The Hodge-Arakelov Theory of Elliptic Curves

Shinichi Mochizuki Research Institute for Mathematical Sciences Kyoto University Kyoto 606-8502, JAPAN motizuki@kurims.kyoto-u.ac.jp
§1. Main Results
(Comparison Isomorphisms and Arithmetic Kodaira-Spencer

Morphism)
§2. Philosophy: In Search of an Absolute Derivative

§1. Main Results

(A.) Simple Version of the Main Comparison Theorem
K : a field of characteristic 0
E : an elliptic curve/ K
E^{\dagger} : its universal extension
$=\left\{\right.$ moduli of $\left(\mathcal{L}, \nabla_{\mathcal{L}}\right):$
$\left.\left(\mathcal{L}, \nabla_{\mathcal{L}}\right): \operatorname{deg}(\mathcal{L})=0\right\}$
$\stackrel{\text { char }}{=}{ }^{0} H_{\mathrm{DR}}^{1}\left(E, \mathcal{O}_{E}^{\times}\right)$
$\underline{\text { Over C }}: E^{\dagger}=H_{\mathrm{DR}}^{1}\left(E, \mathcal{O}_{E}\right) / \Lambda$
where $\Lambda=H_{\text {sing }}^{1}(E, 2 \pi i \mathbf{Z}) \cong \mathbf{Z}^{2}$
In general:
Tang. sp. to $E^{\dagger}=H_{\mathrm{DR}}^{1}\left(E, \mathcal{O}_{E}\right)$

Char. 0: ${ }_{d} E^{\dagger} \cong{ }_{d} E \xlongequal{\text { def }} \operatorname{ker}[d]: E \rightarrow E$ (d : a positive integer)
(in mixed char., denominators arise)
$\eta \in E(K)$: torsion point of order m, s. t. d does not divide m
$\mathcal{L} \stackrel{\text { def }}{=} \mathcal{O}_{E}(d \cdot[\eta])$

Theorem: The restriction morphism

$$
\left.\Gamma\left(E^{\dagger}, \mathcal{L}\right)^{<d} \xrightarrow{\sim} \mathcal{L}\right|_{d E^{\dagger}}
$$

is an isomorphism.

2

Note:

(1.) " $<d$ " denotes torsorial degree (relative degree: $\left.E^{\dagger} / E\right)<d$.
(2.) Both sides are K-vector spaces of dimension d^{2}.
(3.) Theorem false if d divides m. (e.g., if $d=m=1$, then
$\left.\Gamma\left(E, \mathcal{O}_{E}\left(\left[0_{E}\right]\right)=\mathcal{L}\right) \rightarrow \mathcal{L}\right|_{0_{E}}$ is 0$)$
(4.) Proof:

Mumford's algebraic theta functions + Zhang's theory of admins. metrics

+ complicated degree computations

(B.) Integral Structures at "Arithmetic" Primes

In general:

$$
0 \rightarrow \omega_{E} \rightarrow E^{\dagger} \rightarrow E \rightarrow 0
$$

$\left(\omega_{E}=\right.$ invariant diffs. on $\left.E\right)$
Near "point at infinity" ∞ :

$$
E=\mathbf{G}_{\mathrm{m}} / q^{\mathbf{Z}}
$$

("Tate curve")
\Longrightarrow Over power series in q ('hat'):

$$
\widehat{E}=\widehat{\mathbf{G}}_{\mathrm{m}}
$$

$$
\widehat{E}^{\dagger}=\widehat{\mathbf{G}}_{\mathrm{m}} \times \widehat{\omega}_{E}=\widehat{\mathbf{G}}_{\mathrm{m}} \times\left\langle\frac{d g}{q}\right\rangle
$$

Integral structure

at finite primes (mixed char.):

$$
\mathcal{O}_{\widehat{E}}[T]=\oplus \mathcal{O}_{\widehat{E}} \cdot T^{j} \Longrightarrow \bigoplus \mathcal{O}_{\widehat{E}} \cdot \frac{1}{j!} \cdot T^{j}
$$

where T : coors. on ω_{E}, def'd by $\frac{d q}{q}$
...(p-adic analytically) extends
over all $\overline{\mathcal{M}}_{1,0}$, not just near ∞
Integral Structure Near ∞ :
$\bigoplus \mathcal{O}_{\widehat{E}} \cdot \frac{1}{j!} \cdot T^{j} \Longrightarrow$

$$
\oplus \mathcal{O}_{\widehat{E}} \cdot \frac{1}{j!} \cdot q \approx-j^{2} / 8 d \cdot T^{j}
$$

"Gaussian poles" (cf. $e^{-x^{2}}$)

Important Theme:

Gaussian and its derivatives
(cf. Hermite polynomials) ...also, main obstruct. to Dio. applics.

Integral Structure at Arch. Primes:
To relate 'DR metric' to 'étale metric' \Longrightarrow approximate by comparison to special functions - models:
Hermite polys. $\left(\right.$ slope $\left.=\frac{1}{2}\right)$
Legendre polys. (slope $=1$)
$=\lim$ (disc. Tchebycheff polys.)
Binomial polys. $=\binom{T}{r}($ slope $=0)$
slope $=$ scaling factor as $d \rightarrow \infty$ (cf. Frobenius on cryst. coh.)

(C.) Arithmetic Kodaira-Spencer Morphism

Main Theorem is a sort of function-theoretic comp. isom.:
linear fns. + completion of tors. pts. \Longrightarrow get classical comp. isoms.:

Over C:

$$
\begin{array}{ccc}
H_{\mathrm{DR}}^{1}\left(E, \mathcal{O}_{E}\right) & \supseteq & H_{\text {sing }}^{1}(E, 2 \pi i \cdot \mathbf{R}) \\
\downarrow & & \downarrow \\
E^{\dagger} & \supseteq & E_{\mathbf{R}}
\end{array}
$$

Over p-adics:

Hodge-Tate, DR comp. isoms:

$$
{ }^{\prime} H_{\mathrm{DR}}^{1} \cong H_{\text {ét }}^{1},
$$

also def'able by rest. to p^{∞} tors. pts.

In general (global, \mathbf{C}, p-adics):
$\{\mathrm{DR}$ coh. $\} \xrightarrow{\sim}$ \{ét. coh. $\} \curvearrowleft \underline{\text { Galois }}$
\Longrightarrow Galois acts on DR coh.!!
\Longrightarrow Look at effect on Hodge filtr.
\Longrightarrow Kodaira-Spencer morphism
motion in base
\mapsto induced motion of Hodge filtr.

Over C:

"Galois" $=S L_{2}(\mathbf{R})$ on upp. half-plane \Longrightarrow above 'arith. KS' = classical KS

Over p-adics:

$\operatorname{Gal}\left(\mathbf{Z}_{p}[[T]]_{\mathbf{Q}_{p}}\right)$

$$
\approx \text { Tang. bun. }\left(\mathbf{Z}_{p}[[T]]_{\mathbf{Q}_{p}}\right)
$$

(Faltings' theory of alm. et. extns.)
\Longrightarrow above 'arith. KS' = classical KS
(cf. Serre-Tate theory)

Hodge-Arakelov (global) Case:

Gal (Base of Fam. of Ell. Curves \otimes Q) $\xrightarrow{\text { arith. }}{ }^{K S}\{\underline{\text { Arak.-theoretic flag bun. }\} \text { !! }}$

§2. Philosophy: In Search of an

 Absolute Derivative
(A.) From Differentiation

 to Comparison Isomorphisms$S:$ a scheme; $E \rightarrow S$ fam. of ell. curves \Longrightarrow classifying morphism $S \rightarrow \mathcal{M}_{1,0}$ $\left.\Longrightarrow \underline{\text { derivative }}(\mathrm{KS}) \Omega_{\mathcal{M}_{1,0}}\right|_{S} \rightarrow \Omega_{S}$ \Downarrow

Does \exists arithmetic/absolute analogue

$$
\left.' \Omega_{\mathcal{M}_{1,0}}\right|_{S} \rightarrow \Omega_{\mathbf{Z} / \mathbf{F}_{1}}{ }^{\prime}
$$

(when $S=\operatorname{Spec}(\mathbf{Z})$,

$$
\text { or } \left.\operatorname{Spec}\left(\mathcal{O}_{F}\right),[F: \mathbf{Q}]<\infty\right) ?
$$

Observe: $\left.\Omega_{\mathcal{M}_{1,0}}\right|_{S}=\omega_{E}^{\otimes 2}$, and

$$
\begin{aligned}
\omega_{E} \hookrightarrow H_{\mathrm{DR}}^{1}(E) & \xrightarrow{\nabla_{\mathrm{GM}}} H_{\mathrm{DR}}^{1}(E) \otimes \Omega_{S} \\
& \longrightarrow \tau_{E} \otimes \Omega_{S}
\end{aligned}
$$

$\left.\Longrightarrow \Omega_{\mathcal{M}_{1,0}}\right|_{S}=\omega_{E}^{\otimes 2} \rightarrow \Omega_{S}(\mathrm{KS})$
$\left(\nabla_{\mathrm{GM}}: \underline{\left.\text { Gauss-Manin conn. on } H_{\mathrm{DR}}^{1}\right) ~}\right.$
\Downarrow
Since $\exists H_{\mathrm{DR}}^{1}$, Hodge filtr. $\left(\omega_{E} \hookrightarrow H_{\mathrm{DR}}^{1}\right)$ in arith. case, need analogue of ∇_{GM}

\Longrightarrow Recall de Rham isomorphism $(=$ comparison isomorphism /C):

S : Riemann surface
$H_{\mathrm{DR}}^{1}(E / S) \cong H_{\text {sing }}^{1}(E / S, \mathbf{Z}) \otimes_{\mathbf{z}} \mathcal{O}_{S}$
\Longrightarrow sections of $H_{\text {sing }}^{1}(E / S, \mathbf{Z})$ are horizontal for ∇_{GM}
$\Longrightarrow \nabla_{\mathrm{GM}}$ is the unique conn. for which sects. of $H_{\text {sing }}^{1}(E / S, \mathbf{Z})$ are horiz.
\Downarrow
Knowledge of comp. isom. \Longrightarrow
Knowledge of ∇_{GM}
Conclusion: To construct arith. KS, suffices to construct arith. comp. isom.
(B.) Function-Theoretic Comparison Isomorphisms

So what form should a (global) arith. comp. isom. (ACI) take?
(e.g., over C: $\otimes \mathbf{C}$;
over p-adics: $\otimes B_{\mathrm{DR}}, B_{\text {crys }}$, etc.)
In geometric case/C: one implicit sign of exist. of ∇_{GM} is a sort of 'stability':

$$
0 \rightarrow \omega_{E} \rightarrow H_{\mathrm{DR}}^{1}(E / S) \rightarrow \tau_{E} \rightarrow 0
$$

If this sequ. split - ie.,
H_{DR}^{1} is 'unstable' - then
$\exists \nabla$ on ω_{E} (= ample l.b.): ABSURD!

13
\Longrightarrow Even if can't translate ' ∇ ' into arith. case, can translate stability - i.e., of Arakelov bundles $=$ usual v.b. + metric
\Longrightarrow 'Stability' (e.g., over Z)
$=$ 'equidistrib. of matter in lattice'

Note: Arakelov degree large (small) \Longleftrightarrow matter dense (sparse)
\Downarrow

Expected Form I of ACI:

$\{$ Matter Distrib. in DR coh. $\}$
$\cong\{$ Matter Distrib. in étale coh. $\}$
14

Note: RHS is 'equidist.' by 'Galois' $\Longrightarrow \mathrm{By} \mathrm{ACI}$, LHS also 'equidist.'

In no. theory, 'matter distributions' typically measured by 'test fins.'

Expected Form II of ACI:

$\{$ test fins. on DR coh. $\}$
$\cong\{$ test fins. on étale coh. $\}$
where ' \cong ' is isometry at all primes of a number field (cf. Arak. theory)
$\ldots=$ the content of the main theorem!!
'Hodge-Arakelov Comp. Isom.'

15

'Split' distrib. of matter:

'Equidist.' distrib. of matter:

(C.) Discretization and the Meaning of Nonlinearity

Note: To measure distribs. in this case, need nonlinear test fns. - cf. linearity of Hodge theory/C, p-adics, additive approach to motive theory.

Reasons for Nonlinearity:

(1.) In Arakelov theory, things tend to become nonlinear (e.g., $\left.H^{0}(\mathcal{L})\right)$.
(2.) Nonlinear symmetries of noncomm. torus \approx theta gp.
\approx Heisenberg alg. (cf. Gaussians!)

Also, related to discreteness:
Hodge-Arakelov Comp. Isom. = 'discretization of loc. Hodge theories'

- e.g.,

Hodge theory $/ \mathbf{C} \approx$ 'calculus on $E_{\mathbf{R}}$ '
$\mathrm{HACI} \approx$ 'discrete calc. on tors. pts.'
\Longrightarrow periods analogous to
$2 \pi i=\lim _{d \rightarrow \infty} d \cdot\left(e^{2 \pi i / d}-1\right)$
$=\lim _{d \rightarrow \infty}$ ('theta fins.' on \mathbf{G}_{m} eval-
rated on tors. pts. of \mathbf{G}_{m})

18

