an isomorphism
arises in this way. Thus, the category E0 is not [in general] of FSM-type. On the
other hand, one verifies immediately that E0 is of FSMFF-type.

(iii) Suppose that v is nonarchimedean and lies over a rational prime p. Then
one has an evident natural functor P0 → D0. Moreover, by applying Proposition
1.5, (ii), (iii), below, given a connected, totally epimorphic category P and a functor
P → P0, one obtains a connected, totally epimorphic category E def= P ×P0 E0

equipped with a functor E → P0 → D0 — cf. the category “D”, the functor
“D → D0” of Example 1.1, (ii). If, moreover, P is of FSM-type [cf., e.g., Example
1.3, (i)], then E is of FSMFF-type [cf. Proposition 1.5, (viii)], hence, in particular,
satisfies the hypotheses of Theorem 1.2, (i). That is to say, in this case, the main
results of the theory of [Mzk5] may be applied to the p-adic Frobenioids of Example
1.1, (ii). Also, we observe that if P is Frobenius-slim or slim [cf., e.g., Example 1.3,
(i)], then so is E [cf. Proposition 1.5, (iv)]; if P is of strongly indissectible type [cf.,
e.g., Example 1.3, (i)], then so is E [cf. Proposition 1.5, (vii)].

Proposition 1.5. (Localizations of Number Fields) Let P0, E0 be as in
Example 1.4; P a category; P → P0 a functor. Denote by

E def= P ×P0 E0

the categorical fiber product [cf. [Mzk5], §0]. [Thus, we have 1-compatible
natural projection functors E → P, E → E0, E → P0.] We shall refer to a morphism
of E that projects to an an isomorphism of P as a P-isomorphism. Then:

(i) The natural projection functor E → P is faithful and arrow-wise es-
sentially surjective. Moreover, if E1, E2 ∈ Ob(E) project to P1, P2 ∈ Ob(P),
respectively, then the functor E → P induces a bijection

lim−→
E3→E1

HomE(E3, E2)
∼→ HomP(P1, P2)

where the inductive limit is over P-isomorphisms E3 → E1. That is to say, “P
may be reconstructed from E by inverting the P-isomorphisms”.

(ii) P is connected if and only if E is.
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(iii) P is totally epimorphic if and only if E is.

(iv) If E ∈ Ob(E) projects to an object P ∈ Ob(P), then we have natural
bijections

Aut(PP → P) ∼→ Aut(EE → P); Aut(EE → E) ∼→ Aut(EE → P)

[induced by composition with the natural functors E → P, EE → PP ]. In particular,
P is slim if and only if E is; P is Frobenius-slim if and only if E is.

(v) Let φE ∈ Arr(E); denote by φP ∈ Arr(P) the projection of φE to P. Then φE
is a monomorphism (respectively, fiber-wise surjective; an FSM-morphism)
if and only if φP is.

(vi) Suppose that P is of FSM-type. Then a morphism of E is a P-isomorphism
if and only if it is an FSM-morphism.

(vii) Let AE ∈ Ob(E); denote by AP ∈ Ob(P) the projection of AE to P.
Then AP is weakly dissectible (respectively, weakly indissectible; strongly
dissectible; strongly indissectible) [cf. §0] if and only if AE is.

(viii) Suppose that P is of FSM-type and totally epimorphic. Then E is
of FSMFF-type.

(ix) Let φE , φP be as in (v). Suppose, moreover, that Dv is a finite group
which is either trivial or of prime order [which is always the case, if, for instance,
v is archimedean]. Then if φP admits a factorization φP = αP ◦ βP in P,
then there exist morphisms αE , βE of E lifting αP , βP , respectively, such that
φE = αE ◦ βE in E . In particular, if φE is totally ordered [cf. §0] (respectively,
either irreducible or an isomorphism), then so is φP .

Proof. First, we consider assertion (i). The faithfulness and arrow-wise essential
surjectivity of E → P follow immediately from the corresponding properties of
E0 → P0 [cf. Example 1.4, (ii)]. The bijection of assertion (i) follows immediately
from the definitions and the easily verified observation that such a bijection exists
when P → P0 is the identity functor on P0. Next, we consider assertion (ii).
Since E → P is essentially surjective [cf. assertion (i)], it is immediate that the
connectedness of E implies that of P. On the other hand, note that when P is a one-
morphism category, the connectedness of E follows immediately from the bijection
of assertion (i). If P is an arbitrary connected category [equipped with a functor
P → P0], then the connectedness of E follows immediately from the arrow-wise
essential surjectivity of E → P [cf. assertion (i)] by considering the “fibers” of the
functor E → P [which correspond to the case where P is a one-morphism category].
Assertion (iii) follows immediately from the definitions, the total epimorphicity of
E0 and P0, and the bijection of assertion (i). Assertion (iv) follows immediately
from the bijection of assertion (i) and the bijection “AutE0(E0)

∼→ AutP0(P0)”
observed in Example 1.4, (ii). Assertions (v), (vii) follow from the faithfulness of
E → P [cf. assertion (i)], together with the bijection of assertion (i), by a routine
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verification. Assertion (vi) follows formally from assertion (v). This completes the
proof of assertions (i), (ii), (iii), (iv), (v), (vi), (vii).

Next, we consider assertion (viii). Since P is totally epimorphic, it follows that
if a composite of two morphisms α, β of P is an isomorphism, then both α and β are
isomorphisms [cf. the discussion of [Mzk5], §0]; a similar statement holds for P0.
Thus, by applying the equivalence of assertion (vi) both to the original P and to
the case where P → P0 is the identity functor on P0, we conclude that a morphism
of E is an FSMI-morphism if and only if it is a P-isomorphism that projects to an
FSMI-morphism of E0. Thus, the fact that E is of FSMFF-type follows formally
from the fact that E0 is of FSMFF-type [cf. Example 1.4, (ii)]. This completes the
proof of assertion (viii).

Finally, we observe that the portion of assertion (ix) concerning factorizations
follows immediately from the fact that the assumption on Dv implies that if αP0◦βP0

is any composite morphism of P0, then either αP0 or βP0 is an isomorphism. The
portion of assertion (ix) concerning irreducibility then follows formally; the portion
of assertion (ix) concerning totally ordered morphisms follows from the portion of
assertion (ix) concerning factorizations, together with the portion of assertion (v)
concerning monomorphisms [cf. §0]. ©
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Section 2: The Kummer and Reciprocity Maps

The purpose of the present §2 is to consider classical Kummer theory, as well as
the reciprocity map of classical local class field theory, in the context of the “p-adic
Frobenioids” of §1.

We begin with the following general definition.

Definition 2.1. Let C be a Frobenioid [whose Frobenioid structure is given by a
functor C → FΦ, where Φ is a divisorial monoid on a connected, totally epimorphic
category D]; A ∈ Ob(C); AD

def= Base(A) ∈ Ob(D); N ∈ N≥1.

(i) Write
μN (A) ⊆ O×(A)

for the subgroup of elements of O×(A) that are annihilated by N . [Thus, if C is as
in Example 1.1, with Λ = Z, then μN (A) is isomorphic to a subgroup of Z/NZ.]
We shall refer to μN (A) as the cyclotomic portion of O×(A) [or O�(A)] of order
N . Write

AutC/D(A) def= Im(AutC(A)) ⊆ AutD(AD)

for the image of AutC(A) in AutD(AD). [Thus, since O�(A) is abelian [cf. [Mzk5],
Remark 1.3.1], the natural action of AutC(A) on O�(A) factors through AutC/D(A).]
Then we observe that the submonoid μN (A) ⊆ O×(A) ⊆ O�(A) is stabilized by
the natural action of AutC/D(A) on O�(A). We shall say that A is μN -saturated if
the abstract group μN (A) is isomorphic to Z/NZ.

(ii) Suppose that A is μN -saturated. Let HA ⊆ AutC/D(A) be a subgroup;

f ∈ O�(A)HA

[where the superscript HA denotes the subset of elements fixed by the action of HA]
an element that admits an N -th root g ∈ O�(A) — i.e., gN = f . Then since the
action of HA on the monoid O�(A) fixes f , it follows that HA stabilizes the subset
μN (A) · g ⊆ O�(A) [i.e., the subset of N -th roots of f — cf. [Mzk5], Definition
1.3, (vi)], hence determines a cohomology class

κf ∈ H1(HA, μN(A))

which is easily verified to be independent of the choice of g, and which we shall refer
to as the Kummer class of f . Here, we note that HA acts trivially on the cohomology
module H1(HA, μN(A)). The assignment f 
→ κf determines a homomorphism

(O�(A) ⊇) O�(A)HA

⋂
O�(A)N → H1(HA, μN(A))

which we shall refer to as the Kummer map.
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Now we return to our discussion of the p-adic Frobenioids C of Example 1.1.
Let us assume that Λ = Z; D is any category

Btemp(Π, Π◦)0

as in Example 1.3, (iii), where Π → Q, GQp
� Q [i.e., we take “F” of loc. cit.

to be Qp], Π◦ ⊆ Π are as in loc. cit., and we assume further that the surjection

GQp
� Q is an isomorphism. Write G

def= Im(Π) ⊆ Q; G◦ def= Im(Π◦) ⊆ Q;

E def= Btemp(G, G◦)0; K for the finite extension of Qp determined by the open
subgroup G ⊆ Q. Thus, we have a natural functor

D = Btemp(Π, Π◦)0 → E = Btemp(G, G◦)0

[cf. Example 1.3, (ii), (iii)].

Definition 2.2. Let H ⊆ G be a normal open subgroup; N ∈ N≥1; A ∈ Ob(C).

Write AD
def= Base(A) ∈ Ob(D); AE ∈ Ob(E) for the projection of A to E .

(i) Note that the natural action by conjugation of AutC(A) on O×(A) (⊆
AutC(A)) factors through the quotient

AutC(A) � GA
def= AutC(A)/(Ker(AutC(A) → AutE(AE)))

induced by the functor C → E . Moreover, the functor C → E induces a natural
inclusion GA ↪→ AutE(AE), which is an isomorphism if, for instance, AD is Galois
[where we recall that C is Aut-ample — cf. Theorem 1.2, (i)]. If AD is Galois, then
we have a natural surjective outer homomorphism

G � AutE(AE) ∼→ GA

which thus determines a surjective outer homomorphism

H � HA
def= Im(H) (⊆ GA)

— which, in light of the fact that H is normal in G, is well-defined, up to composition
with conjugation by an element of G, despite the fact that the homomorphism
G � GA is only determined up to composition with an inner automorphism.

(ii) We shall say that A is (N, H)-saturated if the following conditions are
satisfied: (a) A is μN -saturated; (b) AD is Galois; (c) the natural surjective homo-
morphism H � HA induces isomorphisms on first cohomology modules

H1(HA, μN (A)) ∼→ H1(H, μN(A)); H1(HA, Z/NZ) ∼→ H1(H, Z/NZ)

and a surjection on second cohomology modules H2(HA, μN (A)) � H2(H, μN(A))
[conditions which are unaffected by composition with conjugation by an element of
G]. In this situation, we shall write

FN (A) def= H2(HA, μN(A))/Ker(H2(HA, μN(A)) � H2(H, μN(A)))
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— so FN (A) ∼= H2(H, μN(A)) ∼= Z/NZ [cf., e.g., [NSW], Chapter 7, Theorem
7.2.6].

(iii) Define
O�(−) def= O�(−)

if Φ is fieldwise saturated [cf. Example 1.1, (ii)], and

O�(−) def= O×(−)

if Φ is not fieldwise saturated [e.g., if Φ is absolutely primitive].

Remark 2.2.1. Thus, it follows immediately from the definitions, together with
the finiteness of the cohomology modules H1(H, μN(A)), H2(H, μN(A)) [cf., e.g.,
[NSW], Chapter 7, Theorem 7.2.6], that given an A′ ∈ Ob(C), it follows that, for
any N , H as in Definition 2.2, there exists a pull-back morphism A′′ → A′ in C such
that A′′ is (N, H)-saturated.

In the notation of Definition 2.2, suppose that A is (N, H)-saturated. Write
AE = Spec(L) [so L is a finite extension of K]. Note that HA acts naturally on L,
O�(A). Moreover, we have a natural isomorphism

(O�(A) ⊇ ) O�(A)H ∼→ O�(LH)

[where the superscript “H ’s” denote the submonoids/subfields of elements on which
HA acts trivially]. Observe that, in light of the definition of the notation “O�(−)”
in Definition 2.2, (iii), the [first cohomology module portion of the] Galois-theoretic
condition of Definition 2.2, (ii), (c), implies [upon translation into “extension field-
theoretic language”] that any element

f ∈ O�(A)H

admits an N -th root g ∈ O�(A) — i.e., gN = f . Thus, the Kummer map [cf.
Definition 2.1, (ii)] is defined on all of O�(A)H .

Next, let us recall that, by the well-known duality theory of nonarchimedean
[mixed-characteristic] local fields [cf., e.g., [NSW], Chapter 7, Theorem 7.2.6], the
cup product on group cohomology determines an isomorphism

H1(H, μN(A)) ∼→ Hab ⊗ H2(H, μN(A))

hence [in light of the condition of Definition 2.2, (ii), (c)] an isomorphism [induced
by the cup product on group cohomology]

H1(HA, μN(A)) ∼→ Hab
A ⊗ FN (A)

which is independent of the choice of the homomorphism H � HA among its various
G-conjugates and compatible with the natural actions of GA/HA on its domain and
codomain. Write ηf ∈ Hab

A ⊗ FN (A) for the image of κf via this last isomorphism.
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Definition 2.3. The assignments f 
→ κf , f 
→ ηf determine homomorphisms

O�(A)H → H1(HA, μN(A)); O�(A)H → Hab
A ⊗ FN (A)

which we shall refer to as the Kummer and reciprocity maps [associated to the
(N, H)-saturated object A], respectively.

Theorem 2.4. (Category-theoreticity of the Kummer and Reciprocity
Maps) For i = 1, 2, let pi ∈ Primes; Ci a pi-adic Frobenioid [cf. Example
1.1, (ii)] whose monoid type [i.e., the “Λ” of Example 1.1] is Z, whose defining
divisor monoid [i.e., the “Φ” of Example 1.1] we denote by Φi, whose defining
rational function monoid [i.e., the “B” of Example 1.1] we denote by Bi, and
whose base category Di satisfies

Di = Btemp(Πi, Π◦
i )

0

[cf. Example 1.3, (iii)], where Πi → Qi
def= GQpi

is an open homomorphism of
temp-slim tempered topological groups [cf. [Mzk1], Theorem 1.1.1, (ii)], Π◦

i ⊆ Πi

is an open subgroup, Gi
def= Im(Πi) ⊆ Qi; G◦

i
def= Im(Π◦

i ) ⊆ Qi; Ei
def= Btemp(Gi, G

◦
i )

0.
[Thus, we have a natural functor Di → Ei.] Suppose further that we have been given
open normal subgroups H1 ⊆ G1, H2 ⊆ G2, together with an equivalence of
categories

Ψ : C1
∼→ C2

— which [cf. Theorem 1.2, (i); Example 1.3, (i); [Mzk5], Theorem 3.4, (v)] neces-
sarily induces a 1-compatible equivalence of categories ΨBase : D1

∼→ D2, hence
an outer isomorphism of topological groups

Π1
∼→ Π2

[cf. [Mzk2], Proposition 3.2; [Mzk2], Theorem A.4] that lies over an outer iso-
morphism of topological groups

G1
∼→ G2

[cf. Theorem 1.2, (ii)]. Assume that this isomorphism G1
∼→ G2 maps H1 onto

H2. Then [relative to the notation introduced in Definition 2.2]:

(i) Φ1 is fieldwise saturated if and only if Φ2 is. Moreover, p1 = p2; Ψ
maps (N, H1)-saturated objects to (N, H2)-saturated objects and induces isomor-
phisms of monoids/modules

O�(A1)H1 ∼→ O�(A2)H2 ; (H1)A1

∼→ (H2)A2 ; (G1)A1

∼→ (G2)A2

H1((H1)A1 , μN(A1))
∼→ H1((H2)A2 , μN(A2)); FN (A1)

∼→ FN (A2)

[where Ψ(A1) = A2; for i = 1, 2, Ai ∈ Ob(Ci) is (N, Hi)-saturated] which are
compatible with the respective Kummer and reciprocity maps

O�(Ai)Hi → H1((Hi)Ai
, μN (Ai)); O�(Ai)Hi → (Hi)abAi

⊗ FN (Ai)
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[where i = 1, 2] as well as with the various natural actions of (G1)A1/(H1)A1 ,
(G2)A2/(H2)A2 .

(ii) If the Φi are fieldwise saturated, then the isomorphism FN (A1)
∼→ FN (A2)

of (i) is compatible with the natural isomorphisms

FN (Ai)
∼→ Z/NZ

[cf., e.g., [NSW], Chapter 7, Theorem 7.2.6].

Proof. First, we consider assertion (i). We begin by observing the [easily verified]
fact that Φi is fieldwise saturated if and only if the following two conditions hold:

(a) The inductive limit monoid

lim−→ Φi(B)

[where B ranges over the objects of Di] is divisible.

(b) For every pull-back morphism φ : B → C of Ci that projects to a Galois
covering φD : BD → CD of Di, the injection O�(C) ↪→ O�(B) induced
by φ [cf. [Mzk5], Proposition 1.11, (iv)] determines a bijection

O�(C) ∼→ O�(B)Gal(B/C)

[where the superscript “Gal(B/C)” denotes the submonoid of Gal(B/C)-
invariants; Gal(B/C) def= Gal(BD/CD)].

Moreover, since Ci is a Frobenioid of rationally standard type [cf. Theorem 1.2, (i);
Example 1.3, (i)] over a slim base category [cf. Example 1.3, (i)], it follows from
[Mzk5], Corollaries 4.10; 4.11, (ii), (iii), that Ψ induces a 1-compatible equivalence
of categories ΨBase : D1

∼→ D2, as well as compatible isomorphisms of functors
Φ1

∼→ Φ2, B1
∼→ B2 — where we regard “O�(−)” as a subfunctor of Bi [such that

Bi is the groupification of “O�(−)”] which is preserved by the isomorphism B1
∼→ B2

— hence that these conditions (a), (b) are preserved by Ψ. Thus, Φ1 is fieldwise
saturated if and only if Φ2 is. The fact that p1 = p2 follows from the existence
of the isomorphism G1

∼→ G2 [cf. [Mzk1], Proposition 1.2.1, (i)]. The remainder
of assertion (i) follows immediately from the fact [just observed] that Ψ preserves
“O�(−)”, together with the “manifestly group-/category-theoretic” construction
given above of the Kummer and reciprocity maps. This completes the proof of
assertion (i).

Next, we consider assertion (ii). For i = 1, 2, write Ki for the finite extension
of Qp [where p

def= p1 = p2] determined by the open subgroup Gi ⊆ Qi, Ki for the
algebraic closure of Ki used to define the Galois group Qi [so Gi = Gal(Ki/Ki)].
Then since Φi is fieldwise saturated, it follows — by varying the objects Ai [that
correspond via Ψ] and reconstructing the multiplicative group associated to the field
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determined by the image of Ai in B(Gi, G
◦
i ) as the groupification of the monoid

O�(Ai) = O�(Ai) — that Ψ induces a pair of compatible isomorphisms

G1
∼→ G2; K

×
1

∼→ K
×
2

— where this pair is well-defined up to composition with automorphisms of the pair
(G2, K

×
2 ) induced by elements of G2. For i = 1, 2, denote by μ(K

×
i ) ⊆ K

×
i the

torsion subgroup of K
×
i .

Now let us recall [cf. the theory of the Brauer group of a nonarchimedean
[mixed-characteristic] local field, as exposed, for instance, in [Serre], §1; [Mzk1], the
proof of Proposition 1.2.1, (vii)] that the natural isomorphism

H2(Gi, μ(K
×
i )) ∼→ Q/Z

may be constructed as the composite of the natural isomorphism

H2(Gi, μ(K
×
i )) ∼→ H2(Gi, K

×
i )

[induced by the natural inclusion μ(K
×
i ) ↪→ K

×
i ] with the inverse of the natural

isomorphism
H2(Gunr

i , (Kunr
i )×) ∼→ H2(Gi, K

×
i )

[induced by the inclusion (Kunr
i )× ↪→ K

×
i — where Kunr

i ⊆ Ki denotes the max-
imal unramified extension of Ki; Gunr

i
def= Gal(Kunr

i /Ki)], followed by the natural
isomorphism

H2(Gunr
i , (Kunr

i )×) ∼→ H2(Gunr
i , Z) ∼→ H2(Ẑ, Z) = Q/Z

[where the first arrow is induced by the valuation map (Kunr
i )× → Z; the isomor-

phism Gunr
i

∼→ Ẑ is induced by the Frobenius element]. Since the isomorphism
G1

∼→ G2 is automatically compatible with the quotients Gi � Gunr
i , as well as with

the Frobenius elements ∈ Gunr
i [cf., e.g., [Mzk1], Proposition 1.2.1, (ii), (iv)], we

thus conclude that the natural isomorphisms

H2(Gi, μ(K
×
i )) ∼→ Q/Z

are compatible with the isomorphism

H2(G1, μ(K
×
1 )) ∼→ H2(G2, μ(K

×
2 ))

induced by Ψ. Since, moreover, the natural isomorphisms

FN (Ai)
∼→ Z/NZ

in question are easily verified to be “isomorphisms induced on subquotients” by
the natural isomorphisms H2(Gi, μ(K

×
i )) ∼→ Q/Z [cf., e.g., [NSW], Chapter 7,
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Corollary 7.1.4], it thus follows that the natural isomorphisms FN (Ai)
∼→ Z/NZ

are compatible with the isomorphism FN (A1)
∼→ FN (A2) induced by Ψ, as desired.

This completes the proof of assertion (ii). ©

Remark 2.4.1. By allowing N ∈ N≥1 to vary, it is a routine exercise to show
that:

One obtains a profinite version of Theorem 2.4, (i), so long as one allows for
a (Gi)Ai

/(Hi)Ai
-indeterminacy [where i = 1, 2] in the resulting profinite

Kummer and reciprocity maps.

Indeed, when one allows N — hence also the objects Ai, where i = 1, 2 — to vary,
one must exercise care with respect to the coefficients “μN (Ai)”, as one allows Ai to
vary. The fact that the coefficients then vary does not cause a problem — so long as
one allows for a (Gi)Ai

/(Hi)Ai
-indeterminacy — since [cf. the discussion preceding

Definition 2.3] (Hi)Ai
acts trivially on H1((Hi)Ai

, μN (Ai)); FN (Ai). [Here, we note
that we implicitly used the [well-known — cf., e.g., [Mzk1], Proposition 1.2.1, (vii)]
fact that (Gi)Ai

acts trivially on FN (Ai) in the proof of Theorem 2.4, (ii).]

Remark 2.4.2. Note [relative to Theorem 2.4, (ii)] that if the Φi are not fieldwise
saturated, then the natural isomorphisms

FN (Ai)
∼→ Z/NZ

are not, in general, compatible with the isomorphism FN (A1)
∼→ FN (A2) induced by

Ψ. Indeed, when the Φi are absolutely primitive [cf. Remark 1.2.1], an example of
such a Ψ is provided by the unit-wise Frobenius functor of [Mzk5], Proposition 2.9,
(ii), which acts on FN (Ai) [relative to the natural isomorphisms FN (Ai)

∼→ Z/NZ]
by “raising to the ζ-th power” [cf. “the compatibility with the reciprocity map”
asserted in Theorem 2.4, (i); [Mzk5], Proposition 2.9, (ii), (a), (c)].
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Section 3: Archimedean Primes

In the present §3, we define and study the basic properties of certain Frobe-
nioids naturally associated to archimedean local fields. In particular, we construct
our first example [i.e., among the various examples presented thus far in [Mzk5]
and the present paper] of a Frobenioid which is not of isotropic type. In fact, it is
this example that motivated the theory [developed in [Mzk5]] of Frobenioids that
are not necessarily of isotropic type; in particular, this example is also the source
of the terminology “isotropic” and “co-angular” in the theory of [Mzk5].

Write
D0

for the subcategory of connected objects of the Galois category of finite étale coverings
of Spec(R) [cf. [Mzk5], §0]. Thus, D0 is a connected, totally epimorphic category,
which is of FSM-, hence also of FSMFF-type [cf. [Mzk5], §0].

We begin by introducing some terminology.

Definition 3.1.

(i) An archimedean local field is defined to be a topological field that is iso-
morphic [as a topological field] to either the [topological] field of real numbers R

— in which case we shall refer to the archimedean local field as being real — or
the [topological] field of complex numbers C — in which case we shall refer to the
archimedean local field as being complex. Recall that the topological field R has no
nontrivial automorphisms, while the unique nontrivial automorphism of the topo-
logical field C is given by complex conjugation. If K, L are archimedean local fields,
then any inclusion of topological rings

ι : K ↪→ L

is either an isomorphism or satisfies the property that there exist isomorphisms of
topological fields αK : K

∼→ R, αL : L
∼→ C such that αL ◦ ι ◦ α−1

K : R ↪→ C is the
natural inclusion.

(ii) If K is an archimedean local field, then we shall denote by

O×
K ⊆ K×

and refer to as the group of units of K the topological subgroup of K× of elements
of norm 1; let us write

S1 def= O×
C ⊆ C×; ord(K×) def= K×/O×

K

and observe that the usual absolute value | − | on K determines a natural isomor-
phism ord(K×) ∼→ R>0. Also, note that we have a canonical decomposition

O×
K × ord(K×) ∼→ K×
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[i.e., given by mapping a pair (z, λ), where z ∈ O×
K , λ ∈ R>0

∼= ord(K×), to
z · λ ∈ K×].

(iii) Let K be an archimedean local field. Then we shall refer to as an angular
region

A ⊆ K×

any subset A of the form B×C [i.e., relative to the canonical decomposition of (ii)],
where B ⊆ O×

K is an open subset whose intersection with each connected component
of O×

K is [nonempty and] connected [which implies that B = O×
K whenever K is

real], and C ⊆ ord(K×) ∼= R>0 is an interval of the form (0, λ], where λ ∈ R>0.
In this situation, we shall refer to λ as the tip of the angular region A and to the
subset

∂A
def= {a ∈ A | |a| = λ} ⊆ A

as the boundary of A [so ∂A maps bijectively via the projection K× → O×
K to B];

if B = O×
K , then we shall refer to the angular region A as isotropic. If A′ ⊆ K× is

another angular region, then we shall refer to A, A′ as co-angular if the projections
of A, A′ to O×

K coincide. We shall refer to a subset of K as an angular region if it is
the union with the subset {0} of an angular region of K×. Note that if V is any one-
dimensional vector space over K, then it makes sense to speak of angular regions,
tips of angular regions (∈ ord(V ) def= V ×/O×

K , where V × def= V \{0}), boundaries
of angular regions, isotropic angular regions, and co-angular angular regions of V ,
V ×. Also, if, for i = 1, 2, Ai ⊆ Vi is an angular region of a one-dimensional vector
space Vi over K, then one verifies immediately that the subset

A1 ⊗K A2
def= {a1 ⊗K a2 | a1 ∈ A1, a2 ∈ A2} ⊆ V1 ⊗K V2

is an angular region of V1 ⊗K V2.

(iv) If
ι : K ↪→ L

is an inclusion of archimedean local fields, and AK ⊆ VK is an angular region of a
one-dimensional vector space VK over K, then the pair (VK , AK) determines a pair

(VK , AK)|L def= (VL, AL)

where VL
def= VK ⊗K L, and AL ⊆ VL is the angular region of VL defined as follows:

If ι is an isomorphism, then we take AL ⊆ VL to be the image of AK via the natural
bijection VK

∼→ VL. If ι is not an isomorphism, then we take AL ⊆ VL to be the
[necessarily isotropic] angular region of VL given by the O×

L -orbit of the image of
AK via the natural inclusion VK ↪→ VL.

(v) If F is a category equipped with a functor F → D0, then we shall write
F [R] (respectively, F [C]) for the full subcategory of real (respectively, complex)
objects — i.e., objects that project to an object of D0 determined by a real (re-
spectively, complex) archimedean local field. If F = F [R] (respectively, F = F [C]),
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then we shall say that F is real (respectively, complex). If, for every A ∈ Ob(F [R]),
there exists a morphism B → A in F , where B ∈ Ob(F [C]), together with an au-
tomorphism of β ∈ AutFA

(B) that projects to the unique nontrivial automorphism
of D0, then we shall say that F is complexifiable. If F is connected, and, moreover,
the categories F [R], F [C] are either empty or connected, then we shall say that F
is RC-connected. Suppose that F is totally epimorphic. Then we shall say that an
object A ∈ Ob(F) is an RC-anchor if A determines an anchor [cf. [Mzk5], §0] of
F [C]. We shall say that an object A ∈ Ob(F) is an RC-subanchor if there exists
a morphism A → B in F , where B is an RC-anchor. We shall say that an object
A ∈ Ob(F) is an RC-iso-subanchor if there exist an RC-subanchor B ∈ Ob(F), a
subgroup G ⊆ AutF (B), and a morphism B → A in F which is a mono-minimal
categorical quotient in F [cf. [Mzk5], §0] of B by G. If every object of [the totally
epimorphic category] F is an RC-iso-subanchor, then we shall say that F is of
RC-iso-subanchor type. We shall say that [the totally epimorphic category] F is of
RC-standard type if F is: (a) RC-connected; (b) complexifiable; (c) of FSMFF-type;
(d) of RC-iso-subanchor type.

Before proceeding, we note the following elementary result concerning the ge-
ometry of the circle S1:

Lemma 3.2. (Connected Open Subsets of the Circle) Let A, B ⊆ S1

be [nonempty] connected open subsets such that A ⊆ B. We shall refer to a
connected open subset C ⊆ B that contains A as an (A, B)-subset. If n ∈ Z, write
φn : S1 → S1 for the map given by S1 	 z 
→ zn.

(i) A = B if and only if every (A, B)-subset C is, in fact, equal to A. In
particular, A = S1 if and only if every (A, S1)-subset C is, in fact, equal to A.

(ii) There exists a w ∈ S1 such that the translated open subset w · A satisfies
φ−1(w ·A) = w ·A [i.e., w ·A is invariant with respect to complex conjugation].
For n a positive integer, there exists a [nonempty] connected open subset A′ ⊆ A
such that φ−1(A′) = w · A′, where wn = 1, if and only if φn(A)

⋂ {1,−1} �= ∅.
(iii) The complement S1\A is of cardinality ≤ 1 if and only if there does

not exist an (A, S1)-subset A′ such that A′ �= A, S1.

(iv) Suppose that for some 0 �= n ∈ Z, φn(A) ⊆ A. Then either A = S1 or
|n| = 1. Moreover, [in either of these cases] φn(A) = A.

(v) There exists a finite subset E ⊆ Z such that for any n ∈ Z\E, and any
(A, S1)-subset A′, the restriction of φn to A′ is surjective, but not injective. In
particular, for n ∈ Z\E, φn(A) = φn(B) = S1.

(vi) Suppose that A �= B. Consider the following conditions on A, B:

(a) For any two (A, B)-subsets A1, A2, it holds that either A1 ⊆ A2 or
A2 ⊆ A1.
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(b) For any two (A, B)-subsets A1, A2 such that A1 ⊆ A2, A1 �= A2, there
exists an (A1, A2)-subset A3 such that A3 �= A1, A2.

(c) The complement B\A is connected.

(d) If B = S1, then B\A is of cardinality ≤ 1.

(e) B �= S1.

Then condition (a) holds if and only if both conditions (c) and (d) hold; both
conditions (a) and (b) hold if and only if both conditions (c) and (e) hold. If the
pair (A, B) satisfies conditions (a) and (b), then we shall say that the pair (A, B)
is continuously ordered.

(vii) Suppose that A �= B, B �= S1. Then there exists an (A, B)-subset C such
that the pairs (A, C); (C, B) are continuously ordered.

(viii) Suppose that B\A is of cardinality > 1. Then there exist (A, B)-subsets
A1, A2 such that B = A1

⋃
A2, A1 �= S1, A2 �= S1.

(ix) Suppose that A �= B, and that there does not exist a connected open subset
D ⊆ B such that A

⋂
D = ∅. Then B = S1, and B\A is of cardinality ≤ 1.

(x) If A �= S1, then A is not homeomorphic to S1.

(xi) Every automorphism of the topological group S1 is equal to either φ1

or φ−1.

(xii) Write

Homeo(S1); Trans(S1) ⊆ Homeo(S1); Refl(S1) ⊆ Homeo(S1)

for the group of self-homeomorphisms of S1, the subgroup [naturally isomorphic
to S1] determined by the translations by elements of S1, and the subgroup generated
by Trans(S1), φ−1, respectively. Then Refl(S1) ∼= S1�(Z/2Z); Trans(S1) ⊆ Refl(S1)
is equal to the subgroup of infinitely divisible elements; the normalizer in
Homeo(S1) of either Trans(S1) or Refl(S1) is equal to Refl(S1); the centralizer
in Homeo(S1) of Trans(S1) is equal to Trans(S1).

Proof. Assertions (i), (ii), (iii), (vi), (vii), (viii) are immediate from the well-
known structure of S1 [and, in the case of assertion (vii), the equivalence, given
in assertion (vi), of conditions (a) and (b) with conditions (c) and (e)]. To verify
assertion (iv), note that, relative to the standard metric on the tangent bundle of
S1 [i.e., the metric induced by the standard euclidean metric on C via the natural
inclusion S1 ↪→ C], |dφn| = |n| ≥ 1 — i.e., “φn multiplies lengths by |n|”. Suppose
that A �= S1, |n| ≥ 2 > 1. Then |dφn| > 1, so it follows that the length of φn(A) is
strictly greater than the length of A, in contradiction to the inclusion φn(A) ⊆ A.
Thus, either A = S1 or |n| = 1. The fact that φn(A) = A then follows immediately.
This completes the proof of assertion (iv). Assertion (v) follows by taking E to be
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the [manifestly finite] set of n such that |n| times the length of A fails to exceed
[i.e., is ≤] the length of S1. To verify assertion (ix), observe that our assumption on
(A, B) implies that there does not exist an (A, B)-subset C such that (A, C), (C, B)
are continuously ordered; thus, by assertion (vii), it follows that B = S1, and [again
by our assumption on (A, B)] that B\A is of cardinality ≤ 1. Assertion (x) follows,
for instance, by observing that the fundamental group of S1 is nontrivial, whereas
the fundamental group of A �= S1 is trivial. Assertion (xi) follows, for instance,
by thinking of S1 as a quotient R/Z and applying the easily verified fact that
every automorphism of the [additive] topological group R is given by multiplication
by a nonzero element of R. As for assertion (xii), the isomorphism Refl(S1) ∼=
S1 � (Z/2Z), as well as the characterization of the subgroup Trans(S1) ⊆ Refl(S1),
are immediate from the definitions. In light of this characterization, it follows that
the normalizer of Refl(S1) in Homeo(S1) is contained in the normalizer of Trans(S1)
in Homeo(S1). Since the topology of Trans(S1) (∼= S1) may be recovered from the
action of Trans(S1) on the topological space S1, it follows immediately that any
element of the normalizer of Trans(S1) in Homeo(S1) determines, by conjugation,
an automorphism of the topological group Trans(S1) ∼= S1, hence, by assertion (xi),
lies in the subgroup of Homeo(S1) generated by Refl(S1) and the centralizer of
Trans(S1) in Homeo(S1). Thus, to complete the proof of assertion (xii), it suffices
to show that this centralizer is equal to Trans(S1), or, equivalently [since Trans(S1)
acts transitively on S1], that every element α of this centralizer that fixes 1 ∈ S1

is equal to the identity. But this follows by considering, for an arbitrary z ∈ S1,
the corresponding translation τz ∈ Trans(S1), which yields the desired relation
z = τz(1) = τz(α(1)) = α(τz(1)) = α(z). ©

Example 3.3. Archimedean Frobenioids, Angular Frobenioids, and
Angloids.

(i) Now we define a category
C0

as follows: The objects of C0 are triples (Spec(K), VK, AK), where Spec(K) ∈
Ob(D0); VK is a one-dimensional K-vector space; and AK ⊆ VK is an angular
region. We shall say that the object (Spec(K), VK , AK) is naively isotropic if AK

is isotropic. The morphisms of C0

φ : (Spec(L), VL, AL) → (Spec(K), VK, AK)

consist of data as follows:

(a) a morphism Base(φ) : Spec(L) → Spec(K) of D0;

(b) an element degFr(φ) def= d ∈ N≥1;

(c) an isomorphism of L-vector spaces V ⊗d
L

∼→ VK |L that maps A⊗d
L into

AK |L.
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One verifies immediately that this category C0 is connected and totally epimorphic.
If, whenever L is complex, the image Im(A⊗d

L ) ⊆ VK |L is co-angular with AK |L,
then we shall say that φ is naively co-angular. [Thus, if L is real, then φ is always
naively co-angular.] Also, we shall write Div(φ) def= log(λ) ∈ R≥0, for the largest
λ ∈ R>0 such that λ · Im(A⊗d

L ) ⊆ AK |L. If we denote by

Φ0 : D0 → Mon

the functor determined by the assignment

(Ob(D0) 	) Spec(K) 
→ ord(K) ∼= R>0
∼= R≥0

[where the isomorphism R>0
∼→ R≥0 is given by the natural logarithm], then

the triple “(Base(−), Div(−), degFr(−))” determines a pre-Frobenioid structure [cf.
[Mzk5], Definition 1.1, (iv)]

C0 → FΦ0

on C0. Similarly, if D is any connected, totally epimorphic category, and D → D0 is
a functor, then by setting

C def= C0 ×D0 D; Φ def= Φ0|D
we obtain a pre-Frobenioid structure

C → FΦ

on C.

(ii) By Lemma 3.2, (i), it follows immediately that an object of C is isotropic
[in the sense of [Mzk5], Definition 1.2, (iv)] if and only if it is naively isotropic,
and that a morphism of C is co-angular [in the sense of [Mzk5], Definition 1.2, (iii)]
if and only if it is naively co-angular. Also, we note that, by Lemma 3.2, (iv),
every endomorphism of a non-isotropic object of C is linear and co-angular; every
endomorphism of an isotropic object of C is co-angular. Moreover, the following
conditions on an object of C are equivalent: (a) the object is isotropic; (b) the object
is Frobenius-trivial; (c) the object is Frobenius-ample. Also, we observe that every
object of C is metrically trivial. Now a routine verification reveals that C satisfies
the conditions of [Mzk5], Definition 1.3, hence that C is a Frobenioid. Moreover, by
Lemma 3.2, (v), it follows that C is of Frobenius-isotropic type, so it makes sense to
speak of the perfection Cpf of C [cf. [Mzk5], Definition 3.1, (iii)]. If Λ is a monoid
type, then we define CΛ as follows:

CZ def= C; CQ def= Cpf; CR def= Crlf

[cf. [Mzk5], Proposition 5.3]. We shall refer to a Frobenioid CΛ as an archimedean
Frobenioid.

(iii) Write
A0 ⊆ C0; A ⊆ C
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for the respective subcategories determined by the isometries. Thus, we have a
natural equivalence of categories A ∼→ A0 ×D0 D. Moreover, a routine verification
reveals that A satisfies the conditions of [Mzk5], Definition 1.3, hence that A is a
Frobenioid over the base category D, which is, in fact, of group-like type. Also, we
observe that the isotropic objects of A are precisely the isotropic objects of C, and
that the co-angular morphisms of A are precisely the co-angular isometries of C.
We shall refer to A as an angular Frobenioid. Write

N def= Alin ⊆ A; N0
def= Alin

0 ⊆ A0

[i.e., the respective subcategories determined by the linear morphisms — cf. [Mzk5],
Definition 1.2, (iv)]. We shall refer to a category N as a non-rigidified angloid
[over the base category D]. Note that there is a natural equivalence of categories
N ∼→ N0 ×D0 D.

(iv) Observe that all real objects of N0 are isomorphic. Thus, it makes sense
to define

R0
def= (N0)A; R def= R0 ×D0 D

for A ∈ Ob(N0[R]). We shall refer to a category R as a rigidified angloid [over the
base category D]. If D is RC-connected, then one verifies immediately that CΛ, A,
N , R are RC-connected [hence, in particular, connected] and totally epimorphic.
Although N , R are not equipped with [pre-]Frobenioid structures, we shall often
apply “Frobenioid-theoretic terminology” to objects and morphisms of N , R; such
terminology is to be interpreted as referring to the images of the objects and mor-
phisms in question in C via the natural functors N → C, R → C; also, we shall
apply the notation “O�(−)”, “O×(−)” to objects of N , R to denote the monoids
of base-identity endomorphisms [i.e., as objects of N , R], automorphisms [i.e., as
objects of N , R], respectively.

(v) Note that if F is one of the categories A, N , R, then any morphism of
F that is obtained as the isotropic hull of an object of F whose angular region is
determined by the complement in S1 of a single element of S1 is an FSMI-morphism
of F [cf. Lemma 3.2, (iii)]. We shall refer to such a morphism as a slit morphism
of F . Note that the existence of slit morphisms implies that F is not of FSM-type.

Remark 3.3.1. Note that it follows immediately from the simple, explicit struc-
ture of the categories C0, A0, N0, R0 introduced in Example 3.3 that in any of
the categories C, A, N , or R, a base-isomorphism between complex objects is a
monomorphism if and only if it induces an injection on underlying angular regions.

Proposition 3.4. (FSM-Morphisms) In the notation and terminology of
Example 3.3, let F be one of the following categories: A, N , R. If F = A (re-
spectively, F = N ; F = R), then set F0 = A0 (respectively, F0 = N0; F0 = R0).
Then:

(i) Fiberwise-surjective morphisms of F project to fiberwise-surjective
morphisms of D.
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(ii) Let φ : A → B be a monomorphism of F such that [at least] one of the
following two conditions is satisfied [cf. Remark 3.4.1 below]: (a) φ projects to an
isomorphism of D0; (b) φ admits a factorization A → A′ → B as a composite of a
morphism of Frobenius type A → A′ and a linear morphism A′ → B such that any
isotropic hull A′ → A′′ of A′ is either an isomorphism or a slit morphism [cf.
Example 3.3, (v)]. Then φ projects to a monomorphism φD of D.

(iii) FSM-morphisms of F project to FSM-morphisms of D.

(iv) Suppose that D is complexifiable. Then any FSM-morphism (respec-
tively, FSMI-morphism) of F that projects to an isomorphism of D projects to
an FSM-morphism (respectively, FSMI-morphism) of F0.

(v) Any morphism of F that projects to an irreducible morphism (respectively,
isomorphism; irreducible morphism) of D, to an isomorphism (respectively, irre-
ducible morphism; irreducible morphism) of F0, and to a(n) isomorphism (respec-
tively, isomorphism; non-isomorphism) of D0 is an irreducible morphism of F .

(vi) If φ is a morphism of F such that φD
def= Base(φ) admits a factoriza-

tion φD = αD ◦ βD in D, then there exist morphisms α, β of F lifting αD, βD,
respectively, such that φ = α ◦ β in F . In particular, irreducible morphisms of F
project to either isomorphisms or irreducible morphisms of D; FSMI-morphisms
of F project to either isomorphisms or FSMI-morphisms of D.

(vii) Let φ be a morphism of F that projects to a pull-back morphism of F0

and to an FSM-morphism (respectively, FSMI-morphism) of D. Then φ is an
FSM-morphism (respectively, FSMI-morphism) of F .

(viii) Suppose that D is complexifiable, RC-connected, and of FSMFF-type.
Then F is complexifiable, RC-connected [hence, in particular, connected], to-
tally epimorphic, and of FSMFF-type.

Proof. Assertion (i) follows immediately from the observation that if A ∈ Ob(F)
projects to an object AD ∈ Ob(D), then any morphism BD → AD in D lifts to
a morphism B → A of F , for some B ∈ Ob(F). To verify assertion (ii), let
αD, βD : CD → AD

def= Base(A) be morphisms of F such that φD ◦ αD = φD ◦ βD,
where φD

def= Base(φ). Then to complete the proof of assertion (ii), it suffices to
show that αD = βD. Write φ0 : A0 → B0 for the projection of φ to F0 and
αD0 , βD0 : CD0 → AD0 , φD0 : AD0 → BD0 for the respective projections of α, β, φ
to D0 [so φD0 ◦ αD0 = φD0 ◦ βD0 ]. Now I claim that there exist linear isometries
α0, β0 : C0 → A0 that lift αD0 , βD0 , respectively, and, moreover, satisfy the relation
φ0 ◦ α0 = φ0 ◦ β0. Indeed, this follows immediately if αD0 = βD0 [which is the
case whenever condition (a) is satisfied, i.e., whenever φD0 is an isomorphism], by
taking α0 = β0 to be a pull-back morphism. On the other hand, if αD0 �= βD0 , but
condition (b) is satisfied, then it follows from [the latter portion of] Lemma 3.2, (ii),
that there exist α0, β0 as desired, where α0 is related to β0 by an automorphism
of C0 that lies over the complex conjugation automorphism of CD0 . This completes
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the proof of the claim. Thus, by applying the natural equivalence of categories
F ∼→ F0 ×D0 D, we conclude that there exist linear isometries α, β : C → A that
simultaneously lift α0, β0 and αD, βD, respectively, and, moreover, satisfy the
relation φ ◦ α = φ ◦ β. Since φ is a monomorphism of F , we thus conclude that
α = β, hence that αD = βD, as desired. This completes the proof of assertion
(ii). Assertion (iii) follows immediately from assertions (i), (ii), together with the
observation that if φ is a fiberwise-surjective morphism of F that does not satisfy
condition (a) of assertion (ii), then the fiberwise-surjectivity of φ implies [cf. Lemma
3.2, (ix)] that φ necessarily satisfies condition (b) of assertion (ii).

Next, we consider assertion (iv). Let φ : A → B be an FSM-morphism of F
that projects to an isomorphism of D. Thus, the projection φ0 : A0 → B0 of φ to
F0 projects to an isomorphism φD0 of D0. Now since D is complexifiable, it follows
immediately that one can lift arbitrary pairs of morphisms α0, β0 : C0 → A0 of F0

such that φ0 ◦ α0 = φ0 ◦ β0 [which, since φD0 is an isomorphism, implies that the
respective projections αD0 , βD0 of α0, β0 to D0 coincide] to morphisms α, β : C → A
of F such that φ ◦ α = φ ◦ β, hence that α = β [since φ is a monomorphism], so
α0 = β0, i.e., φ0 is a monomorphism. Similarly, [since D is complexifiable] any
morphism γ0 : C0 → B0 of F0 lifts to a morphism γ : C → B of F ; thus, the
fiberwise-surjectivity of φ implies that of φ0. If φ is irreducible, then it follows
immediately from the fact that φ projects to an isomorphism of D that φ0 is also
irreducible. This completes the proof of assertion (iv).

Assertion (v) follows immediately from the fact that since F0, D are total
epimorphic, if a composite morphism α ◦ β of F0 or D is an isomorphism, then
so are α, β. Assertion (vi) follows immediately from the fact that if αD0 ◦ βD0 is
any composite morphism of D0, then either αD0 or βD0 is an isomorphism [cf. also
assertion (iii)].

Next, we consider assertion (vii). Since every non-isomorphism of D0 [hence
also every pull-back morphism of F0 which is not an isomorphism — cf. [Mzk5],
Proposition 1.7, (v), for pull-back morphisms] is irreducible, it follows from assertion
(v) that it suffices to show that φ is an FSM-morphism. Since φ : A → B projects
to a pull-back morphism φ0 : A0 → B0 of F0, it follows that given any morphism
ψ0 : C0 → B0, it holds that any factorization ψD0 = φD0 ◦ ζD0 [for some morphism
ζD0 : CD0 → AD0 of D0], where φD0 : AD0 → BD0 , ψD0 : CD0 → BD0 are the
respective projections of φ0, ψ0 to D0, lifts to a factorization ψ0 = φ0 ◦ ζ0 for some
ζ0 : C0 → A0 [cf. the definition of a “pull-back morphism” in [Mzk5], Definition
1.2, (ii)]. Thus, [cf. also the observation made in the proof of assertion (i) that if
E ∈ Ob(F) projects to an object ED ∈ Ob(D), then any morphism FD → ED in D
lifts to a morphism F → E of F ] the fiberwise-surjectivity of φ follows immediately
from that of the projection φD of φ to D. To show that φ is a monomorphism,
let α, β : C → A be morphisms of F such that φ ◦ α = φ ◦ β. Since φD is a
monomorphism, it follows that the respective projections αD, βD of α, β to D
coincide, hence that the respective projections αD0 , βD0 of α, β to D0 coincide.
Thus, again by the definition of a “pull-back morphism” [cf. [Mzk5], Definition
1.2, (ii)], we conclude that the respective projections α0, β0 of α, β to F0 coincide,
hence that α = β, as desired. This completes the proof of assertion (vii).
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Finally, we consider assertion (viii). It is immediate from the definition of F
that F is complexifiable, RC-connected [hence, in particular, connected] and totally
epimorphic.

Next, I claim that F0 is of FSMFF-type. Indeed, let φ : A → B be an FSM-
morphism of F0. Then by assertion (iii), it follows that φ projects to an isomorphism
of D0. Suppose that A, B are real. Now if F0 = N0 or F0 = R0, then one concludes
immediately that φ is an LB-invertible pre-step, hence an isomorphism [cf. [Mzk5],
Proposition 1.4, (iii)]. If F0 = A0, then there exists a complex isotropic object C
of F0 and a linear morphism C → A; thus, the existence of torsion elements in
O×(C) of arbitrary order when F0 = A0 implies [since φ is a monomorphism] that
the LB-invertible base-isomorphism [cf. the definition of F0!] φ is linear, hence
an isomorphism. In particular, it follows that every FSMI-morphism of F0 has
complex domain and codomain.

Now suppose that A, B are complex. Then observe that if the isometric base-
isomorphism φ is linear, then it is an isometric pre-step, hence [cf. the fiberwise-
surjectivity of φ; Lemma 3.2, (ix); Example 3.3, (v)] either an isomorphism or a
slit morphism. Moreover, even if φ is not linear, by Lemma 3.2, (iv) [which may be
interpreted as asserting that “angular regions never shrink”], (v), there exists an
integer N such that given any composite

φn ◦ φn−1 ◦ . . . ◦ φ2 ◦ φ1

of [not necessarily FSMI-!] morphisms φ1, . . . , φn such that the domain of φ1 is
equal to A, it holds that the cardinality of the set of j [where j = 1, . . . , n] such
that φj is an FSMI-morphism [which implies that φj is a monomorphism which is
a base-isomorphism between complex objects — cf. Remark 3.3.1] and non-linear
is ≤ N . In this situation, any linear FSMI-morphism φj [where j = 1, . . . , n] is
necessarily a slit morphism [as observed above] — which implies that the codomain
of φj is isotropic, so no φj′ , where j′ > j, can be a slit morphism; we thus conclude
that the cardinality of the set of j ∈ {1, . . . , n} such that φj is an FSMI-morphism
is ≤ N + 1.

Next, observe that [by [Mzk5], Proposition 1.7, (ii), applied to the Frobenioid
A0] φ admits a factorization φ = α◦β, where β is a morphism of Frobenius type, and
α is an isometric pre-step [hence, in particular, a monomorphism — cf., e.g., [Mzk5],
Definition 1.3, (v), (a)]. Since φ is fiberwise-surjective, it follows formally that α is
an FSM-morphism, hence that α is either a slit morphism [hence, in particular, an
FSMI-morphism — cf. Example 3.3, (v)] or an isomorphism. On the other hand,
β may be written as a composite β = βb ◦ . . . ◦ β1 of prime-Frobenius morphisms
β1, . . . , βb. Since each of the βj [where j = 1, . . . , b] is co-angular, and φ [hence
also β] is a monomorphism, it follows immediately by induction on j that each of
the βj [where j = 1, . . . , b] is a monomorphism [i.e., more concretely: induces an
injection on underlying angular regions — cf. Remark 3.3.1], hence [by a formal
argument, since φ is fiberwise-surjective, and α is a monomorphism] that each of
the βj is an FSM-morphism. Moreover, since βj is a prime-Frobenius morphism, it
follows immediately from the fact that βj induces a bijection on underlying angular
regions that βj is irreducible, hence an FSMI-morphism. Thus, we conclude that φ
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factors as a composite of finitely many FSMI-morphisms. This completes the proof
of the claim that F0 is of FSMFF-type.

To prove that F is of FSMFF-type, we reason as follows: First, since FSMI-
morphisms of F project to either isomorphisms or FSMI-morphisms of D [cf. as-
sertion (vi)], and D is of FSMFF-type, it follows that for every A ∈ Ob(F), there
exists an integer N such that given any composite

φn ◦ φn−1 ◦ . . . ◦ φ2 ◦ φ1

of FSMI-morphisms φ1, . . . , φn such that the domain of φ1 is equal to A, it holds
that the cardinality of the set of j [where j = 1, . . . , n] such that φj fails to project
to an isomorphism of D is ≤ N . If φj projects to an isomorphism of D, then by
assertion (iv), it follows that φj projects to an FSMI-morphism of F0. Thus, by
our discussion of composites of [not necessarily FSMI-!] morphisms in F0, it follows
that there exists an N ′ [depending only on A!] such that the cardinality of the set
of j ∈ {1, . . . , n} for which φj projects to an isomorphism of D is ≤ N ′. But this
implies that n ≤ N + N ′.

Next, let φ be an arbitrary FSM-morphism of F . Observe that [by [Mzk5],
Definition 1.3, (iv), (a), applied to the Frobenioid A0] the projection φ0 of φ to
F0 admits a factorization φ0 = α0 ◦ β0, where α0 is a pull-back morphism, and
β0 is a base-isomorphism. Since the projection of β0 to D0 is an isomorphism, it
thus follows that there exists a factorization φ = α ◦ β in F , where α, β lift α0,
β0 respectively, and βD

def= Base(β) ∈ Arr(D) is an isomorphism. Since φD
def=

Base(φ) ∈ Arr(D) is an FSM-morphism [cf. assertion (iii)], it thus follows that
αD

def= Base(α) = φD ◦ β−1
D ∈ Arr(D) is an FSM-morphism, hence [by assertion

(vii)] that α is an FSM-morphism. Moreover, since α is a monomorphism, it follows
formally from the fact that φ is an FSM-morphism that β is an FSM-morphism,
hence [by assertion (iv), since βD is an isomorphism] that β0 is an FSM-morphism
of F0. Thus, by factoring β0 as a composite of FSMI-morphisms of F0 [since we
have already shown that F0 is of FSMFF-type], we conclude that we may write
β = βb ◦ . . . ◦ β1, where the βj [for j = 1, . . . , b] are morphisms of F that project
to FSMI-morphisms of F0 and to isomorphisms of D. Now it follows formally
that the βj are monomorphisms, hence [again by a formal argument, since β is an
FSM-morphism] that the βj are FSM-morphisms, hence [cf. assertion (v)] FSMI-
morphisms. Moreover, by factoring αD as a composite of FSMI-morphisms of
D [since D is, by assumption, of FSMFF-type] and applying assertion (vii), we
conclude that α, β, hence also φ admits a factorization as a composite of FSMI-
morphisms of F . This completes the proof of assertion (viii). ©

Remark 3.4.1. Note that there exist monomorphisms of G that do not sat-
isfy either of the conditions of Proposition 3.4, (ii), and which fail to project to
monomorphisms of D. Indeed, by using angular regions whose projections to S1

fail to intersect {1,−1} [cf. Lemma 3.2, (ii)], one may construct examples of lin-
ear monomorphisms φ : A → B of G0, where A is complex, and B is real [so the
projection of φ to D0 is not a monomorphism].
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Proposition 3.5. (Iso-subanchors) In the notation and terminology of Exam-
ple 3.3, let F be one of the categories C, A; G one of the categories N , R; H one
of the categories F , G. If F = C (respectively, F = A; G = N ; G = R; H = F ;
H = G), then set F0 = C0 (respectively, F0 = A0; G0 = N0; G0 = R0; H0 = F0;
H0 = G0). Suppose further that D is of RC-iso-subanchor type. Then:

(i) Let A ∈ Ob(H); suppose that BD → AD
def= Base(A) is a mono-minimal

categorical quotient of BD by a group GD ⊆ AutD(BD) in D. Then there exists a
pull-back morphism B → A that lifts BD → AD and a group G ⊆ AutH(B) that
maps isomorphically to GD such that B → A is a mono-minimal categorical
quotient of B by G in H.

(ii) The Frobenioid F is quasi-isotropic, i.e., an object of F is non-isotropic
if and only if it is an iso-subanchor of F .

(iii) G is of RC-iso-subanchor type.

(iv) F is not of RC-iso-subanchor type.

Proof. First, we consider assertion (i). By [Mzk5], Definition 1.3, (i), (c), there
exists a pull-back morphism B → A of H that lifts BD → AD. Write B0 → A0,
BD0 → AD0 for the respective projections of B → A to H0, D0. Now observe that
it follows immediately from the simple, explicit structure of H0 [cf. Example 3.3,
(i), (ii), (iii), (iv)] that the natural surjection

Aut(H0)A0
(B0) → Aut(D0)AD0

(BD0)

splits, hence that there exists a group G ⊆ AutHA
(B) that maps isomorphically to

GD. Since BD → AD is a categorical quotient of BD by GD in D, it follows again
from the simple, explicit structure of H0 [cf. Example 3.3, (i), (ii), (iii), (iv)] that
B → A is a categorical quotient of B by G in H. If B � B′ is a monomorphism
that violates the mono-minimality of B → A, then it follows from the fact that
B → A is a pull-back morphism, hence, in particular, an isometry, that B � B′

is an isometry [which implies that even if H = C, the arrow B � B′ lies in A],
hence, by Proposition 3.4, (ii), that the projection BD → B′

D of B � B′ to D
is a monomorphism that violates the mono-minimality of BD → AD. [Here, we
observe that if B � B′ fails to project to an isomorphism of D0 [i.e., fails to satisfy
condition (a) of Proposition 3.4, (ii)], then the pull-back morphism B → A also
fails to project to an isomorphism of D0; but this implies that B is isotropic, so
the morphism B � B′ necessarily satisfies condition (b) of Proposition 3.4, (ii).]
Thus, we conclude that BD � B′

D is an isomorphism. In particular, the pull-back
morphism B → A admits a factorization B � B′ → A, where B � B′ is a base-
isomorphism which [cf. [Mzk5], Proposition 1.7, (v)] is also a pull-back morphism.
But this implies [cf. [Mzk5], Remark 1.2.1] that B � B′ is an isomorphism, hence
that B → A is mono-minimal, as desired. This completes the proof of assertion (i).

Next, we consider assertion (ii). By [Mzk5], Remark 3.1.1, it suffices to
show that every non-isotropic [hence necessarily complex!] A ∈ Ob(F) is an iso-
subanchor of F . Since AD

def= Base(A) ∈ Ob(D[C]) is an RC-iso-subanchor of D, it
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follows that there exists a mono-minimal categorical quotient [in D] BD → AD of
BD by a group GD ⊆ AutD(BD), where BD is an RC-subanchor of D. Thus, by
assertion (i), we obtain a pull-back morphism B → A of F that lifts BD → AD and
which is a mono-minimal categorical quotient of B by some group G ⊆ AutF (B).
Here, we note that since A is non-isotropic, it follows [cf. [Mzk5], Definition 1.3,
(vii), (b)] that B is non-isotropic. Since BD is an RC-subanchor of D, it follows
that there exists a morphism BD → CD in D[C], where CD is an anchor of D[C];
note, moreover, that since every morphism of D0[C] is an isomorphism, we may as-
sume that this morphism BD → CD is the projection to D of a pull-back morphism
B → C of F [so C is non-isotropic]. Thus, to show that A is an iso-subanchor of
F , it suffices to show that C is an anchor of F .

Thus, let φ : C → C′ be an irreducible morphism of F . Since φ is irreducible,
it follows [cf. the factorizations of [Mzk5], Definition 1.3, (iv), (v)] that φ is either
a pull-back morphism, an isometric pre-step, a co-angular pre-step with irreducible
zero divisor, or a prime-Frobenius morphism. Since R≥0 has no irreducible ele-
ments [cf. [Mzk5], §0], it follows that φ is not a co-angular pre-step. If φ is a
pull-back morphism or a prime-Frobenius morphism [hence a non-pre-step — cf.
[Mzk5], Remark 1.2.1!], then since C is non-isotropic, it follows [by considering the
factorization of φ through an isotropic hull of C, together with the irreducibility
of φ] that C′ is non-isotropic, hence, in particular, complex. Thus, the finiteness
of the collection of isomorphism classes of CF arising from [irreducible] φ which
are pull-back morphisms (respectively, prime-Frobenius morphisms) then follows
immediately from the fact that CD is an anchor of D[C] (respectively, from Lemma
3.2, (v)). Finally, [again since C is non-isotropic!] the finiteness of the collection of
isomorphism classes of CF arising from [irreducible] φ which are isometric pre-steps
follows formally from Lemma 3.2, (iii), (vii). This completes the proof of assertion
(ii).

Next, we consider assertion (iii). Just as in the case of assertion (ii), we may
apply assertion (i) to conclude that to complete the proof of assertion (iii), it suffices
to show that any C ∈ Ob(G[C]) such that CD

def= Base(C) ∈ Ob(D[C]) is an anchor
of D[C] is itself an anchor of G[C]. Thus, let φ : C → C′ be an irreducible morphism
of G[C]. Just as in the argument used to prove assertion (ii), since φ is irreducible,
it follows [cf. the factorizations of [Mzk5], Definition 1.3, (iv), (v)] that φ is either
a pull-back morphism or an isometric pre-step [since all morphisms of G are linear
isometries]. Now [cf. the argument used to prove assertion (ii)] the finiteness of
the collection of isomorphism classes of CF arising from [irreducible] φ which are
pull-back morphisms (respectively, isometric pre-steps) follows formally from the
fact that CD is an anchor of D[C] (respectively, from Lemma 3.2, (iii), (vii)). This
completes the proof of assertion (iii).

Finally, we consider assertion (iv). Suppose that F is of RC-iso-subanchor
type. Then it follows formally that F admits a complex object, hence, in partic-
ular, a complex isotropic object A ∈ Ob(F). Since A is an RC-iso-subanchor, it
follows immediately, by taking isotropic hulls [cf. the argument of [Mzk5], Remark
3.1.1], that F admits a complex isotropic RC-subanchor B, hence [cf. [Mzk5], Def-
inition 1.3, (vii), (b)] that F admits a complex isotropic RC-anchor C, i.e., that
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F [C] admits a complex isotropic anchor C. But this contradicts the existence of
prime-Frobenius morphisms, of arbitrary prime degree, with domain equal to C [cf.
[Mzk5], Proposition 1.10, (iv)]. This completes the proof of assertion (iv). ©

Remark 3.5.1. In the context of Proposition 3.5, we observe that it is important
to consider not just anchors, but also subanchors since, for instance in the case of
the base categories associated to connected temperoids [cf. Example 1.3], it is not
difficult to construct examples of base categories that appear naturally in arithmetic
geometry and which have objects that are subanchors, but not anchors. [Indeed,
this phenomenon occurs in the case of the temperoid associated to a tempered
group [such as a nonabelian discrete finitely generated free group] which admits a
topological subquotient isomorphic to an infinite direct sum

⊕
Z/pZ

of copies of Z/pZ, equipped with the discrete topology.] Moreover, it is important to
consider not just anchors and subanchors, but also RC-anchors and RC-subanchors
— i.e., in short, complex anchors and subanchors — since the arguments applied in
the proof of Proposition 3.5 require one to work with non-isotropic [hence complex]
objects that map to anchors of the base category. Thus, one is obliged to work with
RC-iso-subanchors in order to accommodate real objects.

Our main result concerning the Frobenioids of Example 3.3 is the following:

Theorem 3.6. (Basic Properties of Archimedean, Angular Frobenioids)
In the notation and terminology of Example 3.3, let F be one of the following
Frobenioids: CΛ, A [where, when F = A, we take Λ = Z]. Also, denote by Φ� the
restriction Φ�

0 |D to D of the functor Φ�
0 : D0 → Mon determined by the assignment

(Ob(D0) 	) Spec(K) 
→ O×
K

and by Φfld the functor D → Mon given by (Ob(D) 	 D) 
→ Φgp(D) × Φ�(D) [so
projecting to the two factors of the product monoid yields natural transformations
Φfld → Φ�, Φfld → Φgp]. If Λ = Z (respectively, Λ = Q; Λ = R), then write
(Φfld)Λ def= Φfld (respectively, (Φfld)Λ def= (Φfld)pf; (Φfld)Λ def= Φgp). Then:

(i) The Frobenioid (CΛ)istr is of isotropic, base-trivial, and model type,
with rational function monoid naturally isomorphic to (Φfld)Λ; the canonical
decomposition of Definition 3.1, (ii), determines a characteristic splitting [cf.
[Mzk5], Definition 2.3] on CΛ. If Λ ≥ Q, then (CΛ)istr = CΛ. For arbitrary Λ, there
is a natural equivalence of categories (CΛ)un-tr ∼→ CR, compatible with the Frobenioid
structures; moreover, the Frobenioid CΛ is of Aut-ample, Autsub-ample, End-
ample, and metrically trivial type, but not of group-like type. If, moreover, D
is of FSMFF- and RC-iso-subanchor type, then CΛ is of rationally standard
type.



THE GEOMETRY OF FROBENIOIDS II 37

(ii) The Frobenioid Aistr is of base-trivial and model type, with rational
function monoid naturally isomorphic to Φ�. The Frobenioid A is of Aut-ample,
Autsub-ample, End-ample, group-like, and metrically trivial type. If, more-
over, D is of FSMFF- and RC-iso-subanchor type, then A is of standard [but
not of rationally standard] type.

(iii) Every morphism φ : B → A of C factors uniquely as a composite
φ = β ◦α, where α is an isometry [hence belongs to A], and β ∈ O�(A) ⊆ Φfld(A)
belongs to the submonoid Φgp(A)×{1} ⊆ Φfld(A) [cf. the characteristic splitting of
(i)]. Moreover, the assignment φ 
→ α determines an “isometrization functor”

C → A

which, together with the isotropification functors C → Cistr, A → Aistr [cf.
[Mzk5], Proposition 1.9, (v)], determines an equivalence of categories

C ∼→ A×Aistr Cistr

that is 1-compatible with the natural functors to FΦ on both sides.

(iv) Let A ∈ Ob(F); AD
def= Base(A) ∈ Ob(D). Write A0 ∈ Ob(D0) for the

image of AD in D0. Then the natural action of AutF (A) on O�(A), O×(A) factors
through AutD0(A0). If, moreover, Λ ∈ {Z, Q}, then this factorization determines a
faithful action of the image of AutF (A) in AutD0(A0) on O�(A), O×(A).

(v) Let A ∈ Ob(F). Then the group O×(A) is trivial if and only if one of
the following holds: (a) Λ = Z and A is complex non-isotropic; (b) Λ = Q and
A is real; (c) Λ = R. The group O×(A) is nontrivial and torsion free [and in
fact isomorphic to S1 ⊗Z Q] if and only if Λ = Q and A is complex. The group
O×(A) is of order two if and only if Λ = Z and A is real. The group O×(A) has
infinitely many torsion elements [and is in fact isomorphic to S1] if and only
if Λ = Z and A is complex isotropic.

(vi) If D admits a pseudo-terminal object, then F admits a pseudo-
terminal object.

(vii) Suppose that Λ = Z. Let A ∈ Ob(F) be complex. Then the assignment
that maps an isometric pre-step

B → A

of F to the image of the boundary ∂AB of the angular region AB of B in the bound-
ary ∂AA of the angular region AA of A determines an equivalence of categories
— which is functorial [cf. [Mzk5], Proposition 1.9, (ii), (iii)] in A —

F imtr-pre
A

∼→ Open0(∂AA)

— where F imtr-pre ⊆ F denotes the full subcategory determined by the arrows which
are isometric pre-steps [cf. [Mzk5], Proposition 1.9]; F imtr-pre

A
def= (F imtr-pre)A;
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Open0(∂AV ) is the category of connected open subsets of ∂AV [cf. the Appendix]. In
particular, [cf. Theorem A.2, (vi)] the topological space ∂AA may be recovered
functorially from the category F imtr-pre

A . Finally, if A is isotropic, then the action
of O×(A) on ∂AA determines on ∂AA a structure of torsor over this group.

(viii) If Λ = Z, then F [C] is of weakly dissectible type [cf. §0].
(ix) Suppose that D is of strongly indissectible type. If D is not complexifi-

able, then we assume further that Λ �= Z. Then F istr is of strongly indissectible
type.

(x) If D is slim, and Λ ∈ {Z, R}, then F is also slim.

Proof. First, we consider assertion (i). By [the earlier portion of] Lemma 3.2, (ii),
it is immediate from the construction of CΛ that CΛ is of Aut-ample, Autsub-ample,
and End-ample type. Also, it is immediate from the construction of CΛ that CΛ is
of metrically trivial, [strictly] rational, and birationally Frobenius-normalized type,
but not of group-like type, and from the construction of (CΛ)istr that (CΛ)istr is of
base-trivial and isotropic type. Since D0 admits a terminal object, it thus follows
from [Mzk5], Proposition 2.9, (i), that (CΛ

0 )istr, hence also (CΛ)istr [which may be
constructed as a categorical fiber product (CΛ

0 )istr ×D0 D], is of model type. More-
over, it is immediate from the construction of (CΛ)istr that the rational function
monoid of (CΛ)istr is naturally isomorphic to (Φfld)Λ [cf. also the canonical decom-
position of Definition 3.1, (ii)]; in a similar vein, it is immediate from the definitions
that the canonical decomposition of Definition 3.1, (ii), determines a characteristic
splitting on CΛ. The fact that if Λ ≥ Q, then (CΛ)istr = CΛ is immediate from the
definitions. The existence of a natural equivalence of categories (CΛ)un-tr ∼→ CR,
compatible with the Frobenioid structures, follows immediately from the construc-
tion of CΛ. Also, it is immediate from the construction of CR that every object
of ((CΛ)un-tr)birat = (CR)birat is Frobenius-compact. Thus, if, moreover, D is of
FSMFF- and RC-iso-subanchor type, then, [since Φ is manifestly non-dilating] to
complete the proof of assertion (i), it suffices to observe that by Proposition 3.5,
(ii), C is of quasi-isotropic type. This completes the proof of assertion (i).

Next, we consider assertion (ii). The fact that the Frobenioid A is of Aut-
ample, Autsub-ample, End-ample, group-like, and metrically trivial type, as well as
the fact that the Frobenioid Aistr is of base-trivial and model type, together with the
description of the rational function monoid of the Frobenioid Aistr, follow immedi-
ately from the corresponding facts for C, Cistr proven in assertion (i) [together with
the construction of A, Aistr]. If, moreover, D is of FSMFF- and RC-iso-subanchor
type [which implies, in particular, that D admits complex objects], then one ver-
ifies immediately that the complex isotropic objects of A are Frobenius-compact;
moreover, the quasi-isotropicity of A follows from Proposition 3.5, (ii), while the
Frobenius-isotropicity, and Frobenius-normalizedness of A follows immediately from
the corresponding properties for C [together with the construction of A, C]; thus, we
conclude that A is of standard type. On the other hand, since, as is easily verified,
(Aun-tr)birat is of unit-trivial type, it follows that A is not of rationally standard
type. This completes the proof of assertion (ii).
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Next, we consider assertion (iii). The existence and uniqueness of the fac-
torization asserted in the statement of assertion (iii) follows immediately from the
construction of C; also, it is immediate that this factorization yields an “isometriza-
tion functor” C → A. The resulting functor

C ∼→ A×Aistr Cistr

is then manifestly essentially surjective and 1-compatible with the natural functors
to FΦ on both sides. Now the fully faithfulness of this functor is immediate from
the factorization just discussed, together with the 1-compatibility with the natural
functors to FΦ on both sides. This completes the proof of assertion (iii).

Assertions (iv), (v), (vi) follow immediately from the definitions. Assertion
(vii) follows immediately from the definitions and Theorem A.2, (vi), of the Ap-
pendix [since S1 is clearly sober and locally connected]. Assertion (viii) follows by
considering disjoint angular regions. Assertion (ix) follows, in light of the strong
indissectibility assumption on D, by reducing [cf. our assumption concerning the
case when D is not complexifiable] to the easily verified fact that the categories
(CΛ

0 )istr[R] [when Λ �= Z] , (CΛ
0 )istr[C] [for arbitrary Λ] are of strongly indissectible

type. Assertion (x) follows formally from [Mzk5], Proposition 1.13, (iii) [since, by
assertions (v), (vii) of the present Theorem 3.6, either “condition (a)” or “condition
(b)” of loc. cit. is always satisfied by objects of F ]. ©

Remark 3.6.1. Note that the topology of O×(A) (∼= S1), for complex isotropic A ∈
Ob(C), may be recovered from the category-theoretic structure of C [cf. Theorem
3.6, (vii)] precisely because of the existence of the non-isotropic objects. This
is the principal reason for the inclusion of non-isotropic objects in the theory of
Frobenioids.
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Section 4: Angloids as Base Categories

In the present §4, we show [cf. Corollary 4.2, (v); Remark 4.2.1] that the cat-
egories called “angloids”, which were constructed in Example 3.3, (iii), (iv), satisfy
those properties required of a base category of an archimedean or angular Frobe-
nioid [cf. Theorem 3.6, (i), (ii)], in order for the main results of the general theory
of Frobenioids developed in [Mzk5] to apply. In addition, we study various other
basic properties of angloids, certain of which may be regarded [cf. Remark 4.2.1] as
a sort of archimedean analogue of the category-theoreticity of the [nonarchimedean]
local reciprocity map, as discussed in Theorem 2.4, (i), (ii). Finally, we discuss the
main motivating examples [cf. Examples 4.3, 4.4] from arithmetic geometry of the
theory developed thus far for archimedean primes.

Proposition 4.1. (Basic Properties of Angloids) In the notation and ter-
minology of Example 3.3, let G be one of the following categories N , R; if G = N
(respectively, G = R), then write G0

def= N0 (respectively, G0
def= R0). Then:

(i) Let A ∈ Ob(G) be complex. Then the assignment that maps a base-
isomorphism [or, equivalently, an isometric pre-step — cf. the definition of G
in Example 3.3, (iii), (iv)]

B → A

of G to the image of the boundary ∂AB of the angular region AB of B in the boundary
∂AA of the angular region AA of A determines an equivalence of categories —
which is functorial [cf. [Mzk5], Proposition 1.9, (ii), (iii)] in A —

Gimtr-pre
A

∼→ Open0(∂AA)

— where Gimtr-pre ⊆ G denotes the full subcategory determined by the arrows which
are isometric pre-steps [cf. [Mzk5], Proposition 1.9]; Gimtr-pre

A
def= (Gimtr-pre)A;

Open0(∂AV ) is the category of connected open subsets of ∂AV [cf. the Appen-
dix]. In particular, [cf. Theorem A.2, (vi)] the topological space ∂AA may be
recovered functorially from the category Gimtr-pre

A . Finally, if A is isotropic,
and G = N , then the action of O×(A) on ∂AA determines on ∂AA a structure of
torsor over this group.

(ii) A morphism of G with real domain or codomain is an isomorphism if
and only if it is a base-isomorphism.

(iii) Suppose that D is of discontinuously ordered type. Then every con-
tinuously ordered [cf. §0] morphism of G is a base-isomorphism [i.e., an
isometric pre-step — cf. the definition of G in Example 3.3, (iii), (iv)].

(iv) Suppose that D is of discontinuously ordered type. Then a morphism
φ : A → B of G is a base-isomorphism [or, equivalently, an isometric pre-step
— cf. the definition of G in Example 3.3, (iii), (iv)] if and only if there exists a
morphism ψ : C → A of G and quasi-continuously ordered [cf. §0] morphisms
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C → C1, C → C2 of G such that the object of CG constituted by the composite
arrow φ ◦ ψ : C → B is an inductive limit of the diagram

C2 ←− C −→ C1

in CG.

(v) If D is of strongly dissectible type, then so is G. If D is of weakly
indissectible type, then so is G.

Proof. Assertion (i) follows immediately from the definitions and Theorem A.2,
(vi), of the Appendix [cf. the proof of Theorem 3.6, (vii)]. Assertion (ii) follows
immediately from the definition of G in Example 3.3, (iii), (iv).

Next, we consider assertion (iii). Let φ : A → B be a continuously ordered
[hence, in particular, totally ordered] morphism of G; φD

def= Base(φ) ∈ Arr(D). Let
φ = β ◦ α be a factorization of φ, where α, β are monomorphisms which are not
isomorphisms. Thus, α, β are continuously ordered [hence, in particular, totally
ordered]. Then I claim that neither of the projections α0, β0 of α, β to G0 is
an isomorphism. Indeed, suppose that the projection γ0 of γ ∈ {α, β} to G0 is
an isomorphism. Then one verifies immediately that the natural projection functor
determines an equivalence of categories G�

γ
∼→ D�

γD [where we write γD
def= Base(γ)].

Since γ is continuously ordered, we thus conclude that γD is continuously ordered.
On the other hand, since D is of discontinuously ordered type, this implies that
γD is an isomorphism, hence that γ is an isomorphism, a contradiction. This
completes the proof of the claim. Since every morphism between real objects of G0

is an isomorphism [cf. assertion (ii)], we thus conclude that the codomain of α is
complex.

Next, I claim that α is a base-isomorphism. Indeed, suppose that αD
def=

Base(α) is not an isomorphism. Since α0 is not an isomorphism, it thus follows
that by lifting αD to a morphism of G that projects to an isomorphism of G0 and
lifting α0 to a morphism of G that projects to an isomorphism of D, we thus obtain
two factorizations of α, i.e., two objects of G�

α , neither of which “dominates” the
other [cf. the fact that D, G0 are totally epimorphic!] — a contradiction [since α
is totally ordered]. This completes the proof of the claim. Thus, in summary, α
is an isometric pre-step. More concretely, the morphism α may be thought of as
an “enlargement of the angular region that defines A”. In particular, by taking
the union of the angular regions that arise from such enlargements, one obtains a
factorization φ = β∞ ◦ α∞, where α∞ : A → A∞ is an isometric pre-step [hence,
in particular, a base-isomorphism], such that every α appearing in a factorization
φ = β ◦ α as above determines a factorization α∞ = α′ ◦ α.

Next, I claim that β∞ is an isomorphism. Indeed, suppose that β∞ is not
an isomorphism. Now if β∞ is a monomorphism, then α∞, β∞ determine an
object of G�

φ which [by the definition of α∞; our assumption that β∞ is not an
isomorphism] contradicts the fact that φ is continuously ordered. Thus, we conclude
that β∞ : A∞ → B is not a monomorphism, i.e., that there exist distinct morphisms
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γ′, γ′′ : C → A∞ in G such that β∞ ◦ γ′ = β∞ ◦ γ′′. On the other hand, by the
definition of α∞ in terms of angular regions, it follows immediately that there exists
a factorization φ = β ◦ α, where we write α : A → E, β : E → B, that forms an
object of G�

φ , together with morphisms δ : D → C and ε′, ε′′ : D → E of G such
that γ′◦δ = ζ◦ε′, γ′′◦δ = ζ◦ε′′, where ζ : E → A∞ is the morphism arising from the
definition of α∞ [so β∞ ◦ ζ = β], and δ is an isometric pre-step. Thus, we conclude
that β∞ ◦ ζ ◦ ε′ = β∞ ◦ γ′ ◦ δ = β∞ ◦ γ′′ ◦ δ = β∞ ◦ ζ ◦ ε′′, i.e., that β ◦ ε′ = β ◦ ε′′.
But since β is a monomorphism, this implies that ε′ = ε′′, hence that γ′ ◦δ = γ′′ ◦δ,
i.e., [since δ is an epimorphism!] that γ′ = γ′′ — a contradiction. This completes
the proof of the claim. Since φ = β∞ ◦α∞, and α∞ is a base-isomorphism, we thus
conclude that φ is also a base-isomorphism, as desired. This completes the proof of
assertion (iii).

Next, we consider assertion (iv). To verify the sufficiency of the condition in
the statement of assertion (iv), observe that by assertion (iii), the morphisms C →
C1, C → C2 are base-isomorphisms [i.e., isometric pre-steps]; thus, any isotropic
hull C → C′ of C factors through C → B [cf. [Mzk5], Proposition 1.9, (vii)],
which, by the total epimorphicity of D, implies that C → B, hence also A → B,
is a base-isomorphism, as desired. Next, we consider necessity. In the real case,
this necessity follows immediately from assertion (ii). In the complex case, the
necessity in question follows from Lemma 3.2, (viii) [which we apply to construct
the morphisms C → C1, C → C2 for an appropriate isometric pre-step C → A]
and Lemma 3.2, (vii) [which we apply to show that these morphisms C → C1,
C → C2 are quasi-continuously ordered isometric pre-steps]. [Here, we note that
“continuously ordered pairs” in the context of Lemma 3.2 give rise to “continuously
ordered isometric pre-steps”.] This completes the proof of assertion (iv).

Finally, we observe that assertion (v) follows by considering appropriate iso-
metric pre-steps and pull-back morphisms to relate “dissections in G” to “dissections
in D” [cf. the discussion of §0]. ©

Corollary 4.2. (Category-theoreticity of Factors of Angloids) For i =
1, 2, let Di be a connected, totally epimorphic category of discontinuously
ordered type, equipped with a functor Di → D0, with respect to which Di is com-
plexifiable; Gi one of the categories Ni

def= N0 ×D0 Di, Ri
def= R0 ×D0 Di [cf.

Example 3.3, (iii), (iv)];
Ψ : G1

∼→ G2

an equivalence of categories. If Gi = Ni (respectively, Gi = Ri), then set
Gi,0

def= N0 (respectively, Gi,0
def= R0). Then:

(i) If G1,0 = N0 (respectively, G1,0 = R0), then G2,0 = N0 (respectively, G2,0 =

R0). In particular, it makes sense to write G0
def= G1,0 = G2,0.

(ii) The category of G0 is slim. If G0 = N0 (respectively, G0 = R0), then there
is a natural outer isomorphism between the group of isomorphism classes of self-
equivalences of the category G0 and the group of translations and reflections
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Refl(S1) of Lemma 3.2, (xii) (respectively, the group of self-homeomorphisms of
S1 that commute with the complex conjugation automorphism ι : S1 ∼→ S1).

(iii) Suppose that Di is RC-connected. Then there exists a 1-unique 1-
commutative diagram

G1
Ψ−→ G2⏐⏐� ⏐⏐�

G0
Ψ0

−→ G0

— where the vertical arrows are the natural functors; the horizontal arrows are
equivalences of categories.

(iv) If D1, D2 are Frobenius-slim, then so are G1, G2. Suppose that D1,
D2 are slim. Then G1, G2 are slim, and there exists a 1-unique 1-commutative
diagram

G1
Ψ−→ G2⏐⏐� ⏐⏐�

D1
ΨBase

−→ D2

— where the vertical arrows are the natural functors; the horizontal arrows are
equivalences of categories; both composite functors are rigid.

(v) If [for i = 1, 2] Di is of RC-standard type, then so is Gi. In particular,
in this case, Gi satisfies all of the hypotheses on “D” in Theorem 3.6, (i), (ii).

Proof. First, we observe that Ψ preserves base-isomorphisms [cf. Proposition
4.1, (iv)]. Since the complex objects of Gi are precisely the objects that appear
as domains or codomains of base-isomorphisms which are not isomorphisms [cf.
Proposition 4.1, (i), (ii)], it thus follows that Ψ preserves real and complex objects.
For i = 1, 2, suppose that Ai ∈ Ob(Gi) is complex, and that A2 = Ψ(A1). [Here, we
note that since Di is complexifiable, it follows that such A1, A2 always exist.] Then
Ψ induces a homeomorphism

∂AA1

∼→ ∂AA2

[cf. Proposition 4.1, (i); Theorem A.2, (vi)], which is functorial in A1, A2. In
particular, it follows [cf. Lemma 3.2, (x)] that Ψ preserves isotropic objects and
isotropic hulls.

Next, we consider assertion (i). Observe [cf. Theorem 3.6, (v)] that O×(Ai) =
{1} if and only if either of the following conditions holds: (a) Gi = Ri; (b) Gi = Ni,
and Ai is non-isotropic. Moreover, one verifies immediately that there exist non-
isotropic Ai such that the natural homomorphism AutGi

(Ai) → AutDi
(Base(Ai))
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[whose kernel is equal to O×(Ai)] is surjective [cf. the Aut-ampleness of Theo-
rem 3.6, (ii)]. In particular, we conclude that Gi = Ri if and only if there exist
non-isotropic Ai such that if Ai → Aistr

i is an isotropic hull, then the natural ho-
momorphism AutGi

(Ai) → AutGi
(Aistr

i ) [induced by the defining property of the
isotropic hull] is an isomorphism. This completes the proof of assertion (i).

Next, we consider assertion (ii). First, let us observe that the existence of the
functorial homeomorphism ∂AA1

∼→ ∂AA2 discussed above [when Di
def= D0] implies

that G0 is slim. Now let us consider this functorial homeomorphism for complex
isotropic Ai. Note that since all complex isotropic objects of G0 are isomorphic, we
may assume [for the remainder of the proof of the present assertion (ii)], without
loss of generality, that A1 = A2. Write I ⊆ Homeo(S1) for the image in Homeo(S1)
[cf. Lemma 3.2, (xii)] of AutG0(Ai). Observe that this image is given [for a suitable
identification of ∂AAi

with S1] by the subgroup Refl(S1) [cf. Lemma 3.2, (xii)],
in the case G0 = N0, and by the subgroup [of order 2] generated by ι in the case
G0 = R0. In particular, the subset of I consisting of elements that reverse the
orientation of S1 — i.e., of elements that determine the structure of real objects of
G0 as categorical quotients of complex isotropic objects — is preserved by conjugation
by arbitrary elements of the normalizer of I in Homeo(S1) [cf. Lemma 3.2, (xii)].
Thus, by thinking of the functorial homeomorphism ∂AA1

∼→ ∂AA2 as an element
of Homeo(S1), we conclude that the isomorphism classes of self-equivalences of G0

may be identified with the normalizer of I in Homeo(S1) [which may be computed
when G0 = N0 by applying Lemma 3.2, (xii)]. This completes the proof of assertion
(ii).

Next, we consider assertion (iii). First, let us observe that since Di is complex-
ifiable, it follows that we may choose Ai to be [complex] isotropic and such that
the natural homomorphism AutGi

(Ai) → AutDi
(Base(Ai)) is surjective [a condi-

tion that may be phrased in “category-theoretic” terms as the condition that Ai

admit an automorphism [in Gi] that reverses the orientation of ∂AAi
]. Let Bi be

a complex isotropic object of Gi; write Aut∂(Bi) for the group of automorphisms
of ∂ABi

induced by automorphisms of Bi [in Gi]. Since Di is RC-connected, we
obtain a homeomorphism ∂(Ai, Bi) : ∂AAi

∼→ ∂ABi
by applying [Mzk5], Proposi-

tion 1.9, (ii), (iii), to various morphisms of Gi[C] to “connect” Ai to Bi. Moreover,
by projecting to G0, one verifies immediately that the Aut∂(Ai)-orbit — which we
denote by ∂[Ai, Bi] — of this homeomorphism ∂(Ai, Bi) depends only on Bi [i.e.,
not on the choice of morphisms used to “connect” Ai to Bi]. In a similar vein, by
projecting to G0, one verifies immediately that conjugation by any homeomorphism
∈ ∂[Ai, Bi] maps Aut∂(Bi) into Aut∂(Ai). Next, let us observe that the functori-
ality of the functorial homeomorphism ∂AA1

∼→ ∂AA2 implies that this functorial
homeomorphism is compatible with the ∂[Ai, Bi]’s and induces an isomorphism
Aut∂(A1)

∼→ Aut∂(A2). In particular, by applying the complexifiability of Di in
the case of real objects of Gi, we conclude as in the proof of assertion (ii) that this
functorial homeomorphism ∂AA1

∼→ ∂AA2 determines a 1-unique 1-commutative
diagram as in the statement of assertion (iii).

Next, we consider assertion (iv). First, let us observe that the portion of
assertion (iv) concerning the Frobenius-slimness and slimness of G1, G2 follows
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immediately from Proposition 4.1, (i) [cf. the use of condition (a) in the proof
of [Mzk5], Proposition 1.13, (iii)], together with the assumption that D1, D2 are
Frobenius-slim or slim; similarly, the rigidity of the composite functors in the dia-
gram appearing in the statement of assertion (iv) [if such a diagram exists] follows
immediately from the slimness of D1, D2 [cf. [Mzk5], Proposition 1.13, (i)]. Now
assume that D1, D2 are slim. Next, let us observe that the functor

Gi → Gistr
i

[where Gistr
i ⊆ Gi is the full subcategory determined by the isotropic objects] induced

by the isotropification functor of [Mzk5], Proposition 1.9, (v), may be reconstructed,
up to isomorphism, as the left adjoint to the natural inclusion functor Gistr

i ↪→ Gi

[cf. the analogous fact for Frobenioids, discussed in [Mzk5], Proposition 1.9, (v)].
Moreover, one verifies immediately that the natural projection functor Gistr

i → Di

is full and essentially surjective, and that if A, B ∈ Ob(Gistr
i ), then

HomDi
(Base(A), Base(B))

may be reconstructed as the quotient of HomGistr
i

(A, B) = HomGi
(A, B) by the

natural action of O×(A) [cf. the analogous fact for Frobenioids, i.e., the faithfulness
discussed in [Mzk5], Proposition 3.3, (iv)]. Since we have already seen that Ψ
preserves isotropic objects [hence, in particular, the subcategory Gistr

i ⊆ Gi], to
complete the proof of assertion (iv), it suffices to show that Ψ preserves “O×(−)”.

Let A ∈ Ob(Gistr
i ). Then the projection functor Gi → Di induces an equivalence

of categories
(Gi)istrA

∼→ (Di)Base(A)

— cf. [Mzk5], Definition 1.3, (i), (c); the fact [cf. [Mzk5], Proposition 1.4, (ii)] that
a morphism of a Frobenioid is LB-invertible and linear if and only if it is a pull-back
morphism. Thus, since Di is slim, the group

Aut((Gi)istrA → Di) ∼= Aut((Di)Base(A) → Di)

is trivial. In particular, [composition with the projection functor Gi → Di reveals
that] any

α ∈ Aut((Gi)istrA → Gi)

consists of base-identity automorphisms, i.e., that by considering the automorphism
of A determined by α, we obtain a natural isomorphism

O×(A) ∼→ Aut((Gi)istrA → Gi)

[cf. the analogue of this argument for Frobenioids given in the proof of [Mzk5],
Corollary 4.11, (i)]. In particular, we conclude that Ψ preserves “O×(−)”, as
desired. This completes the proof of assertion (iv).

Finally, we observe that assertion (v) follows formally from Proposition 3.4,
(viii); 3.5, (iii). ©
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Remark 4.2.1.

(i) Thus, by Corollary 4.2, (v), if D is any category of discontinuously ordered
type, equipped with a functor D → D0 such that D is RC-standard type, then the
resulting categories N , R form “suitable base categories”, from the point of view of
Theorem 3.6, (i), (ii). That is to say:

The main results of the theory of [Mzk5] may be applied to archimedean
or angloid Frobenioids over the base categories N , R.

Moreover, in the case of N , if A is a complex isotropic object of such an archimedean
or angloid Frobenioid that projects to a complex isotropic object AN of the base
category N , then one obtains natural category-theoretic isomorphisms of the topo-
logical group structure of the “S1” [i.e., the “O×(−)”] of A with the “S1” of AN via
Theorem 3.6, (vii); Proposition 4.1, (i); Corollary 4.2, (ii), (iii). Furthermore:

Such category-theoretic isomorphisms between the “Frobenioid-theoretic”
and “base category-theoretic” copies of “S1” may be regarded as an archimedean
analogue of the category-theoreticity of the [nonarchimedean] local reci-
procity map, as discussed in Theorem 2.4, (i), (ii).

Indeed, this sort of “archimedean analogue of the local reciprocity map” constituted
one of the main goals of the author in the development of the [technically somewhat
cumbersome — cf., especially, Propositions 3.4, 3.5] theory of §3.

(ii) It is perhaps of interest to note that in the “archimedean analogue of the
category-theoreticity of the local reciprocity map” discussed in (i), if one forgets
the vast collection of terminology and “general nonsense” developed so far in the
theory of §3 and the present §4, then the main “substantive ingredients” of the
theory appear to be the following:

(a) the reconstruction of S1 from the associated category of open connected
subsets Open0(S1) [cf. the theory of the Appendix];

(b) the fact that Refl(S1) is equal to its own normalizer in Homeo(S1) [cf.
Lemma 3.2, (xii)].

Here, we recall that (a) was applied in the proof of Theorem 3.6, (vii), and Propo-
sition 4.1, (i), while (b) was applied in the proof of Corollary 4.2, (ii).

(iii) Write GK for the absolute Galois group of a nonarchimedean [mixed-
characteristic] local field K. Then relative to the point of view discussed in (i),
in which G0 [especially N0] plays the role of a sort of archimedean version of GK ,
the slimness of G0 [cf. Corollary 4.2, (ii)] may be thought of as a sort of archimedean
analogue of the slimness of GK [cf., e.g. [Mzk1], Theorem 1.1.1, (ii)]. In a similar
vein, the “category-theoreticity of the projection to G0” given in Corollary 4.2, (iii),
may be thought of as a sort of archimedean version of the group-theoreticity of the
projection to GK given in [Mzk1], Lemma 1.3.8.
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Finally, we discuss some examples from arithmetic geometry at archimedean
primes of categories “D” which satisfy the hypotheses of Corollary 4.2, (v).

Example 4.3. Categories Associated to Hyperbolic Riemann Surfaces.

(i) In the notation and terminology of [Mzk3], §2: Let (X∗, φ∗) be an RC-
Teichmüller pair [roughly speaking: a hyperbolic Riemann surface considered up to
complex conjugation and equipped with a nonzero square differential]; π1(X∗) → Π
[where π1(X∗) is the topological fundamental group of X∗] a dense morphism of
tempered topological groups such that Π is “totally ramified at infinity” and “stack-
resolving”; � ∈ {P, R, S}. Then associated to this data, one may define [cf. [Mzk3],
the discussion preceding Proposition 2.2] a category

D def= Loc�
Π(X∗, φ∗)

of parallelogram, rectangle, or square localizations [depending on the choice of �]
of (X∗, φ∗). Roughly speaking, this category consists of two [mutually exclusive]
types of objects: (a) complete objects, which are coverings of the hyperbolic Rie-
mann surface in question [as prescribed by Π]; (b) parallelogram objects, which are
[pre-compact] parallelograms, rectangles, or squares [depending on the choice of
�] on the [universal covering of the noncritical locus of the] Riemann surface in
question, relative to the natural parameters [in the sense of Teichmüller theory]
determined by the given square differential. The main result proven concerning
this category D in [Mzk3] is that if � = R, S (respectively, � = P), then one
may reconstruct the given Riemann surface, together with its conformal structure
(respectively, quasiconformal structure) — up to possible confusion with the corre-
sponding complex conjugate structures — in an entirely category-theoretic fashion
from the category D [cf. [Mzk3], Theorem 2.3]. It is immediate from the definition
of D that D is equipped with a natural functor D → D0 [that maps “objects of
complex type” of D [cf. [Mzk3], Proposition 1.5, (i)] to complex objects of D0 and
“objects of real type” of D [cf. [Mzk3], Proposition 1.5, (ii)] to real objects of D0].

(ii) Here, we wish to observe that:

D [equipped with the natural functor D → D0] is a slim category of
RC-standard, FSM-, and strictly partially ordered [hence, a fortiori, of
discontinuously ordered] type [cf. Remark 4.2.1].

Indeed, D is slim [cf. [Mzk3], Theorem 2.3, (i)], totally epimorphic [cf. [Mzk3],
Proposition 2.2, (v)], RC-connected [cf. the definition of D in loc. cit.], and com-
plexifiable [cf. our assumption that Π is “stack-resolving”]. Since the complete ob-
jects of D that arise from finite Galois coverings of X∗ of complex type [where we
note that such objects always exist, by our assumption that Π is “stack-resolving”]
form RC-anchors of D, it follows immediately from the definition of D in loc. cit.
that D is of RC-iso-subanchor type. Next, let us observe that it follows immediately
from the description of monomorphisms of D given in [Mzk3], Proposition 2.2, (ix),
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that D is of FSM- [hence, a fortiori, of FSMFF-] type. Since, moreover, any par-
allelogram P1 [of type “�”] contained in [a compact subset of] a parallelogram P2

[of type “�”] of the Euclidean plane admits “intermediary parallelograms” [of type
“�”] P3 [i.e., P1 ⊆ P3 ⊆ P2, P3 �= P1, P2] in two dimensions [hence, in particular,
intermediary P3, P4 [of type “�”] neither of which is contained in the other], it
follows from the description of monomorphisms of D given in [Mzk3], Proposition
2.2, (ix), that D is of strictly partially ordered type.

(iii) Now, suppose that, in the notation of Example 1.4, we take “v” to be
an archimedean valuation. We shall refer to the Galois extension F̃ /F as amply
quadratic if there exist totally complex extensions F1 ⊆ F̃ of F such that [F1 : F ] ≤
2. Relative to the notation D → D0 of (i), observe that we have a natural functor
P0 → D0; set P def= D ×D0 P0, E def= P ×P0 E0. Thus, E may be identified with
D ×D0 E0, and we note that, so long as F̃ /F is amply quadratic, even if P0 → D0

fails to be an equivalence of categories, the difference between D and P amounts, in
effect, to forming “D” as above, but with the original “X∗” replaced by the result
of “tensoring X∗ over R with C”. [Put another way, the assumption that F̃ /F is
amply quadratic allows one to rule the case where every object in the image of P0

in D0 is real.] Then:

Suppose that F̃ /F is amply quadratic. Then E [equipped with the natural
functor E → D0] is a slim category of RC-standard and discontinuously
ordered type [cf. Remark 4.2.1].

Indeed, the slimness of E follows immediately from the slimness of D [cf. (ii)
above] and Proposition 1.5, (iv); the total epimorphicity of E follows immediately
from the total epimorphicity of D [cf. (ii) above] and Proposition 1.5, (iii); the
RC-connectedness follows immediately from the RC-connectedness of D [cf. (ii)
above] and Proposition 1.5, (ii); the complexifiability of E follows immediately from
the complexifiability of D [cf. (ii) above] and our assumption that F̃ /F is amply
quadratic; the fact that E is of FSMFF-type follows from the fact that D is totally
epimorphic and of FSM-type [cf. (ii) above], and Proposition 1.5, (viii); the fact
that E is of RC-iso-subanchor type follows from the corresponding fact for D [cf. (ii)
above] and our assumption that F̃ /F is amply quadratic. Finally, by Proposition
1.5, (ix), it follows that totally ordered morphisms of E project to totally ordered
morphisms of D, which are isomorphisms [since D is of strictly partially ordered
type — cf. (ii) above]; thus, it follows immediately from the “discrete structure”
of E0 that E is of discontinuously ordered type, as desired.

(iv) Finally, we observe that by considering parallelogram objects whose im-
ages in X∗[C] are sufficiently small and disjoint, it follows immediately that the
categories D, E are of strongly dissectible type [cf. Proposition 1.5, (vii)].

Remark 4.3.1. Note that, by contrast to the categories of Riemann surfaces dis-
cussed in Example 4.3, the categories of Riemann surfaces “LocΠ(X∗)” of [Mzk3],
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§1 — which are intended to embody the upper half-plane uniformization of a hyper-
bolic Riemann surface — fail to be of FSMFF-type. Indeed, if D is the open unit
disc in the complex plane, and V ⊆ D, U ⊆ V are connected open subsets, then
the inclusion U ↪→ V determines a monomomorphism of this category “LocΠ(X∗)”.
Thus, if, for instance, U is the complement of a(n) [infinite] compact line segment
in D, then U ↪→ D determines an FSM-morphism [which is not an isomorphism]
such that monomorphism factorizations of this morphism correspond to connected
open subsets W ⊆ D containing U . In particular, it follows immediately that this
morphism U ↪→ D fails to factor as a composite of finitely many FSMI-morphisms.
Also, we observe that if U is the complement of an infinite discrete subset of D, then
“filling in successive points of the complement D\U” [cf. the slit morphisms of Ex-
ample 3.3, (v)] yields an infinite sequence of FSMI-morphisms U → U1 → U2 → . . . .
Thus, in summary, the category “LocΠ(X∗)” does not satisfy either of the two con-
ditions in the definition of a “category of FSMFF-type” [cf. [Mzk5], §0]. Moreover,
we observe that if, for instance, X∗ is non-compact, then its upper half-plane uni-
formization constitutes a morphism from an “object which is not of finite type” [in
the terminology of [Mzk3], §1] to an “object of finite type” which does not have
pre-compact image. Thus, it does not appear that this situation may be remedied
by imposing a simple “pre-compact image condition” of the sort that occurs in the
definition of the categories of Example 4.3 [cf. [Mzk3], §2].

Example 4.4. Archimedean Quasi-temperoids.

(i) Let
D def= Btemp(Π, Π◦)0

be any category as in Example 1.3, (iii), where Π → Q, GR � Q [i.e., we take
“F” of loc. cit. to be R], Π◦ ⊆ Π are as in loc. cit., and we assume further
that the surjection GR � Q is an isomorphism. Thus, we have a natural functor
D = Btemp(Π, Π◦)0 → D0 [cf. Example 1.3, (ii), (iii)].

(ii) Now we observe that:

D [equipped with the natural functor D → D0] is a category of RC-
standard, FSM-, and strictly partially ordered [hence, a fortiori, of discon-
tinuously ordered] type [cf. Remark 4.2.1]. If, moreover, Π is temp-slim,
then D is slim.

Indeed, this follows via the a similar [but somewhat easier] argument to the argu-
ment applied in Example 4.3, (ii) [cf. also Example 1.3, (i)].

(iii) Now, suppose that, in the notation of Example 1.4, we take “v” to be
an archimedean valuation. Observe that we have a natural functor P0 → D0. Set
P def= D ×D0 P0; E def= P ×P0 E0

∼→ D ×D0 E0 [cf. Example 4.3, (iii)], and we note
that, so long as F̃ /F is amply quadratic, even if P0 → D0 fails to be an equivalence
of categories, the difference between D and P amounts, in effect, to forming “D” as
above, but with the original “Π”, “Π◦” replaced by the kernel of the given morphism
Π → Q ∼= GR and its intersection with Π◦, respectively. Then:
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If F̃ /F is amply quadratic, then E [equipped with the natural functor
E → D0] is a category of RC-standard and discontinuously ordered type
[cf. Remark 4.2.1]. If, moreover, Π is temp-slim, then E is slim.

Indeed, this follows via the a similar [but somewhat easier] argument to the argu-
ment applied in Example 4.3, (iii).

(iv) Finally, we observe that the categories D, E are of strongly indissectible
type [cf. Example 1.3, (i); Proposition 1.5, (vii)].
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Section 5: Poly-Frobenioids

In the present §5, we develop the “general nonsense” necessary to construct
categories obtained by “gluing together” various Frobenioids in a certain fashion.
We shall refer to the categories obtained in this way as poly-Frobenioids. This
“gluing problem” is motivated by the goal of “gluing together” the Frobenioids
of [Mzk5], Example 6.3 [which embody the global arithmetic of number fields] to
the p-adic and archimedean Frobenioids of Examples 1.1, 3.3 [which embody the
arithmetic of local fields] in a fashion that reflects, at the level of category theory,
the way in which localizations of number fields are typically treated in arithmetic
geometry.

Definition 5.1.

(i) We shall refer to as a collection of grafting data any collection of data

A
def=

(
A�, {Aι}ι∈I , {Aι}ι∈I , {ζι : A� → A�

ι }ι∈I , {ηι : Aι → Aι}ι∈I

)

where I is a set; the A�, Aι, Aι are connected, totally epimorphic categories; “�”
is as in [Mzk5], §0; the arrows ζι are functors, which we shall refer to as global
contact functors; the functors ηι, which we shall refer to as local contact functors,
are relatively initial [cf. §0]. We shall refer to A� as the global component of A
and to the Aι as the local components of A. The grafted category associated to A is
defined to be the category

G def= A� �(
�

ι∈I A�
ι

) (∐
ι∈I

Aι

)

where “�” is defined relative to the functors

A� → ∏
ι∈I A�

ι∐
ι∈I Aι →

∏
ι∈I A�

ι → ∏
ι∈I A�

ι

[cf. §0]; the arrow in the first line is the functor determined by the ζι’s; the first
arrow in the second line is the natural functor [cf. §0]; the second arrow in the
second line is the functor determined by the ηι’s. Thus, [cf. §0] we may think of
the global component, as well as the local components, of A as full subcategories of
G. An object or arrow that belongs to the global component (respectively, a local
component ι ∈ I) of G will be referred to as global (respectively, [ι-]local). Denote by
G� ⊆ G (respectively, Gι ⊆ G [for ι ∈ I]; G... ⊆ G) the full subcategory determined
by the global (respectively, ι-local; local) objects. A morphism of G from an ι-local
object to a global object will be referred to as ι-heterogeneous.

(ii) We shall say that A is of uniformly dissectible type if the following conditions
are satisfied: (a) there exist at least 2 elements ι ∈ I for which ζι is totally non-
initial [cf. §0]; (b) for each ι ∈ I, Aι is either of weakly indissectible type or
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of strongly dissectible type; (c) there exists an ι ∈ I such that Aι is of weakly
indissectible type, and ζι is totally non-initial. If, for ι ∈ I, ηι is an equivalence
of categories, then we shall say that A is of ι-tactile type; if A is of ι-tactile type
for all ι ∈ I, then we shall say that A is of totally tactile type. A morphism of G
whose domain is [ι-]local [for some ι ∈ I], whose codomain is global, and which
is minimal-adjoint [cf. [Mzk5], §0] to the morphisms with local codomain, will be
referred to as [ι-]pre-tactile. A morphism A → B of G whose domain is [ι-]local [for
some ι ∈ I], whose codomain is global, and which corresponds [cf. the definition
of G] to an isomorphism of ηι(A) onto a connected component of ζι(B), will be
referred to as [ι-]tactile. If a(n) [ι-]heterogeneous morphism φ : A → B of G factors
as a composite A → A′ → B, where A′ → B is [ι-]tactile, then we shall refer to this
factorization as a(n) [ι-]tactile factorization of φ. If, for some ι ∈ I, {Aj → B}j∈J

forms a collection of ι-tactile morphisms of G that corresponds [cf. the definition of
G] to an isomorphism

∐
j∈J ηι(Aj)

∼→ ζι(B), then we shall refer to the collection
of morphisms {Aj → B}j∈J as a complete [ι-]tactile collection [for B].

(iii) If

A′ def=
(
A′

�, {A′
ι′}ι′∈I′ , {A′

ι′}ι′∈I′ , {ζ ′ι′ : A′
� → A′

ι′}ι′∈I′ , {η′
ι′ : A′

ι′ → A′
ι′}ι′∈I′

)

is another collection of grafting data, then we shall refer to as an equivalence of
collections of grafting data

Ψ : A
∼→ A′

a bijection ΨI : I
∼→ I ′, together with equivalences of categories

Ψ� : A�
∼→ A′

�

and
Ψι : Aι

∼→ A′
ι′ ; Ψι : Aι

∼→ A′
ι′

for ι ∈ I, ι′ def= ΨI(ι), which are 1-compatible with the various functors ζι, ζ ′ι′ , ηι,
η′

ι′ . [Thus, the equivalences of collections of grafting data A
∼→ A′, together with

isomorphisms [in the evident sense] between such equivalences, form a category.] If
G′ is the grafted category associated to A′, then it is immediate that Ψ determines
an equivalence of categories G ∼→ G′.

Remark 5.1.1. Since the local components of G are assumed to be connected
[cf. Definition 5.1, (i)], it follows immediately that the Gι are precisely the con-
nected components [cf. [Mzk5], §0] of the category G..., and that the category G... is
naturally equivalent to the coproduct [cf. §0] of the categories Gι.

Remark 5.1.2. Let ι ∈ I. Then the following assertions follow immediately from
the definitions and the total epimorphicity assumption in Definition 5.1, (i): Every
ι-tactile morphism of G is ι-pre-tactile. Suppose further that A is of ι-tactile type.
Then any two ι-tactile factorizations of an ι-heterogeneous morphism φ : A → B of
G determine isomorphic objects of the category of factorizations Gφ [cf. §0]; every
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global object B of G admits a complete ι-tactile collection; if {Aj → B}j∈J is any
collection of ι-tactile morphisms of G, then this collection is a complete ι-tactile
collection for B if and only if every ι-heterogeneous morphism C → B factors
through precisely one of the Aj → B; finally, a morphism of G is ι-tactile if and
only if it is ι-pre-tactile.

Proposition 5.2. (Dissection of Grafted Categories) Let A, A′ be collec-
tions of grafting data of uniformly dissectible type, whose associated cate-
gories we denote by G, G′, respectively. Then:

(i) The global objects of G are strongly dissectible.

(ii) Let ι ∈ I. Suppose that Aι is of weakly indissectible (respectively,
strongly dissectible) type. Then the ι-local objects of G are weakly indis-
sectible (respectively, strongly dissectible).

(iii) An object of G is global if and only if it is a strongly dissectible
object that appears as the codomain of a morphism whose domain is weakly in-
dissectible.

(iv) Every equivalence of categories Ξ : G ∼→ G′ induces an equivalence
of categories G�

∼→ G′
�, a bijection ΞI : I

∼→ I ′, and, for each I 	 ι 
→ ι′ ∈ I ′,
an equivalence of categories Gι

∼→ G′
ι′ . In particular, Ξ preserves global and

local objects.

(v) Suppose that A, A′ are of totally tactile type. Then there is a natural
equivalence of categories between the category of equivalences A

∼→ A′ and the
category of equivalences G ∼→ G′.

Proof. To verify assertion (i), let A ∈ Ob(A�). Since [cf. Definition 5.1, (ii), (a);
Definition 5.1, (i)] there exist distinct ι1, ι2 ∈ I such that [for j = 1, 2] ζιj

is totally
non-initial, and ηιj

is relatively initial, it follows that there exists [for j = 1, 2] a
morphism Aj → A, where Aj ∈ Ob(G) is ιj-local. On the other hand, since no object
of G admits a morphism to both A1 and A2, it follows that A1 → A, A2 → A form
a strongly dissecting pair of arrows, as desired. Assertion (ii) follows immediately
from the definitions [together with the fact that the domain of any morphism of G
whose codomain is ι-local is itself ι-local]. Assertion (iii) follows immediately from
assertions (i), (ii) [cf. also Definition 5.1, (ii), (b)], together with the existence [cf.
Definition 5.1, (ii), (c); Definition 5.1, (i)] of an ι ∈ I such that Aι is of weakly
indissectible type, ζι is totally non-initial, and ηι is relatively initial. Assertion
(iv) follows immediately from assertion (iii), Remark 5.1.1. Finally, assertion (v)
follows immediately from assertion (iv), by considering complete tactile collections
of morphisms [cf. Remark 5.1.2]. ©

Observe that our discussion so far has nothing to do with Frobenioids [at least
in an explicit sense]. We now return to discussing Frobenioids.
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Definition 5.3. For i = 1, 2, let Ci be a Frobenioid over a base category Di, with
perf-factorial divisor monoid Φi. Note that Φi extends naturally to a functor Φ�

i

on D�
i by assigning to a coproduct of objects {Aj}j∈J of Di the direct sum of the

monoids Φi(Aj).

(i) Suppose that C1 is of isotropic type. Then we shall refer to a functor

Ψ : C1 → C�
2

as GC-admissible [i.e., “global contact-admissible”] if the following conditions are
satisfied: (a) there exists a functor ΨBase : D1 → D�

2 which is 1-compatible with
Ψ, [relative to the natural projection functors Ci → Di, for i = 1, 2]; (b) Ψ maps an
arrow of Frobenius degree d ∈ N≥1 of C1 to an arrow of C�

2 each of whose component
arrows [∈ Arr(C2)] is of Frobenius degree d; (c) there exists a natural transformation
ΨΦ : Φ1 → Φ�

2 |C1 that is compatible with Ψ relative to the functors Ci → FΦi
[for

i = 1, 2] that define the Frobenioid structures of the Ci [in other words: ΨΦ is
compatible with Ψ relative to the operation of taking the zero divisor]; (d) every
component object ∈ Ob(C2) of an object in the image of Ψ is isotropic.

(ii) We shall refer to a functor

Ψ : C1 → C2

as LC-admissible [i.e., “local contact-admissible”] if there exists a subfunctor of
group-like monoids

Φcnst ⊆ (Φrlf
1 )birat

[where “rlf” is as in [Mzk5], Definition 2.4, (i); cf. also [Mzk5], Proposition 5.3] on
D1 of “constant realified rational functions” such that the following conditions are
satisfied: (a) there exists an equivalence of categories ΨBase : D1

∼→ D2 which is 1-
compatible with Ψ [relative to the natural projection functors Ci → Di, for i = 1, 2];
(b) Ψ is compatible with Frobenius degrees; (c) the natural inclusion Φ1 ↪→ Φrlf

1

factors as a composite of inclusions

Φ1 ↪→ Φ2|D1 ↪→ Φrlf
1

of functors of monoids on D1 that are compatible with Ψ relative to the functors
Ci → FΦi

[for i = 1, 2] that define the Frobenioid structures of the Ci [in other words:
relative to the operation of taking the zero divisor]; (d) applying the operation of
“groupification” to the monoids of (c) induces inclusions

Φbirat
1 ↪→ Φbirat

2 |D1 ↪→ (Φrlf
1 )birat = R · Φbirat

1

[where we recall that Φbirat
i ⊆ Φgp

i , for i = 1, 2 — cf. [Mzk5], Proposition 4.4, (iii)]
of functors of monoids on D1; (e) the image of the inclusion Φbirat

2 |D1 ↪→ (Φrlf
1 )birat

of (d) is equal to the subfunctor of [group-like] monoids Φbirat
1 + Φcnst ⊆ (Φrlf

1 )birat;
(f) the functor Φcnst is “constant” on D1 in the sense that Φcnst maps every arrow of
D1 to an isomorphism; (g) Ψ preserves isotropic objects and co-angular morphisms.
We shall say that Ψ is LC-unit-admissible if Ψ is LC-admissible, and, moreover, the
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following condition is satisfied: (h) if A2 = Ψ(A1) ∈ Ob(C2), where A1 ∈ Ob(C1),
then the induced homomorphism of abelian groups O×(A1) → O×(A2) induces a
surjection on perfections O×(A1)pf � O×(A2)pf.

(iii) We shall refer to as a collection of Frobenioid-theoretic grafting data any
collection of grafting data

C
def=

(
C�, {Cι}ι∈I , {Cι}ι∈I , {ζι : C� → C�

ι }ι∈I , {ηι : Cι → Cι}ι∈I

)

such that the following conditions are satisfied: (a) the categories C�, Cι, Cι [for
ι ∈ I] are equipped with Frobenioid structures, the base categories of which we
denote by D�, Dι, Dι, respectively, and the divisor monoids of which we denote
by Φ�, Φι, Φι, respectively; (b) the divisor monoids Φ�, Φι, Φι [for ι ∈ I] are all
perf-factorial; (c) the global contact functors ζι [for ι ∈ I] are GC-admissible [which
implies, in particular, that C� is of isotropic type]; (d) the local contact functors ηι

[for ι ∈ I] are LC-admissible. A category obtained as the grafted category associated
to such data C will be referred to as a poly-Frobenioid C. If all of the ηι [for ι ∈ I]
are LC-unit-admissible, then we shall say that C or C is of LC-unit-admissible type.
Observe that C determines a collection of base-category grafting data D, which is of
totally tactile type [cf. (ii), (a)]; the associated grafted category D will be referred
to as the poly-base category of the poly-Frobenioid C. [Here, we observe that, by
a [harmless!] abuse of notation, “C�” denotes both the category “A�” and the
category “G�” of Definition 5.1, (i); a similar remark holds for “D�”, “Cι”, “Dι”,
where ι ∈ I.] Thus, we have a natural projection functor C → D. If P is a property
of Frobenioids (respectively, base categories of Frobenioids), then we shall say that
C or C (respectively, D or D) satisfies this property P if the Frobenioids C�, Cι, Cι

[for ι ∈ I] (respectively, the base categories D�, Dι, Dι [for ι ∈ I]) all satisfy this
property P. [In particular, one must be careful to distinguish between the assertion
that “D satisfies P as an abstract category” and the assertion that “D satisfies P as
a poly-base category of a poly-Frobenioid”.]

(iv) Let φ : A → B be a morphism of the poly-Frobenioid C. We shall denote
the projection of φ to D by Base(φ). Observe that by conditions (i), (b), and (ii),
(b), above, it makes sense to speak of the Frobenius degree degFr(φ) ∈ N≥1 of φ; if
degFr(φ) = 1, then we shall say that φ is linear. If, for ι ∈ I, φ is ι-local (respectively,
ι-heterogeneous), then it makes sense to speak of the zero divisor Div(φ) ∈ Φι(A)
(respectively, Div(φ) ∈ Φι(A)); if φ is global, then it makes sense to speak of the
zero divisor Div(φ) ∈ Φ�(A). We shall say that φ satisfies a property P of arrows
of Frobenioids if φ is homogeneous, and, moreover, satisfies the property P when
regarded as an arrow of one of the local or global component Frobenioids of C; a
similar convention will be applied to objects of C. We shall say that φ is base-[ι-
]tactile if it projects to a(n) [ι-]tactile morphism of D [for ι ∈ I]. We shall say that φ
is birationally [ι-]tactile [i.e., “base-linear-tactile”] if it is linear and base-[ι-]tactile
[for ι ∈ I], with isotropic domain. We shall say that φ is base-[ι-]pre-tactile if φ is
[ι-]heterogeneous, and, moreover, for every factorization A → A′ → B of φ, where
A′ is [ι-]local, it holds that A → A′ is a base-isomorphism [for ι ∈ I]. We shall
say that φ is birationally [ι-]pre-tactile if φ is [ι-]heterogeneous, and, moreover, for
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every factorization A → A′ → B of φ, where A′ is [ι-]local, it holds that A → A′ is
a co-angular pre-step [for ι ∈ I]. If φ factors as a composite A → A′ → B, where
A′ → B is base-[ι-]tactile (respectively, birationally [ι-]tactile) [for some ι ∈ I], then
we shall refer to this factorization as a base-[ι-]tactile (respectively, birationally [ι-
]tactile) factorization of φ. If, for some ι ∈ I, {Aj → B}j∈J forms a collection of
birationally ι-tactile morphisms of C that projects to a complete ι-tactile collection
of Base(B), then we shall refer to the collection of morphisms {Aj → B}j∈J as a
complete birationally [ι-]tactile collection [for B].

(v) A routine check reveals [cf. Remarks 5.3.1, 5.3.3, below; [Mzk5], Defini-
tion 2.4, (i); [Mzk5], Proposition 3.2, (ii), (iii); [Mzk5], Proposition 4.4, (iv)] that
applying the operations

“pf”, “un-tr”, “rlf”, “birat”, or “istr”

[where “pf” is defined whenever C is of Frobenius-isotropic type] to each of the
Frobenioids C�, Cι, Cι [for ι ∈ I] yields a new collection of Frobenioid-theoretic
grafting data “Cpf”, “Cun-tr”, “Crlf”, “Cbirat”, or “Cistr”, whose associated poly-
Frobenioids “Cpf”, “Cun-tr”, “Crlf”, “Cbirat”, or “Cistr” we shall refer to as the
perfection, unit-trivialization, realification, birationalization, or isotropification of
the poly-Frobenioid C. Observe, moreover, that each of the operations “un-tr”,
“rlf”, “istr” preserves the property of being of LC-unit-admissible type; if C is of
Frobenius-normalized type, then the operation “pf” preserves the property of being
of LC-unit-admissible type [cf. [Mzk5], Proposition 5.5, (i)].

(vi) If C is of uniformly dissectible, LC-unit-admissible, and standard [cf. the
convention concerning “P” in (iii) above] type, then we shall say that C or C is of
poly-standard type. If C is of uniformly dissectible, LC-unit-admissible, and ratio-
nally standard [cf. the convention concerning “P” in (iii) above] type, then we shall
say that C or C is of poly-rationally standard type. If each of the Frobenioids C�,
Cι, Cι [for ι ∈ I] contains a non-group-like object, then we shall say that C or C is
of poly-non-group-like type.

Remark 5.3.1. Observe that if a morphism φ of the domain Frobenioid of a
GC-admissible functor Ψ is a morphism of Frobenius type (respectively, pre-step;
pull-back morphism; linear morphism; isometry; base-isomorphism; base-identity
endomorphism), then so is each of the component arrows of Ψ(φ) [cf. Definition
5.3, (i); [Mzk5], Definition 1.3, (vii), (b); [Mzk5], Proposition 1.4, (ii)].

Remark 5.3.2. We observe in passing that, in the notation of Definition 5.3, (i),
the functor Ψ : C1 → C�

2 that maps every object of C1 to the initial object of C�
2 is

a GC-admissible functor which is not totally non-initial. In particular, Definition
5.3, (iii), does not rule out the possibility that some [but, at least in the case of
data of uniformly dissectible type, not all — cf. Definition 5.1, (ii), (a), (c)] of the
global contact functors that appear in a collection of Frobenioid-theoretic grafting
data are functors of this form [i.e., functors that map every object to the initial
object].
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Remark 5.3.3. Observe that [in the notation of Definition 5.3, (ii)] any LC-
admissible functor Ψ : C1 → C2 induces an equivalence of categories Crlf

1
∼→ Crlf

2 be-
tween the associated realifications. Indeed, this follows immediately from Definition
5.3, (ii), (a), (c), (d) [cf. also the definition of the “realification” in [Mzk5], Propo-
sition 5.3]. In particular, [cf. also Definition 5.3, (ii), (g); [Mzk5], Proposition 1.4,
(ii)] Ψ preserves morphisms of Frobenius type, pre-steps, pull-back morphisms, linear
morphisms, isometries, isotropic hulls, co-angular morphisms, base-isomorphisms,
and base-identity endomorphisms.

Remark 5.3.4. It is immediate from the definitions that “birationally pre-
tactile” implies “base-pre-tactile”, that “birationally tactile” implies “base-tactile”,
that “birationally tactile” implies “birationally pre-tactile”, and that “base-tactile”
implies “base-pre-tactile” [cf. Remark 5.1.2].

Proposition 5.4. (Birationally Tactile Factorizations) In the notation of
Definition 5.3, (iii), suppose that the poly-Frobenioid C is of LC-unit-admissible,
Frobenius-normalized, and perfect type. Let φ : A → B be an ι-heterogeneous
morphism, where ι ∈ I, of C, whose image in the birationalization [cf. Definition
5.3, (v)] Cbirat of C we denote by φbirat : Abirat → Bbirat. Then:

(i) φbirat admits a tactile factorization.

(ii) φbirat is tactile if and only if it is pre-tactile.

(iii) There exists a co-angular pre-step ψ : C → A such that φ ◦ ψ admits a
birationally tactile factorization.

(iv) There exists a co-angular pre-step ψ : C → A such that φ ◦ ψ is base-
tactile (respectively, birationally tactile) if and only if φ◦ψ is base-pre-tactile
(respectively, birationally pre-tactile).

Proof. First, we consider assertion (i). Since every connected component of an
object in the essential image of the global contact functor labeled ι is isotropic
[cf. Definition 5.3, (i), (d)], it follows that φbirat factors through any isotropic
hull of Abirat; thus, we may assume without loss of generality that A, Abirat [cf.
[Mzk5], Proposition 4.4, (iv)] are isotropic. Also, by factoring φ through a morphism
of Frobenius type with domain A [cf. [Mzk5], Definition 1.3, (ii), (iv)], we may
assume without loss of generality that φ is linear. Since the isomorphism class of
an isotropic [hence Frobenius-trivial — cf. [Mzk5], Proposition 1.10, (vi)] object of
Cbirat

ι is determined by the isomorphism class of its projection to Dι [cf. [Mzk5],
Theorem 5.1, (iii)], and D is of totally tactile type, it follows that there exists an
object D ∈ Ob(Cistr

ι ) such that the morphism ηι(A)birat → ζι(B)birat determined
by φ admits a factorization

ηι(A)birat α−→ ηι(D)birat δ−→ ζι(B)birat

[where δ determines a tactile morphism of Cbirat; we use the superscript “birat” to
denote the images of objects or arrows of Frobenioids or poly-Frobenioids in their
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respective birationalizations]. Since A, Abirat, hence also ηι(A)birat [cf. Definition
5.3, (ii), (g)], are isotropic, it follows that the first arrow α : ηι(A)birat → ηι(D)birat

of this factorization is linear, co-angular, and [cf. the definition of “birat”!] iso-
metric. It thus follows that α is a pull-back morphism [cf. [Mzk5], Proposition
1.4, (ii)], hence [cf. [Mzk5], Definition 1.3, (i), (c); the definition of a “pull-back
morphism” in [Mzk5], Definition 1.2, (ii)] that this arrow differs from the image in
Cbirat

ι of a pull-back morphism β : Abirat → Dbirat in Cbirat
ι by composition with a

unit of Cbirat
ι , i.e., an element u ∈ O×(ηι(A)birat) [so α = ηι(β) ◦ u]. Moreover, if

we apply the isomorphism “Φbirat
2 |D1

∼→ Φbirat
1 + Φcnst (⊆ (Φrlf

1 )birat)” of Definition
5.3, (ii), (e), it follows that we may write u = u1 · ucnst, where u1 = ηι(v1) for
some v1 ∈ O×(Abirat), and the image of ucnst ∈ O×(ηι(A)birat) in (Φrlf

1 )birat lies
in Φcnst; by applying Definition 5.3, (ii), (f), (h) [cf. also our assumption that the
poly-Frobenioid C is of LC-unit-admissible, Frobenius-normalized, and perfect type;
[Mzk5], Proposition 5.5, (i)], it follows that we may write

ucnst = vcnst|ηι(A)birat · ηbirat
ι (wcnst)

where vcnst ∈ O×(ηι(D)birat), wcnst ∈ O×(Abirat). Thus, by replacing α by v−1
cnst ◦α

and β by β ◦wcnst ◦ v1, we conclude that we may assume that α = ηbirat
ι (β). Then

β, δ determine a tactile factorization of φbirat, as desired. This completes the proof
of assertion (i).

Now assertion (ii) follows immediately from the existence of tactile factoriza-
tions [cf. assertion (i)] and the total epimorphicity of Cbirat

ι [cf. Remark 5.1.2].
Assertion (iii) follows immediately from assertion (i); the definition of the “bira-
tionalization” [cf. [Mzk5], Proposition 4.4, (i)]; [Mzk5], Proposition 1.11, (vii); and
the inclusions “Φ1 ↪→ Φ2|D1 ↪→ Φrlf

1 ” of Definition 5.3, (ii), (c) [which imply that
pre-steps of the underlined local components may be dominated by pre-steps of the
non-underlined local components]. Finally, assertion (iv) follows immediately from
assertion (iii) and the total epimorphicity of Dι [cf. also Remark 5.3.4; [Mzk5],
Proposition 1.9, (iv); the derivation of assertion (ii) from assertion (i)]. ©

Theorem 5.5. (Category-theoreticity of Poly-Frobenioids) For i = 1, 2,
let Ci be a poly-Frobenioid of poly-standard type;

Ψ : C1
∼→ C2

an equivalence of categories. Then:

(i) Ψ preserves global and local objects and induces a compatible bijection
I1

∼→ I2 between the sets I1, I2 of local components of C1, C2. Moreover, C1 is of
poly-non-group-like type if and only if C2 is.

(ii) Ψ preserves the full subcategories Cistr
i ⊆ Ci.

(iii) Let � ∈ {pf, un-tr, rlf, birat}. If � = un-tr, then we assume further that
the poly-base category Di is Frobenius-slim. If � = rlf, then we assume further
that Ci is of poly-rationally standard type, and that the poly-base category Di
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is slim. If � �= birat, then we assume further that Ci is of poly-non-group-like
type. Then there exists a 1-unique 1-commutative diagram

C1
Ψ−→ C2⏐⏐� ⏐⏐�

C�
1

Ψ�−→ C�
2

[where the vertical arrows are the natural functors; the horizontal arrows are equiv-
alences of categories].

(iv) Suppose that the poly-base category Di is slim, and that Ci is of poly-
non-group-like type. Then there exists a 1-unique 1-commutative diagram

C1
Ψ−→ C2⏐⏐� ⏐⏐�

D1
ΨBase

−→ D2

[where the vertical arrows are the natural functors; the horizontal arrows are equiv-
alences of categories].

(v) Suppose that Ci is of poly-rationally standard and poly-non-group-
like type, and that the poly-base category Di is slim. Then Ψ induces isomor-
phisms between the divisor monoids of corresponding [cf. (i)] local or global
components of C1, C2. Moreover, these isomorphisms are compatible with the lo-
cal and global contact functors that determine the poly-Frobenioid structures of
C1, C2 [a statement that makes sense in light of the inclusions “Φ2|D1 ↪→ Φrlf

1 ” of
Definition 5.3, (ii), (c)].

Proof. Assertion (i) follows formally from Proposition 5.2, (iv), and [Mzk5], The-
orem 3.4, (ii). In light of assertion (i), assertion (ii) follows from [Mzk5], Theorem
3.4, (i). Next, let us observe that Cpf

i may be constructed from Ci by considering
appropriate inductive limits involving pairs of morphisms of Frobenius type, just as
in the case of Frobenioids [cf. [Mzk5], Definition 3.1, (ii), (iii)]. Since, whenever
� �= birat [so Ci is of poly-non-group-like type], Ψ preserves pairs of morphisms
of Frobenius type of the same Frobenius degree [cf. assertion (i); [Mzk5], Theorem
3.4, (iii)], we thus conclude that assertion (iii) holds when � = pf. In a similar
vein, it follows from the inclusions “Φ2|D1 ↪→ Φrlf

1 ” of Definition 5.3, (ii), (c) [which
imply that pre-steps of the underlined local components may be dominated by pre-
steps of the non-underlined local components], that Cbirat

i may be constructed from
Ci by “inverting the co-angular pre-steps”, just as in the case of Frobenioids [cf.
[Mzk5], Proposition 4.4, (i)]. Since Ψ preserves co-angular pre-steps [cf. assertion
(i); [Mzk5], Theorem 3.4, (ii); [Mzk5], Corollary 4.10], we thus conclude that asser-
tion (iii) holds when � = birat. Thus, in the following, we assume that � �= birat
[so Ci is of poly-non-group-like type].
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Next, observe that by [Mzk5], Proposition 5.5, (iii), it follows that Cpf
i is of

standard type [i.e., each of its local and global component Frobenioids is of standard
type]. Thus, by “applying the last two arguments in succession”, it follows that we
obtain a 1-unique 1-commutative diagram

C1
Ψ−→ C2⏐⏐� ⏐⏐�

(Cpf
1 )birat Ψ�−→ (Cpf

2 )birat

[where the vertical arrows are the natural functors; the horizontal arrows are equiv-
alences of categories]. [Note that here, it is not clear that the uniform dissectibility
— hence, a fortiori, the property of being of poly-standard type — of Ci implies that
of Cpf

i ! Thus, one cannot apply to “Cpf
i ” the portion of Theorem 5.5 already proven

for “Ci”. Nevertheless, this does not cause any problems since uniform dissectibil-
ity is only used to “dissect” the poly-Frobenioid in question; thus, the necessary
“dissection” of Cpf

i follows immediately from the dissection already discussed of Ci.]

Next, let us observe that since, for A ∈ Ob(Ci) with image Apf ∈ Ob(Cpf
i ),

we have a natural isomorphism O×(A)pf ∼→ O×(Apf) [cf. [Mzk5], Proposition 5.5,
(i)], it follows that the LC-unit-admissibility of Ci implies that of Cpf

i [cf. Definition
5.3, (v)]. Thus, Cpf

i is of standard, perfect [cf. [Mzk5], Proposition 3.2, (iii)], and
LC-unit-admissible type. In particular, we may apply Proposition 5.4 to Cpf

i . Thus,
it follows that global objects of (Cpf

i )birat admit complete tactile collections [cf.
Proposition 5.4, (i)], which are, moreover, preserved by Ψ [cf. Proposition 5.4, (ii);
the fact that, in light of assertion (i), the definition of “pre-tactile” is manifestly
category-theoretic]. [Here, we note in passing that if one wishes to restrict oneself
to operating in Cpf

i , then instead of working with complete tactile collections in
(Cpf

i )birat, one can instead work with complete birationally tactile collections in Cpf
i

— cf. Proposition 5.4, (iii), (iv).]

Now let us consider assertion (iv). Since the poly-base category Di is assumed
to be slim, it follows from [Mzk5], Theorem 3.4, (v) [cf. also assertion (i); our
assumption that Ci is of poly-non-group-like type], that Ψ induces equivalences of
categories between the various local and global components of Di which are com-
patible with the equivalences of categories induced by Ψ between the various local
and global components of Ci. Moreover, by considering complete tactile collections
in (Cpf

i )birat, it follows immediately that these equivalences of categories between
the various local and global components of Di are compatible with the local and
global contact functors of Di. Thus, we obtain a 1-unique 1-commutative diagram
as in assertion (iv).

Next, we consider unit-trivializations [i.e., the case “� = un-tr”]. By the
Frobenius-slimness assumption, it follows from [Mzk5], Theorem 3.4, (iv), that Ψ
induces equivalences of categories between the various local and global components
of Cun-tr

i which are compatible with the equivalences of categories induced by Ψ
between the various local and global components of Ci. Thus, to obtain a diagram
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as in assertion (iii), it suffices to show that Ψ preserves unit-equivalent pairs of co-
objective heterogeneous morphisms of Cistr

i [i.e., pairs that map to the same arrow
in Cun-tr

i ]. By the faithfulness portion of [Mzk5], Proposition 3.3, (iv) [applied to
the underlined local components of the Ci!], it follows that it suffices to show that Ψ
maps a unit-equivalent pair of heterogeneous morphisms φ1, ψ1 : A → B of C1 to a
pair of morphisms φ2

def= Ψ(φ1), ψ2
def= Ψ(ψ1) of C2 such that degFr(φ2) = degFr(ψ2),

Div(φ2) = Div(ψ2), Base(φ2) = Base(ψ2).

To do this, it suffices to show that “degFr(−)”, “Div(−)”, and “Base(−)” may
be “computed” entirely in terms of homogeneous morphisms [whose behavior with
respect to Ψ and the operation of taking the unit-trivialization is already well-
understood]. Thus, it suffices to observe that the following fact: The Frobenius
degree may be computed by considering the existence of factorizations A → A′ →
B, where A → A′ is a [necessarily homogeneous!] morphism of Frobenius type
[cf. [Mzk5], Definition 1.3, (iv), (a)]. The property of metric equivalence [i.e.,
“Div(φ2) = Div(ψ2)”] of a pair of linear co-objective morphisms A → B may
be described [cf. the inclusions “Φ2|D1 ↪→ Φrlf

1 ” of Definition 5.3, (ii), (c)] by
projecting these morphisms to morphisms Apf → Bpf of Cpf

i and considering the
condition that one of these morphisms Apf → Bpf factors through an arbitrary given
co-angular pre-step Apf → (A′)pf [cf. [Mzk5], Definition 1.3, (iii), (d); [Mzk5],
Definition 1.3, (iv), (a)] if and only if the other does. [Here, we use the fact
that Ψpf preserves co-angular pre-steps of Cpf

i — cf. [Mzk5], Theorem 3.4, (ii).]
Finally, the property of base-equivalence [i.e., “Base(φ2) = Base(ψ2)”] of a pair
of linear, metrically equivalent, co-objective morphisms A → B may be described
by projecting these morphisms to morphisms Apf → Bpf of Cpf

i and considering
the condition [cf. [Mzk5], Definition 1.3, (iii), (c); [Mzk5], Definition 1.3, (iv), (a);
[Mzk5], Definition 1.3, (vi)] that these morphisms may be obtained from one another
by composition with a [manifestly homogeneous!] element ∈ O×(Apf) ∼= O×(A)pf.
[Note that here, we must apply the LC-unit-admissibility of Ci.] This completes the
proof of assertion (iii) in the case “� = un-tr”.

Next, we consider divisor monoids [i.e., assertion (v)]. By [Mzk5], Corollary
4.11, (iii), it follows that Ψ induces isomorphisms between the divisor monoids of
corresponding local or global components of C1, C2. The asserted compatibility then
follows by considering global co-angular pre-steps Bpf → Cpf of Cpf

i [cf. [Mzk5],
Definition 1.3, (iii), (d)], together with birationally tactile morphisms Apf → Bpf

[whose existence follows from the fact that Di is of totally tactile type; [Mzk5],
Definition 1.3, (i), (b); the inclusions “Φ2|D1 ↪→ Φrlf

1 ” of Definition 5.3, (ii), (c)],
which allow one to compute the image of Div(Bpf → Cpf) in [the value of the
appropriate divisor monoid at] Apf as the difference

Div(Apf → Bpf → Cpf) − Div(Apf → Bpf)

— where we note that each of the terms in this difference may be computed as
the supremum of the Div(Apf → (A′)pf), where Apf → (A′)pf) is a [necessarily
homogeneous!] co-angular pre-step through which the heterogeneous morphism in
question [i.e., Apf → Bpf → Cpf or Apf → Bpf] factors. This completes the proof
of assertion (v). Finally, assertion (iii) in the case � = rlf follows by applying
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[Mzk5], Corollary 5.4, to the various local and global components of Ci, in light of
the compatibility of assertion (v). ©

We are now ready to discuss the main motivating example of the theory of
[Mzk5] and the present paper, an example to which most of the main results of
this theory may be applied. The example arises, in effect, by “grafting” the global
example of [Mzk5], Example 6.3, onto the local examples of Examples 1.1, 3.3, of
the present paper.

Example 5.6. Poly-Frobenioids Associated to Number Fields.

(i) Let F̃ /F be a Galois extension of a number field F ; write G�
def= Gal(F̃ /F ),

V(F ) for the set of valuations on F [where we identify complex archimedean val-
uations with their complex conjugates —cf. [Mzk5], Example 6.3]. For v ∈ V(F ),
write Fv for the completion of F at v, F̃v for the Galois extension of Fv determined
by F̃ , Dv

def= Gal(F̃v/Fv) ⊆ G� [so Dv is well-defined up to conjugation in G�].
Also, we assume that we have been given monoid types

Λ�; {Λv}v∈V(F ); {Λv}v∈V(F )

satisfying Λv ≥ Λ�, Λv ≥ Λv, for all v ∈ V(F ). Note that [if we take the “F̃ /F”,
“v” of Example 1.4 to be the “F̃ /F”, “v” of the present discussion, then] the
category “P0” of Example 1.4 may be identified with the category Pv

def= B(Dv)0.
Thus, the functor “E0 → P0” of Example 1.4 determines a functor which we denote
by Ev → Pv.

(ii) Let
Π� � G�

be a surjection of residually finite tempered groups. Then the category

D�
def= B(Π�)0

is connected, totally epimorphic, Frobenius-slim, and of FSM- and strongly indis-
sectible [hence, in particular, weakly indissectible] type — cf. Example 1.3, (i).
Thus, if “C

�F/F ” is as in [Mzk5], Example 6.3, then

CZ
�

def= C�
def= C

�F/F ×B(G�) D�; CQ
�

def= Cpf
� ; CR

�
def= Crlf

�

determines a Frobenioid CΛ�
� which is of rationally standard type over a Frobenius-

slim base category [cf. [Mzk5], Theorem 6.4, (i), for the case Π� = G�; the case
of arbitrary Π� is entirely similar]. If, moreover, Π� is temp-slim, then D� is slim
[cf. Example 1.3, (i)].
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(iii) Let v ∈ V(F ) be nonarchimedean; K̃v/Fv a Galois extension containing
F̃v; Gv

def= Gal(K̃v/Fv). Thus, we have a natural surjection Gv � Dv ⊆ G�.
Suppose further that we have been given a commutative diagram

Πv � Gv⏐⏐� ⏐⏐�
Π� � G�

of residually finite tempered groups [where the lower horizontal surjection and the
vertical homomorphism on the right are the morphisms that were given previously].
Let

Dv

be one of the categories B(Πv)0, B(Πv)0 ×Pv
Ev [where the functor B(Πv)0 → Pv

is the functor determined by the surjection Πv � Gv � Dv — cf. Example 1.3,
(ii)]. Then the category Dv is connected, totally epimorphic, Frobenius-slim, and of
FSMFF- and strongly indissectible [hence, in particular, weakly indissectible] type
[cf. Example 1.3, (i); Example 1.4, (iii)]. If, moreover, Πv is temp-slim, then Dv is
slim [cf. Example 1.3, (i); Example 1.4, (iii)]. Write

CΛv
v ; CΛv

v

for the respective categories “C” of Example 1.1, (ii), obtained by taking the “D”
of loc. cit. to be Dv, the “Λ” of loc. cit. to be Λv, Λv, and the “Φ” of loc. cit. to
be functors Φv, Φv : Dv → Mon as in loc. cit. such that the following conditions
are satsfied:

(a) Φv ⊆ Φv;

(b) the resulting functors Φbirat
v , Φbirat

v satisfy Φbirat
v = Φbirat

v +Φcnst
v for some

group-like functor Dv → Mon which is constant [i.e., maps all arrows of
Dv to isomorphisms of Mon];

(c) Φv is fieldwise saturated [cf. Example 1.1, (ii)] and supported by Λv [cf.
[Mzk5], Definition 2.4, (ii)].

Thus, CΛv
v , CΛv

v are Frobenioids which are of rationally standard type over a Frobenius-
slim base category [cf. Theorem 1.2, (i)]; the underlying category of CΛv

v , CΛv
v is

of weakly indissectible type [cf. the discussion of §0]. Moreover, [since Λv ≥ Λ�,
Λv ≥ Λv, for all v ∈ V(F )] it follows immediately from the definitions [by restricting
arithmetic divisors on number fields to divisors on their localizations and nonzero
elements of number fields to elements of their completions] that we obtain functors

CΛ�
� → (CΛv

v )�; CΛv
v → CΛv

v

the first of which is GC-admissible and 1-compatible with the natural localization
functor D� → D�

v [arising from the homomorphism “Πv → Π�” — cf. the “pull-
back functor” of Example 1.3, (ii)], and the second of which is LC-unit-admissible
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[cf. [Mzk5], Proposition 5.5, (i)]; also, we note that the “restriction of arithmetic di-
visors” portion of the first of these functors is possible precisely because of condition
(c).

(iv) Let v ∈ V(F ) be archimedean; K̃v/Fv a Galois extension containing F̃v

such that K̃v is complex; Gv
def= Gal(K̃v/Fv). Thus, we have a natural surjection

Gv � Dv ⊆ G�. Suppose further that we have been given a commutative diagram

Πv � Gv⏐⏐� ⏐⏐�
Π� � G�

of residually finite tempered groups [where the lower horizontal surjection and the
vertical homomorphism on the right are the morphisms that were given previously].
Let

Dv

be one of the following categories:

(a) B(Πv)0, B(Πv)0 ×Pv
Ev [where the functor B(Πv)0 → Pv is the functor

determined by the surjection Πv � Gv � Dv — cf. Example 1.3, (ii)];

(b) one of the categories of hyperbolic Riemann surfaces “D” or “E” of
Example 4.3, (i), (ii), (iii), where the tempered group “Π” of loc. cit. is
equal to Πv [in a fashion compatible with the surjection Πv � Gv];

(c) a nonrigidified or rigidifed angloid [i.e., “N ”, “R”] over a base category
as in (a) above [cf. Remark 4.2.1];

(d) a nonrigidified or rigidifed angloid [i.e., “N ”, “R”] over a base category
as in (b) above [cf. Remark 4.2.1].

If Dv is taken to be one of the categories that involves Ev, then let us assume
further that the extension F̃ /F is amply quadratic [cf. Example 4.3, (iii)]. Then
[cf. Example 1.3, (i); Proposition 1.5, (iv); Proposition 4.1, (v); Corollary 4.2,
(iv), (v); Example 4.3, (ii), (iii), (iv); Example 4.4, (ii), (iii), (iv)] the category Dv

is Frobenius-slim and of RC-standard [hence, in particular, connected, totally epi-
morphic, and of FSMFF-type] and either strongly dissectible or weakly indissectible
type; moreover, in cases (b), (d), Dv is always slim, while in cases (a), (c), Dv is
slim whenever Πv is temp-slim. Write

CΛv
v ; CΛv

v

for the respective categories “CΛ” of Example 3.3, (ii), obtained by taking the “D”
of loc. cit. to be Dv and the “Λ” of loc. cit. to be Λv, Λv. Thus, CΛv

v , CΛv
v

are Frobenioids which are of rationally standard type over a Frobenius-slim base
category [cf. Theorem 3.6, (i)]; the underlying category of CΛv

v , CΛv
v is of either

strongly dissectible or weakly indissectible type [cf. the discussion of §0]. Moreover,
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[since Λv ≥ Λ�, Λv ≥ Λv, for all v ∈ V(F )] it follows immediately from the
definitions [by restricting arithmetic divisors on number fields to divisors on their
localizations and nonzero elements of number fields to elements of their completions]
that we obtain functors

CΛ�
� → (CΛv

v )�; CΛv
v → CΛv

v

the first of which is GC-admissible and 1-compatible with the natural localization
functor D� → D�

v [arising from the homomorphism “Πv → Π�” — cf. the “pull-
back functor” of Example 1.3, (ii)], and the second of which is LC-unit-admissible
[cf. [Mzk5], Proposition 5.5, (i)].

(v) Thus, the data

C
def=

(
CΛ�

� , {CΛv
v }v∈V(F ), {CΛv

v }v∈V(F ), {CΛ�
� → (CΛv

v )�}v∈V(F ), {CΛv
v → CΛv

v }v∈V(F )

)

determines a poly-Frobenioid C of poly-rationally standard and poly-non-group-like
type over a Frobenius-slim poly-base category D. In particular, all but the portion
requiring “slimness” of Theorem 5.5 applies to C; the conditions on the data of the
present Example 5.6 necessary for the poly-base category to be slim are as discussed
above.

Remark 5.6.1. Observe that unlike the case with Frobenioids, poly-Frobenioids
are not necessarily totally epimorphic! In a similar vein [cf. the use of the injectivity
condition of [Mzk5], Definition 1.1, (ii), (a), in the proof of the total epimorphicity
portion of [Mzk5], Proposition 1.5], we observe that [again, unlike the case with
Frobenioids] the map induced by a heterogeneous morphism between the values
of the divisor monoids at the domain and codomain is not necessarily injective!
Indeed, these phenomena occur, for instance, if one considers the poly-Frobenioids
of Example 5.6, when Λ� = R.

Remark 5.6.2. Just as in the case of archimedean v, it is natural to consider
Π�, Πv [for nonarchimedean v] arising from the arithmetic fundamental group of
a hyperbolic curve. One may then apply to such Π�, Πv various results from the
absolute anabelian geometry of hyperbolic curves [cf., e.g., [Mzk4]].

Remark 5.6.3. One verifies immediately that, when considering equivalences
of categories between poly-Frobenioids of the sort discussed in Example 5.6, (v),
the induced equivalences of categories between the respective global components
determine a “degree” ∈ R>0, as in [Mzk5], Theorem 6.4, (ii). Moreover, just as
in [Mzk5], Theorem 6.4, (iii), this degree is ∈ Q>0 [even if Λ� = R!] whenever it
holds that the Λv ≤ Q for all v ∈ V(F ). Similarly, just as in [Mzk5], Theorem 6.4,
(iv), this degree = 1 [even if Λ� = R!] whenever it holds that the Λv = Z for all
v ∈ V(F ).
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Appendix: Categorical Representation of Topological Spaces

In this Appendix, we discuss certain classical results concerning how a topo-
logical space may be represented by means of a category.

Let X be a topological space. Then we shall write

Subset(X)

for the category whose objects are the subsets of X [including X , the empty set],
and whose morphisms are the inclusions of subsets of X . Write

Open(X) ⊆ Subset(X); Closed(X) ⊆ Subset(X)

for the full subcategories determined by the open and closed subsets, respectively.
Also, we shall denote by

Open0(X) ⊆ Open(X)

the full subcategory determined by the [nonempty] connected open subsets and by

Shv(X)

the category of sheaves [valued in sets, relative to some universe fixed throughout
the discussion] on X .

Definition A.1.

(i) We shall say that X is locally connected if, for every open subset U ⊆ X and
every point x ∈ U , there exists a connected open subset V ⊆ U such that x ∈ V .
We shall say that X is sober if, for every irreducible closed subset F ⊆ X , there
exists a unique point x ∈ F such that F is equal to the closure of the set {x} in X
[cf. [John], p. 230].

(ii) We shall refer to a collection {Ai}i∈I of distinct objects of Open0(X) as a
collection of disjoint objects if, for any pair of distinct elements i, j of I, there does
not exist an object C ∈ Ob(Open0(X)) that admits a morphism in Open0(X) to
both Ai and Aj .

(iii) Denote by
Disjt(Open0(X))

the category defined as follows: An object of this category is a collection of disjoint
objects {Ui}i∈I [where I is a [possibly empty] set]. A morphism of this category

{Ui}i∈I → {Vj}j∈J

consists of a function f : I → J and a collection of morphisms [in Open0(X)]
Ui → Vf(i) [where i ranges over the elements of I]. Thus, by assigning to an object
of Open0(X) the collection of objects of Open0(X) consisting of this single object,
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and to a collection {Ui}i∈I the object of Open(X) constituted by the union of the
connected open sets determined by the Ui, we obtain natural functors

Open0(X) → Disjt(Open0(X)); Disjt(Open0(X)) → Open(X)

the first of which is easily verified to be fully faithful.

Remark A.1.1. Thus, if X is locally connected, then one verifies immediately
that, relative to the notation of Definition A.1, (ii), the Ai are disjoint if and only if
the open subsets of X to which the Ai correspond are pair-wise mutually “disjoint”
in the usual sense.

Theorem A.2. (Categorical Representation of Topological Spaces) Let
X, Y be topological spaces. Then:

(i) The category Open(X) is equivalent to the opposite category to Closed(X).

(ii) The categories Subset(X), Open(X), Open0(X), Closed(X) are slim.

(iii) By assigning to an object of Open(X) the sheaf on Open(X) represented
by the given object, we obtain a natural functor

Open(X) → Shv(X)

which is fully faithful.

(iv) Suppose that X, Y are sober. Then passing to the induced equivalence
on the categories “Open(−)” determines a bijection between the equivalences of
categories

Open(X) ∼→ Open(Y )

[considered up to isomorphism] and the homeomorphisms X
∼→ Y .

(v) Suppose that X is locally connected. Then the natural functor

Disjt(Open0(X)) → Open(X)

is an equivalence of categories.

(vi) Suppose that X, Y are sober and locally connected. Then passing
to the induced equivalence on the categories “Open0(−)” determines a bijection
between the equivalences of categories

Open0(X) ∼→ Open0(Y )

[considered up to isomorphism] and the homeomorphisms X
∼→ Y .

Proof. The equivalence of assertion (i) is obtained by associating to an open set of
X the closed set of X given by its complement. Assertion (ii) follows immediately
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from the fact that, by definition, the categories in question have no nontrivial auto-
morphisms. Assertion (iii) follows immediately from the definitions and “Yoneda’s
Lemma”. To verify assertion (iv), we recall [cf. [John], Theorem 7.24] that pass-
ing to the induced equivalence on the categories “Shv(−)” determines a bijection
between the equivalences of categories

Shv(X) ∼→ Shv(Y )

[considered up to isomorphism] and the homeomorphisms X
∼→ Y . Note, moreover,

that an open V of X is a union of opens {Uα}α∈I of X if and only if V forms [i.e.,
in Open(X)] an inductive limit [a purely category-theoretic notion!] of the system
constituted by the Uα. Thus, to complete the proof of assertion (iv), it suffices, in
light of the natural embedding of assertion (iii), to observe that Shv(X) may be
reconstructed [by the definition of a “sheaf”!] directly from the category Open(X),
in a fashion that is compatible with the natural embedding of assertion (iii). This
completes the proof of assertion (iv).

Next, we consider assertion (v). First, I claim that every open V of X is a
disjoint union of connected opens of X . Indeed, consider the equivalence relation
on objects of Open0(V ) generated by the pre-equivalence relation that two distinct
objects A, B of Open0(V ) are “pre-equivalent” if the pair of objects A, B fails to
form a collection of disjoint objects of Open0(V ) [i.e., the connected opens corre-
sponding to A, B intersect]. Denote by I the set of equivalence classes of objects of
Open0(V ), relative to this equivalence relation. For i ∈ I, write Ui ∈ Ob(Open(X))
for the union of the connected opens that lie in the class i. Then it follows imme-
diately from the definitions that Ui is a connected open, hence forms an object of
Open0(X). Since, moreover, X is locally connected, it follows that the union of Ui

[as i ranges over the elements of I] is equal to V . This completes the proof of the
claim. Now assertion (v) follows formally.

Finally, we observe that assertion (vi) follows immediately from assertions (iv),
(v), together with the easily verified observation that the category Disjt(Open0(−))
may be reconstructed directly from the category Open0(−), in a fashion that is
compatible with the natural embedding Open0(X) ↪→ Disjt(Open0(X)). ©

Remark A.2.1. Note that neither of the two conditions of “soberness” and
“local connectedness” implies the other. Indeed, suppose that the underlying set
of X is countably infinite, and that the proper [i.e., �= X ] closed subsets of X are
precisely the finite subsets of X . [Consider, for instance, the Zariski topology on
the set of closed points of the affine line over a countable algebraically closed field.]
Then observe that X is irreducible, and that any nonempty open subset Y ⊆ X is
homeomorphic to X , hence, in particular, irreducible. Since irreducible topological
spaces are connected, it thus follows that X is locally connected. On the other hand,
since X is irreducible, but clearly fails to admit a generic point, it follows that X is
not sober. In the “opposite direction”, any infinite “profinite set” [i.e., a projective
limit of finite sets — e.g., the underlying topological space of a profinite group] is
Hausdorff, hence sober, but satisfies the property that every open subset is totally
disconnected, hence fails to be locally connected.
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Index

absolute anabelian geometry of hyperbolic curves, 5.6.2
absolutely primitive, 1.1, (ii)
(A, B)-subset, 3.2
amply quadratic, 4.3, (iii)
angloid (non-rigidified, rigidified), 3.3, (iii), (iv)
angular Frobenioid, 3.3, (iii)
angular region, 3.1, (iii)
archimedean Frobenioid, 3.3, (ii)
archimedean local field (real, complex), 3.1, (i)
arrow-wise essentially surjective, §0
base-pre-tactile, 5.3, (iv)
base-tactile, 5.3, (iv)
birationalization of a poly-Frobenioid, 5.3, (v)
birationally pre-tactile, 5.3, (iv)
birationally tactile, 5.3, (iv)
boundary, 3.1, (iii)

canonical decomposition, 3.1, (ii)
categories associated to hyperbolic Riemann surfaces, 4.3
category of factorizations, §0
co-angular, 3.1, (iii)
collection of base-category grafting data, 5.3, (iii)
collection of disjoint objects, A.1, (i)
collection of Frobenioid-theoretic grafting data, 5.3, (iii)
collection of grafting data, 5.1, (i)
complete birationally tactile collection, 5.3, (iv)
complete objects, 4.3, (i)
complete tactile collection, 5.1, (ii)
complexifiable, 3.1, (v)
complex object, 3.1, (v)
constant, 5.3, (ii)
continuously ordered, §0; 3.2, (vi)
coproduct category, §0
cyclotomic portion, 2.1, (i)

discontinuously ordered, §0
equivalence of collections of grafting data, 5.1, (iii)

fieldwise saturated, 1.1, (ii)

GC-admissible, 5.3, (i)
global component, 5.1, (i)
global contact functor, 5.1, (i)
global morphism/object, 5.1, (i)
grafted category, 5.1, (i)
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grafting, §0
group of units, 3.1, (ii)

heterogeneous, §0; 5.1, (i)
homogeneous, §0
integral, 1.1, (i)
isotropic, 3.1, (iii)
isotropification of a poly-Frobenioid, 5.3, (v)

Kummer class, 2.1, (ii)
Kummer map, 2.1, (ii); 2.3

LC-admissible, 5.3, (ii)
LC-unit-admissible, 5.3, (ii); 5.3, (iii)
local component, 5.1, (i)
local contact functor, 5.1, (i)
locally connected, A.1, (i)
local morphism/object, 5.1, (i)

metric, 1.1, (i)
μN -saturated, 2.1, (i)

naively co-angular, 3.3, (i)
naively isotropic, 3.3, (i)
(N, H)-saturated, 2.2, (ii)

p-adic Frobenioid, 1.1, (ii)
parallelogram objects, 4.3, (i)
perfection of a poly-Frobenioid, 5.3, (v)
P-isomorphism, 1.5
poly-base category, 5.3, (iii)
poly-Frobenioid, 5.3, (iii)
poly-rationally standard, 5.3, (vi)
poly-standard, 5.3, (vi)
pre-tactile, 5.1, (ii)

quasi-continuously ordered, §0
quasi-temperoid, 1.3, (i)
quasi-totally ordered, §0
RC-anchor, 3.1, (v)
RC-connected, 3.1, (v)
RC-iso-subanchor, 3.1, (v)
RC-standard, 3.1, (v)
RC-subanchor, 3.1, (v)
realification of a poly-Frobenioid, 5.3, (v)
real object, 3.1, (v)
reciprocity map, 2.3

slit morphism, 3.3, (v)
sober, A.1, (i)
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strictly partially ordered, §0
strongly (in)dissectible, §0
tactile, 5.1, (ii)
tempered topological group, 1.3, (i)
temperoid, 1.3, (i)
temp-slim, 1.3, (i)
tip, 3.1, (iii)
totally ordered, §0
totally tactile, 5.1, (ii)

uniformly dissectible, 5.1, (ii)
unit-trivialization of a poly-Frobenioid, 5.3, (v)

weakly (in)dissectible, §0
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