The Hodge-Arakelov Theory of Elliptic Curves, I

Shinichi Mochizuki Research Institute for Mathematical Sciences Kyoto University Kyoto 606-8502, JAPAN motizuki@kurims.kyoto-u.ac.jp

§1. Main Results (Comparison Isomorphisms and Arithmetic Kodaira-Spencer Morphism)

§2. Philosophy: In Search of an Absolute Derivative

§1. Main Results (A.) Simple Version of the Main Comparison Theorem

$$K: \text{ a field of characteristic } 0$$

$$E: \text{ an elliptic curve}/K$$

$$E^{\dagger}: \text{ its universal extension}$$

$$= \{ \text{ moduli of } (\mathcal{L}, \nabla_{\mathcal{L}}) :$$

$$(\mathcal{L}, \nabla_{\mathcal{L}}) : \text{ deg}(\mathcal{L}) = 0 \}$$

$$\stackrel{\text{char } 0}{=} H^{1}_{\text{DR}}(E, \mathcal{O}_{E}^{\times})$$

<u>Over C</u>: $E^{\dagger} = H^1_{\mathrm{DR}}(E, \mathcal{O}_E) / \Lambda$

 $= E_{\mathbf{R}} \otimes_{\mathbf{R}} \mathbf{C}$ (under. real an. man.)

where $\Lambda = H^1_{\text{sing}}(E, 2\pi i \mathbf{Z}) \cong \mathbf{Z}^2$

In general:

Tang. sp. to $E^{\dagger} = H^{1}_{\text{DR}}(E, \mathcal{O}_{E})$

<u>Char. 0</u>: $_{d}E^{\dagger} \cong _{d}E \stackrel{\text{def}}{=} \ker [d] : E \to E$ (d: a positive integer)

(in mixed char., <u>denominators</u> arise)

 $\eta \in E(K)$: torsion point of order m, s. t. d does not divide m

 $\mathcal{L} \stackrel{\mathrm{def}}{=} \mathcal{O}_E(d \cdot [\eta])$

<u>Theorem</u>: The restriction morphism

 $\Gamma(E^{\dagger}, \mathcal{L})^{< d} \xrightarrow{\sim} \mathcal{L}|_{dE^{\dagger}}$ is an isomorphism.

<u>Note</u>:

- (1.) "< d" denotes torsorial degree (relative degree: E^{\dagger}/E) < d.
- (2.) Both sides are K-vector spaces of dimension d^2 .
- (3.) Theorem false if d divides m. (e.g., if d = m = 1, then $\Gamma(E, \mathcal{O}_E([0_E]) = \mathcal{L}) \to \mathcal{L}|_{0_E}$ is 0)

$(4.) \underline{\text{Proof}}:$

Mumford's algebraic theta functions + Zhang's theory of admiss. metrics + complicated degree computations

(B.) Integral Structures at "Arithmetic" Primes

In general:

 $0 \to \omega_E \to E^\dagger \to E \to 0$ $(\omega_E = \text{invariant diffs. on } E)$ <u>Near "point at infinity" ∞ :</u> $E = \mathbf{G}_{\mathrm{m}}/q^{\mathbf{Z}}$ ("Tate curve") \implies Over power series in q ('hat'): $\widehat{E} = \widehat{\mathbf{G}}_{\mathrm{m}}$ $\widehat{E}^{\dagger} = \widehat{\mathbf{G}}_{\mathrm{m}} \times \widehat{\omega}_{E} = \widehat{\mathbf{G}}_{\mathrm{m}} \times \langle \frac{dU}{U} \rangle$ Integral structure at finite primes:

$$\mathcal{O}_{\widehat{E}}[T] = \bigoplus \mathcal{O}_{\widehat{E}} \cdot T^{j} \Longrightarrow$$
$$\bigoplus \mathcal{O}_{\widehat{E}} \cdot {\binom{T - \eta_{\infty} - \frac{1}{2}}{j}}$$
where T: coord. on ω_{E} , def'd by $\frac{dU}{U}$...(p-adic analytically) extends
over all $\overline{\mathcal{M}}_{1,0}$, not just near ∞
Integral Structure Near ∞ :

 $\bigoplus \mathcal{O}_{\widehat{E}} \cdot {\binom{T - \eta_{\infty} - \frac{1}{2}}{j}} \Longrightarrow$ $\bigoplus \mathcal{O}_{\widehat{E}} \cdot q \approx -j^2/8d \cdot {\binom{T - \eta_{\infty} - \frac{1}{2}}{j}}$ "<u>Gaussian poles</u>" (cf. e^{-x^2})

<u>Important Theme</u>:

Gaussian and its derivatives (cf. Hermite polynomials) ...also, main obstruct. to Dio. applics.

Integral Structure at Arch. Primes:

To relate '<u>DR metric</u>' to '<u>étale metric</u>' \implies approximate by comparison to special functions — models:

<u>Hermite</u> polys. (slope = $\frac{1}{2}$) <u>Legendre</u> polys. (slope = 1) = lim (disc. Tchebycheff polys.) <u>Binomial</u> polys. = $\binom{T}{r}$ (slope = 0)

 $\frac{\text{slope}}{(\text{cf. Frobenius} \text{ on cryst. coh.})}$

(C.) Arithmetic Kodaira-Spencer Morphism

Main Theorem is a sort of <u>function-theoretic comp. isom.</u>:

 $\frac{\text{linear fns.} + \text{completion of tors. pts.}}{\implies \text{get classical comp. isoms.}}$

<u>Over \mathbf{C} </u>:

 $\begin{array}{ccc} H^1_{\mathrm{DR}}(E,\mathcal{O}_E) & \supseteq & H^1_{\mathrm{sing}}(E,2\pi i \cdot \mathbf{R}) \\ \downarrow & \downarrow & \downarrow \\ E^{\dagger} & \supseteq & E_{\mathbf{R}} \end{array}$

Over *p*-adics:

Hodge-Tate, DR comp. isoms: $H^{1}_{\mathrm{DR}} \cong H^{1}_{\mathrm{\acute{e}t}}$ also def'able by rest. to p^{∞} tors. pts. In general (global, \mathbf{C} , *p*-adics): $\left\{ \text{DR coh.} \right\} \xrightarrow{\sim} \left\{ \text{ét. coh.} \right\} \curvearrowleft \underline{\text{Galois}}$ \implies Galois acts on DR coh.!! \implies Look at effect on Hodge filtr. \implies Kodaira-Spencer morphism motion in base

 \mapsto induced motion of Hodge filtr.

$\underline{\text{Over } \mathbf{C}}$:

"Galois" = $SL_2(\mathbf{R})$ on upp. half-plane $\implies \text{above `arith. KS' = classical KS}$

Over *p*-adics:

 $Gal(\mathbf{Z}_p[[T]]_{\mathbf{Q}_p})$ \approx Tang. bun. $(\mathbf{Z}_p[[T]]_{\mathbf{Q}_p})$ (Faltings' theory of alm. et. extns.) \implies <u>above 'arith. KS' = classical KS</u> (cf. Serre-Tate theory)

 $\frac{\text{Hodge-Arakelov (global) Case}:}{\underline{\text{Gal}(\text{Base of Fam. of Ell. Curves} \otimes \mathbf{Q})}$ $\xrightarrow{\text{arith. KS}}{\underline{\text{Arak}}}.-\text{theoretic flag bun.} !!$

§2. Philosophy: In Search of an Absolute Derivative (A.) From Differentiation to Comparison Isomorphisms

 $S: \text{ a scheme; } E \to S \text{ fam. of ell. curves} \\ \Longrightarrow \underline{\text{classifying morphism}} S \to \mathcal{M}_{1,0} \\ \Longrightarrow \underline{\text{derivative}} (\text{KS}) \ \Omega_{\mathcal{M}_{1,0}}|_S \to \Omega_S \\ \Downarrow \\ \end{cases}$

Does \exists <u>arithmetic/absolute analogue</u>

$$\Omega_{\mathcal{M}_{1,0}}|_S \to \Omega_{\mathbf{Z}/\mathbf{F}_1}$$

(when
$$S = \operatorname{Spec}(\mathbf{Z})$$
,
or $\operatorname{Spec}(\mathcal{O}_F)$, $[F : \mathbf{Q}] < \infty$)?

<u>Observe</u>: $\Omega_{\mathcal{M}_{1,0}}|_{S} = \omega_{E}^{\otimes 2}$, and $\omega_{E} \hookrightarrow H^{1}_{\mathrm{DR}}(E) \xrightarrow{\nabla_{\mathrm{GM}}} H^{1}_{\mathrm{DR}}(E) \otimes \Omega_{S}$ $\longrightarrow \tau_{E} \otimes \Omega_{S}$ $\Longrightarrow \Omega_{\mathcal{M}_{1,0}}|_{S} = \omega_{E}^{\otimes 2} \to \Omega_{S}$ (KS)

 $(\nabla_{\mathrm{GM}}: \underline{\mathrm{Gauss-Manin\ conn.}} \text{ on } H^1_{\mathrm{DR}})$ \Downarrow

Since $\exists H_{\mathrm{DR}}^1$, Hodge filtr. $(\omega_E \hookrightarrow H_{\mathrm{DR}}^1)$ in arith. case, need <u>analogue of ∇_{GM} </u>

 $\implies \text{Recall } \underline{\text{de Rham isomorphism}} \\ (= \text{comparison isomorphism}/\mathbf{C}):$

 $S: \underline{\text{Riemann surface}} \Longrightarrow$

 $H^1_{\mathrm{DR}}(E/S) \cong H^1_{\mathrm{sing}}(E/S, \mathbf{Z}) \otimes_{\mathbf{Z}} \mathcal{O}_S$

- \implies sections of $H^1_{\text{sing}}(E/S, \mathbb{Z})$ are <u>horizontal</u> for ∇_{GM}
- $\implies \nabla_{\text{GM}} \text{ is the <u>unique conn.</u> for which sects. of <math>H^1_{\text{sing}}(E/S, \mathbb{Z})$ are horiz.

\downarrow

Knowledge of <u>comp. isom.</u> \Longrightarrow Knowledge of $\nabla_{\rm GM}$

<u>Conclusion</u>: To construct <u>arith. KS</u>, suffices to construct <u>arith. comp. isom.</u>

(B.) Function-Theoretic Comparison Isomorphisms

So what <u>form</u> should a (global) <u>arith. comp. isom.</u> (ACI) take?

(e.g., <u>over \mathbf{C} </u>: $\otimes \mathbf{C}$; <u>over p-adics</u>: $\otimes B_{\mathrm{DR}}, B_{\mathrm{crys}}, \mathrm{etc.}$)

In geometric case/C: one <u>implicit</u> sign of exist. of ∇_{GM} is a sort of <u>stability</u>:

 $0 \to \omega_E \to H^1_{\mathrm{DR}}(E/S) \to \tau_E \to 0$

If this sequ. <u>split</u> — i.e., H_{DR}^1 is '<u>unstable</u>' — then $\exists \nabla \text{ on } \omega_E$ (= ample l.b.): ABSURD! $\implies \text{Even if can't translate `\nabla' into}$ arith. case, <u>can translate stability</u> - i.e., of <u>Arakelov</u> bundles = usual v.b. + metric

 $\implies \text{`Stability' (e.g., over } \mathbf{Z}) \\ = \text{`equidistrib. of matter} \text{ in lattice'}$

 $\frac{\text{Note:}}{\iff} \text{ matter dense (small)}$

 \downarrow

 $\frac{\text{Expected Form I of ACI}}{\left\{\text{Matter Distrib. in DR coh.}\right\}}$ $\cong \left\{\text{Matter Distrib. in étale coh.}\right\}$

<u>Note</u>: RHS is 'equidist.' by 'Galois' \implies By ACI, LHS also 'equidist.'

In no. theory, '<u>matter distributions</u>' typically measured by '<u>test fns.</u>' \Longrightarrow

 $\frac{\text{Expected Form II of ACI}}{\{\text{test fns. on DR coh.}\}}$ $\cong \{\text{test fns. on étale coh.}\}$

where ' \cong ' is <u>isometry</u> at <u>all primes</u> of a number field (cf. Arak. theory)

 \dots = the content of the main theorem!!

'<u>Hodge-Arakelov Comp. Isom.</u>'

'Split' distrib. of matter:

'Equidist.' distrib. of matter:

(C.) Discretization and the Meaning of Nonlinearity

<u>Note</u>: To measure distribs. in this case, need <u>nonlinear</u> test fns. — cf. <u>linearity</u> of Hodge theory/ \mathbf{C} , *p*-adics, <u>additive</u> approach to motive theory.

<u>Reasons for Nonlinearity</u>:

(1.) In <u>Arakelov theory</u>, things tend to become nonlinear (e.g., $H^0(\mathcal{L})$).

(2.) <u>Nonlinear symmetries</u> of noncomm. torus \approx theta gp. \approx Heisenberg alg. (cf. Gaussians!) Also, related to <u>discreteness</u>: Hodge-Arakelov Comp. Isom. = '<u>discretization</u> of loc. Hodge theories'

— e.g.,

Hodge theory/ $\mathbf{C} \approx$ 'calculus on $E_{\mathbf{R}}$ ' HACI \approx 'discrete calc. on tors. pts.'

 \implies <u>periods</u> analogous to

$$2\pi i = \lim_{d \to \infty} d \cdot (e^{2\pi i/d} - 1)$$
$$= \lim_{d \to \infty} (\text{'theta fns.' on } \mathbf{G}_{\mathrm{m}} \text{ evaluated on tors. pts. of } \mathbf{G}_{\mathrm{m}})$$