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Abstract. In the present paper, which forms the third part of a three-part series

on an algorithmic approach to absolute anabelian geometry, we apply the ab-
solute anabelian technique of Belyi cuspidalization developed in the second part,
together with certain ideas contained in an earlier paper of the author concerning the
category-theoretic representation of holomorphic structures via either the topologi-

cal group SL2(R) or the use of “parallelograms, rectangles, and squares”, to develop
a certain global formalism for certain hyperbolic orbicurves related to a once-
punctured elliptic curve over a number field. This formalism allows one to construct
certain canonical rigid integral structures, which we refer to as log-shells, that

are obtained by applying the logarithm at various primes of a number field. More-
over, although each of these local logarithms is “far from being an isomorphism” both
in the sense that it fails to respect the ring structures involved and in the sense [cf.

Frobenius morphisms in positive characteristic!] that it has the effect of exhibiting
the “mass” represented by its domain as a “somewhat smaller collection of mass”
than the “mass” represented by its codomain, this global formalism allows one to
treat the logarithm operation as a global operation on a number field which satisfies

the property of being an “isomomorphism up to an appropriate renormal-
ization operation”, in a fashion that is reminiscent of the isomorphism induced
on differentials by a Frobenius lifting, once one divides by p. More generally, if one
thinks of number fields as corresponding to positive characteristic hyperbolic curves

and of once-punctured elliptic curves on a number field as corresponding to nilpotent
ordinary indigenous bundles on a positive characteristic hyperbolic curve, then many
aspects of the theory developed in the present paper are reminiscent of [the positive
characteristic portion of] p-adic Teichmüller theory.
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§I1. Summary of Main Results

Let k be a finite extension of the field Qp of p-adic numbers [for p a prime

number]; k an algebraic closure of k; Gk
def
= Gal(k/k). Then the starting point of

the theory of the present paper lies in the elementary observation that although
the p-adic logarithm

logk : k
× → k

[normalized so that p �→ 0] is not a ring homomorphism, it does satisfy the
important property of being Galois-equivariant [i.e., Gk-equivariant].

In a similar vein, if F is an algebraic closure of a number field F , GF
def
=

Gal(F/F ), and k, k arise, respectively, as the completions of F , F at a nonar-
chimedean prime of F , then although the map logk does not extend, in any natural

way, to a map F
× → F [cf. Remark 5.4.1], it does extend to the “disjoint union

of the logk’s at all the nonarchimedean primes of F” in a fashion that is Galois-
equivariant [i.e., GF -equivariant] with respect to the natural action of GF on the

resulting disjoint unions of the various k
× ⊆ k.

Contemplation of the elementary observations made above led the author to
the following point of view:

The fundamental geometric framework in which the logarithm operation
should be understood is not the ring-theoretic framework of scheme theory,
but rather a geometric framework based solely on the abstract profinite
groups Gk, GF [i.e., the Galois groups involved], i.e., a framework which
satisfies the key property of being “immune” to the operation of applying
the logarithm.

Such a group-theoretic geometric framework is precisely what is furnished by the
enhancement of absolute anabelian geometry — which we shall refer to as mono-
anabelian geometry — that is developed in the present paper.

This enhancement may be thought of as a natural outgrowth of the algorithm-
based approach to absolute anabelian geometry, which forms the unifying theme [cf.
the Introductions to [Mzk20], [Mzk21]] of the three-part series of which the present
paper constitutes the third, and final, part. From the point of view of the present
paper, certain portions of the theory and results developed in earlier papers of the
present series — most notably, the theory of Belyi cuspidalizations developed in
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[Mzk21], §3 — are relevant to the theory of the present paper partly because of their
logical necessity in the proofs, and partly because of their philosophical relevance
[cf., especially, the discussion of “hidden endomorphisms” in the Introduction to
[Mzk21]; the theory of [Mzk21], §2].

Note that a ring may be thought of as a mathematical object that consists
of “two combinatorial dimensions”, corresponding to its additive structure,
which we shall denote by the symbol �, and its multiplicative structure, which
we shall denote by the symbol � [cf. Remark 5.6.1, (i), for more details]. One
way to understand the failure of the logarithm to be compatible with the ring
structures involved is as a manifestation of the fact that the logarithm has the
effect of “tinkering with, or dismantling, this two-dimensional structure”. Such
a dismantling operation cannot be understood within the framework of ring [or
scheme] theory. That is to say, it may only be understood from the point of view
of a geometric framework that “lies essentially outside”, or “is neutral with
respect to”, this two-dimensional structure [cf. the illustration of Remark 5.10.2,
(iii)].

One important property of the p-adic logarithm logk discussed above is that
the image

logk(O
×
k ) ⊆ k

— which is compact — may be thought of as defining a sort of canonical rigid
integral structure on k. In the present paper, we shall refer to the “canonical
rigid integral structures” obtained in this way as log-shells. Note that the image
logk(k

×) of k× via logk is, like logk(O
×
k ) [but unlike k×!], compact. That is to

say, the operation of applying the p-adic logarithm may be thought of as a sort of
“compression” operation that exhibits the “mass” represented by its domain as a
“somewhat smaller collection of mass” than the “mass” represented by its codomain.
In this sense, the p-adic logarithm is reminiscent of the Frobenius morphism
in positive characteristic [cf. Remark 3.6.2 for more details]. In particular, this
“compressing nature” of the p-adic logarithm may be thought of as being one that
lies in sharp contrast with the nature of an étale morphism. This point of view is
reminiscent of the discussion of the “fundamental dichotomy” between “Frobenius-
like” and “étale-like” structures in the Introduction of [Mzk16]. In the classical
p-adic theory, the notion of a Frobenius lifting [cf. the theory of [Mzk1], [Mzk4]]
may be thought of as forming a bridge between the two sides of this dichotomy [cf.
the discussion of mono-theta environments in the Introduction to [Mzk18]!] — that
is to say, a Frobenius lifting is, on the one hand, literally a lifting of the Frobenius
morphism in positive characteristic and, on the other hand, tends to satisfy the
property of being étale in characteristic zero, i.e., of inducing an isomorphism on
differentials, once one divides by p.

In a word, the theory developed in the present paper may be summarized as
follows:

The thrust of the theory of the present paper lies in the development of a
formalism, via the use of ring/scheme structures reconstructed via mono-
anabelian geometry, in which the “dismantling/compressing nature” of the
logarithm operation discussed above [cf. the Frobenius morphism in pos-
itive characteristic] is “reorganized” in an abstract combinatorial fashion
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that exhibits the logarithm as a global operation on a number field
which, moreover, is a sort of “isomomorphism up to an appropriate
renormalization operation” [cf. the isomorphism induced on differen-
tials by a Frobenius lifting, once one divides by p].

One important aspect of this theory is the analogy between this theory and [the
positive characteristic portion of] p-adic Teichmüller theory [cf. §I5 below], in
which the “naive pull-back” of an indigenous bundle by Frobenius never yields a
bundle isomorphic to the original indigenous bundle, but the “renormalized Frobe-
nius pull-back” does, in certain cases, allow one to obtain an output bundle that is
isomorphic to the original input bundle.

At a more detailed level, the main results of the present paper may be sum-
marized as follows:

In §1, we develop the absolute anabelian algorithms that will be necessary in
our theory. In particular, we obtain a semi-absolute group-theoretic recon-
struction algorithm [cf. Theorem 1.9, Corollary 1.10] for hyperbolic orbicurves
of strictly Belyi type [cf. [Mzk21], Definition 3.5] over sub-p-adic fields — i.e., such
as number fields and nonarchimedean completions of number fields — that is func-
torial with respect to base-change of the base field. Moreover, we observe that
the only “non-elementary” ingredient of these algorithms is the technique of Belyi
cuspidalization developed in [Mzk21], §3, which depends on the main results of
[Mzk5] [cf. Remark 1.11.3]. If one eliminates this non-elementary ingredient from
these algorithms, then, in the case of function fields, one obtains a very elemen-
tary semi-absolute group-theoretic reconstruction algorithm [cf. Theorem 1.11],
which is valid over somewhat more general base fields, namely base fields which
are “Kummer-faithful” [cf. Definition 1.5]. The results of §1 are of interest as
anabelian results in their own right, independent of the theory of later portions
of the present paper. For instance, it is hoped that elementary results such as
Theorem 1.11 may be of use in introductions to anabelian geometry for advanced
undergraduates or non-specialists [cf. [Mzk8], §1].

In §2, we develop an archimedean — i.e., complex analytic — analogue of the
theory of §1. One important theme in this theory is the definition of “archimedean
structures” which, like profinite Galois groups, are “immune to the ring structure-
dismantling and compressing nature of the logarithm”. For instance, the notion
that constitutes the archimedean counterpart to the notion of a profinite Galois
group is the notion of an Aut-holomorphic structure [cf. Definition 2.1; Propo-
sition 2.2; Corollary 2.3], which was motivated by the category-theoretic approach
to holomorphic structures via the use of the topological group SL2(R) given in
[Mzk14], §1. In this context, one central fact is the rather elementary observation
that the group of holomorphic or anti-holomorphic automorphisms of the unit disc
in the complex plane is commensurably terminal [cf. [Mzk20], §0] in the group of
self-homeomorphisms of the unit disc [cf. Proposition 2.2, (ii)]. We also give an “al-
gorithmic refinement” of the “parallelograms, rectangles, squares approach”
of [Mzk14], §2 [cf. Propositions 2.5, 2.6]. By combining these two approaches and
applying the technique of elliptic cuspidalization developed in [Mzk21], §3, we ob-
tain a certain reconstruction algorithm [cf. Corollary 2.7] for the “local linear
holomorphic structure” of an Aut-holomorphic orbispace arising from an el-
liptically admissible [cf. [Mzk21], Definition 3.1] hyperbolic orbicurve, which is
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compatible with the global portion of the Galois-theoretic theory of §1 [cf. Corollaries
2.8, 2.9].

In §3, §4, we develop the category-theoretic formalism — centering around
the notions of observables, telecores, and cores [cf. Definition 3.5] — that
are applied to express the compatibility of the “mono-anabelian” construction algo-
rithms of §1 [cf. Corollary 3.6] and §2 [cf. Corollary 4.5] with the “log-Frobenius
functor log” [in essence, a version of the usual “logarithm” at the various nonar-
chimedean and archimedean primes of a number field]. We also study the failure
of log-Frobenius compatibility that occurs if one attempts to take the “conventional
anabelian” — which we shall refer to as “bi-anabelian” — approach to the situation
[cf. Corollary 3.7]. Finally, in the remarks following Corollaries 3.6, 3.7, we discuss
in detail the meaning of the various new category-theoretic notions that are intro-
duced, as well as the various aspects of the analogy between these notions, in the
context of Corollaries 3.6, 3.7, and the classical p-adic theory of the MF∇-objects
of [Falt].

In §5, we develop a global formalism over number fields in which we study
the canonical rigid integral structures — i.e., log-shells — that are obtained by
applying the log-Frobenius compatibility discussed in §3, §4. These log-shells satisfy
the following important properties:

(L1) a log-shell is compact and hence of finite “log-volume” [cf. Corollary
5.10, (i)];

(L2) the log-volumes of (L1) are compatible with application of the log-
Frobenius functor [cf. Corollary 5.10, (ii)];

(L3) log-shells are compatible with the operation of “panalocalization”,
i.e., the operation of restricting to the disjoint union of the various primes
of a number field in such a way that one “forgets” the global structure of
the number field [cf. Corollary 5.5; Corollary 5.10, (iii)];

(L4) log-shells are compatible with the operation of “mono-analyticization”,
i.e., the operation of “disabling the rigidity” of one of the “two combina-
torial dimensions” of a ring, an operation that corresponds to allowing
“Teichmüller dilations” in complex and p-adic Teichmüller theory [cf.
Corollary 5.10, (iv)].

In particular, we note that property (L3) may be thought of as a rigidity property
for certain global arithmetic line bundles [more precisely, the trivial arithmetic line
bundle — cf. Remarks 5.4.2, 5.4.3] that is analogous to the very strong — i.e., by
comparison to the behavior of arbitrary vector bundles on a curve — rigidity prop-
erties satisfied by MF∇-objects with respect to Zariski localization. Such rigidity
properties may be thought of as a sort of “freezing of integral structures” with
respect to Zariski localization [cf. Remark 5.10.2, (i)]. Finally, we discuss in some
detail [cf. Remark 5.10.3] the analogy — centering around the correspondence

number field F ←→ hyperbolic curve C in pos. char.

once-punctured ell. curve X over F ←→ nilp. ord. indig. bundle P over C

— between the theory of the present paper [involving hyperbolic orbicurves related
to once-punctured elliptic curves over a number field] and the p-adic Teichmüller
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theory of [Mzk1], [Mzk4] [involving nilpotent ordinary indigenous bundles over
hyperbolic curves in positive characteristic].

Finally, in an Appendix to the present paper, we expose the portion of the
well-known theory of abelian varieties with complex multiplication [cf., e.g., [Lang-
CM], [Milne-CM], for more details] that underlies the observation “(∗CM)” related
to the author by A. Tamagawa [cf. [Mzk20], Remark 3.8.1]. In particular, we verify
that this observation (∗CM) does indeed hold. This implies that the observation
“(∗A-qLT)” discussed in [Mzk20], Remark 3.8.1, also holds, and hence, in particular,
that the hypothesis of [Mzk20], Corollary 3.9, to the effect that “either (∗A-qLT) or
(∗CM) holds” may be eliminated [i.e., that [Mzk20], Corollary 3.9, holds uncondi-
tionally]. Although the content of this Appendix is not directly technically related
to the remainder of the present paper, the global arithmetic nature of the content
of this Appendix, as well as the accompanying discussion of the relationship of this
global content with considerations in p-adic Hodge theory, is closely related in
spirit to the analogies between the content of the remainder of the present paper
and the theory of earlier papers in the present series of papers, i.e., more precisely,
[Mzk20], §3; [Mzk21], §2.

§I2. Fundamental Naive Questions Concerning Anabelian Geometry

One interesting aspect of the theory of the present paper is that it is intimately
related to various fundamental questions concerning anabelian geometry that are
frequently posed by newcomers to the subject. Typical examples of these fundamen-
tal questions are the following:

(Q1) Why is it useful or meaningful to study anabelian geometry in the
first place?

(Q2) What exactly is meant by the term “group-theoretic reconstruction”
in discussions of anabelian geometry?

(Q3) What is the significance of studying anabelian geometry over mixed-
characteristic local fields [i.e., p-adic local fields] as opposed to num-
ber fields?

(Q4) Why is birational anabelian geometry insufficient — i.e., what is the
significance of studying the anabelian geometry of hyperbolic curves, as
opposed to their function fields?

In fact, the answers to these questions that are furnished by the theory of the
present paper are closely related.

As was discussed in §I1, the answer to (Q1), from the point of view of the
present paper, is that anabelian geometry — more specifically, “mono-anabelian
geometry” — provides a framework that is sufficiently well-endowed as to contain
“data reminiscent of the data constituted by various scheme-theoretic structures”,
but has the virtue of being based not on ring structures, but rather on profinite
[Galois] groups, which are “neutral” with respect to the operation of taking the
logarithm.
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The answer to (Q2) is related to the algorithmic approach to absolute anabelian
geometry taken in the present three-part series [cf. the Introduction to [Mzk20]].
That is to say, typically, in discussions concerning “Grothendieck Conjecture-type
fully faithfulness results” [cf., e.g., [Mzk5]] the term “group-theoretic reconstruc-
tion” is defined simply to mean “preserved by an arbitrary isomorphism between
the étale fundamental groups of the two schemes under consideration”. This point
of view will be referred to in the present paper as “bi-anabelian”. By contrast,
the algorithmic approach to absolute anabelian geometry involves the development
of “software” whose input data consists solely of, for instance, a single abstract
profinite group [that just happens to be isomorphic to the étale fundamental group
of a scheme], and whose output data consists of various structures reminiscent of
scheme theory [cf. the Introduction to [Mzk20]]. This point of view will be referred
to in the present paper as “mono-anabelian”. Here, the mono-anabelian “soft-
ware” is required to be functorial, e.g., with respect to isomorphisms of profinite
groups. Thus, it follows formally that

“mono-anabelian” =⇒ “bi-anabelian”

[cf. Remark 1.9.8]. On the other hand, although it is difficult to formulate such
issues completely precisely, the theory of the present paper [cf., especially, §3] sug-
gests strongly that the opposite implication should be regarded as false. That is
to say, whereas the mono-anabelian approach yields a framework that is “neutral”
with respect to the operation of taking the logarithm, the bi-anabelian approach
fails to yield such a framework [cf. Corollaries 3.6, 3.7, and the following remarks;
§I4 below].

Here, we pause to remark that, in fact, although, historically speaking, many
theorems were originally formulated in a “bi-anabelian” fashion, careful inspec-
tion of their proofs typically leads to the recovery of “mono-anabelian algorithms”.
Nevertheless, since formulating theorems in a “mono-anabelian” fashion, as we have
attempted to do in the present paper [and more generally in the present three-part
series, but cf. the final portion of the Introduction to [Mzk21]], can be quite cumber-
some — and indeed is one of the main reasons for the unfortunately lengthy nature
of the present paper! — it is often convenient to formulate final theorems in a “bi-
anabelian” fashion. On the other hand, we note that the famous Neukirch-Uchida
theorem on the anabelian nature of number fields appears to be one important
counterexample to the above remark. That is to say, to the author’s knowledge,
proofs of this result never yield “explicit mono-anabelian reconstruction algorithms
of the given number field”; by contrast, Theorem 1.9 of the present paper does give
such an explicit construction of the “given number field” [cf. Remark 1.9.5].

Another interesting aspect of the algorithmic approach to anabelian geometry
is that one may think of the “software” constituted by such algorithms as a sort of
“combinatorialization” of the original schemes [cf. Remark 1.9.7]. This point of
view is reminiscent of the operation of passing from a “scheme-theoretic” MF∇-
object to an associated Galois representation, as well as the general theme in various
papers of the author concerning a “category-theoretic approach to scheme theory”
[cf., e.g., [Mzk13], [Mzk14], [Mzk16], [Mzk17], [Mzk18]] of “extracting from scheme-
theoretic arithmetic geometry the abstract combinatorial patterns that underlie
the scheme theory”.
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The answer to (Q3) provided by the theory of the present paper is that the
absolute p-adic [mono-]anabelian results of §1 underlie the panalocalizability
of log-shells discussed in §I1 [cf. property (L3)]. Put another way, these results
imply that the “geometric framework immune to the application of the logarithm”
— i.e., immune to the dismantling of the “�” and “�” dimensions of a ring —
discussed in §I1 may be applied locally at each prime of a number field regarded as
an isolated entity, i.e., without making use of the global structure of the number
field — cf. the discussion of “freezing of integral structures” with respect to Zariski
localization in Remark 5.10.2, (i). For more on the significance of the operation of
passing “� � �” in the context of nonarchimedean log-shells — i.e., the operation
of passing “O×

k � logk(O
×
k )” — we refer to the discussion of nonarchimedean

log-shells in §I3 below.

The answer to (Q4) furnished by the theory of the present paper [cf. Remark
1.11.4] — i.e., one fundamental difference between birational anabelian geometry
and the anabelian geometry of hyperbolic curves — is that [unlike spectra of func-
tion fields!] “most” hyperbolic curves admit “cores” [in the sense of [Mzk3], §3;
[Mzk10], §2], which may be thought of as a sort of abstract “covering-theoretic”
analogue [cf. Remark 1.11.4, (ii)] of the notion of a “canonical rigid integral struc-
ture” [cf. the discussion of log-shells in §I1]. Moreover, if one attempts to work with
the Galois group of a function field supplemented by some additional structure such
as the set of cusps — arising from scheme theory! — that determines a hyperbolic
curve structure, then one must sacrifice the crucial mono-anabelian nature of one’s
reconstruction algorithms [cf. Remarks 1.11.5; 3.7.7, (ii)].

Finally, we observe that there certainly exist many “fundamental naive ques-
tions” concerning anabelian geometry for which the theory of the present paper
does not furnish any answers. Typical examples of such fundamental questions are
the following:

(Q5) What is the significance of studying the anabelian geometry of proper
hyperbolic curves, as opposed to affine hyperbolic curves?

(Q6) What is the significance of studying pro-Σ [where Σ is some nonempty set
of prime numbers] anabelian geometry, as opposed to profinite anabelian
geometry [cf., e.g., Remark 3.7.6 for a discussion of why pro-Σ anabelian
geometry is ill-suited to the needs of the theory of the present paper]?

(Q7) What is the significance of studying anabelian geometry in positive
characteristic, e.g., over finite fields?

It would certainly be of interest if further developments could shed light on these
questions.

§I3. Dismantling the Two Combinatorial Dimensions of a Ring

As was discussed in §I1, a ringmay be thought of as a mathematical object that
consists of “two combinatorial dimensions”, corresponding to its additive structure
� and its multiplicative structure � [cf. Remark 5.6.1, (i)]. When the ring un-
der consideration is a [say, for simplicity, totally imaginary] number field F or
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a mixed-characteristic nonarchimedean local field k, these two combinatorial
dimensions may also be thought of as corresponding to the two cohomological
dimensions of the absolute Galois groups GF , Gk of F , k [cf. [NSW], Proposition
8.3.17; [NSW], Theorem 7.1.8, (i)]. In a similar vein, when the ring under con-
sideration is a complex archimedean field k (∼= C), then the two combinatorial
dimensions of k may also be thought of as corresponding to the two topological
— i.e., real — dimensions of the underlying topological space of the topological
group k×. Note that in the case where the local field k is nonarchimedean (respec-
tively, archimedean), precisely one of the two cohomological (respectively, real)
dimensions of Gk (respectively, k×) — namely, the dimension corresponding to the

maximal unramified quotient Gk � Ẑ ·Fr [generated by the Frobenius element] (re-
spectively, the topological subgroup of units S1 ∼= O×

k ⊆ k×) is rigid with respect
to, say, automorphisms of the topological group Gk (respectively, k×), while the
other dimension — namely, the dimension corresponding to the inertia subgroup
Ik ⊆ Gk (respectively, the value group k× � R>0) — is not rigid [cf. Remark
1.9.4]. [In the nonarchimedean case, this phenomenon is discussed in more detail in
[NSW], the Closing Remark preceding Theorem 12.2.7.] Thus, each of the various
nonarchimedean “Gk’s” and archimedean “k×’s” that arise at the various primes
of a number field may be thought of as being a sort of “arithmetic Gm” — i.e.,
an abstract arithmetic “cylinder” — that decomposes into a [twisted] product of

“units” [i.e., Ik ⊆ Gk, O×
k ⊆ k×] and value group [i.e., Gk � Ẑ · Fr, k× � R>0]

‘arithmetic Gm’ ‘units’ ‘×’ ‘value group’

⎛⎜⎜⎝
↗©↗

↗ ©↗

↗ ©↗

⎞⎟⎟⎠ ∼→ © ‘×’

⎛⎜⎜⎝
↗

↗

↗

⎞⎟⎟⎠
with the property that one of these two factors is rigid, while the other is not. Here,
it is interesting to note that the correspondence between units/value group and
rigid/non-rigid differs [i.e., “goes in the opposite direction”] in the nonarchimedean
and archimedean cases. This phenomenon is reminiscent of the product formula in
elementary number theory, as well as of the behavior of the log-Frobenius functor
log at nonarchimedean versus archimedean primes [cf. Remark 4.5.2; the discussion
of log-shells in the final portion of the present §I3].

C× ∼→
(
rigid

S1

)
×
(
non-rigid

R>0

)

Gk
∼→

(
non-rigid

Ik

)
�

(
rigid

Ẑ · Fr

)

On the other hand, the perfection of the topological group obtained as the
image of the non-rigid portion Ik in the abelianization Gab

k of Gk is naturally iso-
morphic, by local class field theory, to k. Moreover, by the theory of [Mzk2], the
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decomposition of this copy of k [i.e., into sets of elements with some given p-adic val-
uation] determined by the p-adic valuation on k may be thought of as corresponding
to the ramification filtration on Gk and is precisely the data that is “deformed” by
automorphisms of k that do not arise from field automorphisms. That is to say,
this aspect of the non-rigidity of Gk is quite reminiscent of the non-rigidity of the
topological group R>0 [i.e., of the non-rigidity of the structure on this topological
group arising from the usual archimedean valuation on R, which determines an
isomorphism between this topological group and some “fixed, standard copy” of
R>0].

In this context, one of the first important points of the “mono-anabelian the-
ory” of §1, §2 of the present paper is that if one supplements a(n) nonarchimedean
Gk (respectively, archimedean k×) with the data arising from a hyperbolic or-
bicurve [which satisfies certain properties — cf. Corollaries 1.10, 2.7], then this
supplementary data has the effect of rigidifying both dimensions of Gk (re-
spectively, k×). In the case of [a nonarchimedean] Gk, this data consists of the
outer action of Gk on the profinite geometric fundamental group of the hyperbolic
orbicurve; in the case of [an archimedean] k×, this data consists, in essence, of
the various local actions of open neighborhoods of the origin of k× on the squares
or rectangles [that lie in the underlying topological [orbi]space of the Riemann
[orbi]surface determined by the hyperbolic [orbi]curve] that encode the holomor-
phic structure of the Riemann [orbi]surface [cf. the theory of [Mzk14], §2]. Here,
it is interesting to note that these “rigidifying actions” are reminiscent of the
discussion of “hidden endomorphisms” in the Introduction to [Mzk21], as well as
of the discussion of “intrinsic Hodge theory” in the context of p-adic Teichmüller
theory in [Mzk4], §0.10.⎛⎜⎜⎝

↗©↗

↗ ©↗

↗ ©↗

⎞⎟⎟⎠ rigidify

‘�’ geometric data
representing hyp. curve

C× � rectangles/squares
on hyp. Riemann surface

Gk
out
� profinite geometric

fund. gp. of hyp. curve

Thus, in summary, the “rigidifying actions” discussed above may be thought
of as constituting a sort of “arithmetic holomorphic structure” on a nonar-
chimedean Gk or an archimedean k×. This arithmetic holomorphic structure is
immune to the log-Frobenius operation log [cf. the discussion of §I1], i.e., immune
to the “juggling of �, �” effected by log [cf. the illustration of Remark 5.10.2,
(iii)].
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On the other hand, if one exits such a “zone of arithmetic holomorphy”
— an operation that we shall refer to as mono-analyticization — then a nonar-
chimedeanGk or an archimedean k× is stripped of the rigidity imparted by the above
rigidifying actions, hence may be thought of as being subject to Teichmüller di-
lations [cf. Remark 5.10.2, (ii), (iii)]. Indeed, this is intuitively evident in the
archimedean case, in which the quotient k× � R>0 is subject [i.e., upon mono-
analyticization, so k× is only considered as a topological group] to automorphisms
of the form R>0 � x �→ xλ ∈ R>0, for λ ∈ R>0. If, moreover, one thinks of
the value groups of archimedean and nonarchimedean primes as being “synchro-
nized” [so as to keep from violating the product formula — which plays a crucial
role in the theory of “heights”, i.e., degrees of global arithmetic line bundles], then
the operation of mono-analyticization necessarily results in analogous “Teichmüller
dilations” at nonarchimedean primes. In the context of the theory of Frobenioids,
such Teichmüller dilations [whether archimedean or nonarchimedean] correspond to
the unit-linear Frobenius functor studied in [Mzk16], Proposition 2.5. Note that the
“non-linear juggling of �, � by log within a zone of arithmetic holomorphy” and the
“linear Teichmüller dilations inherent in the operation of mono-analyticization” are
reminiscent of the Riemannian geometry of the upper half-plane, i.e., if one thinks
of “juggling” as corresponding to rotations at a point, and “dilations” as corre-
sponding to geodesic flows originating from the point.

log

�

� �

mono-analyticization
≈ [linear] Teichmüller dilation

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -→

Put another way, the operation of mono-analyticization may be thought of as an
operation on the “arithmetic holomorphic structures” discussed above that forms
a sort of arithmetic analogue of the operation of passing to the underlying real
analytic manifold of a Riemann surface.

number fields and their localizations Riemann surfaces

“arithmetic holomorphic structures” complex holomorphic structure
via rigidifying hyp. curves on the Riemann surface

the operation of passing to the underlying
mono-analyticization real analytic manifold

Thus, from this point of view, one may think of the

disjoint union of the various Gk’s, k
×’s over the various nonarchimdean

and archimedean primes of the number field

as being the “arithmetic underlying real analytic manifold” of the “arith-
metic Riemann surface” constituted by the number field. Indeed, it is precisely this
sort of disjoint union that arises in the theory of mono-analyticization, as developed
in §5.
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Next, we consider the effect on log-shells of the operation ofmono-analyticization.
In the nonarchimedean case,

logk(O
×
k )

∼= O×
k /(torsion)

may be reconstructed group-theoretically from Gk as the quotient by torsion of the
image of Ik in the abelianization Gab

k [cf. Proposition 5.8, (i), (ii)]; a similar con-

struction may be applied to finite extensions ⊆ k of k. Moreover, this construction
involves only the group of units O×

k [i.e., it does not involve the value groups, which,
as discussed above, are subject to Teichmüller dilations], hence is compatible with
the operation of mono-analyticization. Thus, this construction yields a canonical
rigid integral structure, i.e., in the form of the topological module logk(O

×
k ),

which may be thought of as a sort of approximation of some nonarchimedean
localization of the trivial global arithmetic line bundle [cf. Remarks 5.4.2,
5.4.3] that is achieved without the use of [the two combinatorial dimensions of]
the ring structure on Ok. Note, moreover, that the ring structure on the perfec-
tion logk(O

×
k )

pf [i.e., in effect, “logk(O
×
k )⊗Q”] of this module is obliterated by the

operation of mono-analyticization. That is to say, this ring structure is only acces-
sible within a “zone of arithmetic holomorphy” [as discussed above]. On the other
hand, if one returns to such a zone of arithmetic holomorphy to avail oneself of the
ring structure on logk(O

×
k )

pf, then applying the operation of mono-analyticization
amounts to applying the construction discussed above to the group of units of
logk(O

×
k )

pf [equipped with the ring structure furnished by the zone of arithmetic
holomorphy under consideration]. That is to say, the freedom to execute, at will,
both the operations of exiting and re-entering zones of arithmetic holomorphy is
inextricably linked to the “juggling of �, �” via log [cf. Remark 5.10.2, (ii),
(iii)].

In the archimedean case, if one writes

log(O×
k )� O×

k

for the universal covering topological group of O×
k [i.e., in essence, the exponential

map “2πi · R� S1”], then the surjection log(O×
k )� O×

k determines on log(O×
k ) a

“canonical rigid line segment of length 2π”. Thus, if one writes k = kim × krl for
the product decomposition of the additive topological group k into imaginary [i.e.,
“i · R”] and real [ı.e., “R”] parts, then we obtain a natural isometry

log(O×
k )× log(O×

k )
∼→ kim × krl = k

[i.e., the product of the identity isomorphism 2πi · R = i · R and the isomorphism

2πi · R ∼→ R given by dividing by ±i] which is well-defined up to multiplication
by ±1 on the second factors [cf. Definition 5.6, (iv); Proposition 5.8, (iv), (v)].
In particular, “log(O×

k ) × log(O×
k )” may be regarded as a construction, based on

the “rigid” topological group O×
k [which is not subject to Teichmüller dilations!],

of a canonical rigid integral structure [determined by the canonical rigid line
segments discussed above] that serves as an approximation of some archimedean
localization of the trivial global arithmetic line bundle and, moreover, is compatible
with the operation of mono-analyticization [cf. the nonarchimedean case]. On the
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other hand, [as might be expected by comparison to the nonarchimedean case] once
one exits a zone of arithmetic holomorphy, the ±1-indeterminacy that occurs in the
above natural isometry has the effect of obstructing any attempts to transport the
ring structure of k via this natural isometry so as to obtain a structure of complex
archimedean field on log(O×

k ) × log(O×
k ) [cf. Remark 5.8.1]. Finally, just as in

the nonarchimedean case, the freedom to execute, at will, both the operations of
exiting and re-entering zones of arithmetic holomorphy is inextricably linked to
the “juggling of �, �” via log [cf. Remark 5.10.2, (ii), (iii)] — a phenomenon
that is strongly reminiscent of the crucial role played by rotations in the theory
of mono-analyticizations of archimedean log-shells [cf. Remark 5.8.1].

§I4. Mono-anabelian Log-Frobenius Compatibility

Within each zone of arithmetic holomorphy, one wishes to apply the log-
Frobenius functor log. As discussed in §I1, log may be thought of as a sort of
“wall” that may be penetrated by such “elementary combinatorial/topological ob-
jects” as Galois groups [in the nonarchimedean case] or underlying topological spaces
[in the archimedean case], but not by rings or functions [cf. Remark 3.7.7]. This
situation suggests a possible analogy with ideas from physics in which “étale-like”
structures [cf. the Introduction of [Mzk16]], which can penetrate the log-wall, are
regarded as “massless”, like light, while “Frobenius-like” structures [cf. the Intro-
duction of [Mzk16]], which cannot penetrate the log-wall, are regarded as being of
“positive mass”, like ordinary matter [cf. Remark 3.7.5, (iii)].

(
Galois groups,

topological spaces

)
∼=

- - - - - - - - - - - - - - - - - - -

(
rings,

functions

)
�

log

log

log

log

∼=
(

Galois groups,

topological spaces

)

- - - - - - - - - - - - - - - - - - -

�

(
rings,

functions

)

In the archimedean case, since topological spaces alone are not sufficient to trans-
port “holomorphic structures” in the usual sense, we take the approach in §2 of con-
sidering “Aut-holomorphic spaces”, i.e., underlying topological spaces of Riemann
surfaces equipped with the additional data of a group of “special self-homeomor-
phisms” [i.e., bi-holomorphic automorphisms] of each [sufficiently small] open con-
nected subset [cf. Definition 2.1, (i)]. The point here is to “somehow encode the
usual notion of a holomorphic structure” in such a way that one does not need to
resort to the use of “fixed reference models” of the field of complex numbers C
[as is done in the conventional definition of a holomorphic structure, which consists
of local comparison to such a fixed reference model of C], since such models of C
fail to be “immune” to the application of log — cf. Remarks 2.1.2, 2.7.4. This
situation is very much an archimedean analogue of the distinction between mono-
anabelian and bi-anabelian geometry. That is to say, if one thinks of one of the
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two schemes that occur in bi-anabelian comparison results as the “given scheme of
interest” and the other scheme as a “fixed reference model”, then although these
two schemes are related to one another via purely Galois-theoretic data, the scheme
structure of the “scheme of interest” is reconstructed from the Galois-theoretic data
by transporting the scheme structure of “model scheme”, hence requires the use of
input data [i.e., the scheme structure of the “model scheme”] that cannot penetrate
the log-wall.

In order to formalize these ideas concerning the issue of distinguishing between
“model-dependent”, “bi-anabelian” approaches and “model-independent”, “mono-
anabelian” approaches, we take the point of view, in §3, §4, of considering “series of
operations” — in the form of diagrams [parametrized by various oriented graphs]
of functors — applied to various “types of data” — in the form of objects of
categories [cf. Remark 3.6.7]. Although, by definition, it is impossible to compare
the “different types of data” obtained by applying these various “operations”, if
one considers “projections” of these operations between different types of data onto
morphisms between objects of a single category [i.e., a single “type of data”], then
such comparisons become possible. Such a “projection” is formalized in Definition
3.5, (iii), as the notion of an observable. One special type of observable that is of
crucial importance in the theory of the present paper is an observable that “captures
a certain portion of various distinct types of data that remains constant, up to
isomorphism, throughout the series of operations applied to these distinct types of
data”. Such an observable is referred to as a core [cf. Definition 3.5, (iii)]. Another
important notion in the theory of the present paper is the notion of telecore [cf.
Definition 3.5, (iv)], which may be thought of as a sort of “core structure whose
compatibility apparatus [i.e., ‘constant nature’] only goes into effect after a certain
time lag” [cf. Remark 3.5.1].

Before explaining how these notions are applied in the situation over number
fields considered in the present paper, it is useful to consider the analogy between
these notions and the classical p-adic theory.

The prototype of the notion of a core is the constant nature [i.e., up to
equivalence of categories] of the étale site of a scheme in positive char-
acteristic with respect to the [operation constituted by the] Frobenius
morphism.

Put another way, cores may be thought of as corresponding to the notion of “slope
zero” Galois representations in the p-adic theory. By contrast, telecores may be
thought of as corresponding to the notion of “positive slope” in the p-adic theory.
In particular, the “time lag” inherent in the compatibility apparatus of a telecore
may be thought of as corresponding to the “lag”, in terms of powers of p, that
occurs when one applies Hensel’s lemma [cf., e.g., [Mzk21], Lemma 2.1] to lift
solutions, modulo various powers of p, of a polynomial equation that gives rise to
a crystalline Galois representation — e.g., arising from an “MF∇-object” of [Falt]
— for which the slopes of the Frobenius action are positive [cf. Remark 3.6.5 for
more on this topic]. This formal analogy with the classical p-adic theory forms the
starting point for the analogy with p-adic Teichmüller theory to be discussed in §I5
below [cf. Remark 3.7.2].
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Now let us return to the situation involving k, k, Gk, and logk discussed at
the beginning of §I1. Suppose further that we are given a hyperbolic orbicurve over
k as in the discussion of §I3, whose étale fundamental group Π surjects onto Gk

[hence may be regarded as acting on k, k
×
] and, moreover, satisfies the important

property of rigidifying Gk [as discussed in §I3]. Then the “series of operations”
performed in this context may be summarized as follows [cf. Remark 3.7.3, (ii)]:

Π �

⎛⎜⎜⎝
Π

�

k
×
An

⎞⎟⎟⎠ �

⎛⎜⎜⎝
Π

�

k
×
� � log

⎞⎟⎟⎠ � Π �

⎛⎜⎜⎝
Π

�

k
×
An

⎞⎟⎟⎠
Here, the various operations “�”, “�” may be described in words as follows:

(O1) One applies the mono-anabelian reconstruction algorithms of §1
to Π to construct a “mono-anabelian copy” k

×
An of k

×
. Here, k

×
An is the

group of nonzero elements of a field kAn. Moreover, it is important to note
that kAn is equipped with the structure not of “some field kAn isomorphic
to k”, but rather of “the specific field [isomorphic to k] reconstructed via
the mono-anabelian reconstruction algorithms of §1”.

(O2) One forgets the fact that kAn arises from the mono-anabelian recon-
struction algorithms of §1, i.e., one regards kAn just as “some field k�
[isomorphic to k]”.

(O3) Having performed the operation of (O2), one can now proceed to apply
log-Frobenius operation log [i.e., logk] to k�. This operation log may
be thought of as the assignment

(Π � k
×
�) � (Π � {logk�(O

×
k�

)pf}×)

that maps the group of nonzero elements of the topological field k� to the
group of nonzero elements of the topological field “logk�(O

×
k�

)pf” [cf. the

discussion of §I3].
(O4) One forgets all the data except for the profinite group Π.

(O5) This is the same operation as the operation described in (O1).

With regard to the operation log, observe that if we forget the various field or group
structures involved, then the arrows

k
×
� ←↩ O×

k�
→ logk�(O

×
k�

)pf ←↩ {logk�(O
×
k�

)pf}×

allow one to relate the input of log [on the left] to the the output of log [on the right].
That is to say, in the formalism developed in §3, these arrows may be regarded as
defining an observable “Slog” associated to log [cf. Corollary 3.6, (iii)].
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If one allows oneself to reiterate the operation log, then one obtains diagrams
equipped with a natural Z-action [cf. Corollary 3.6, (v)]. These diagrams equipped
with a Z-action are reminiscent, at a combinatorial level, of the “arithmetic Gm’s”
that occurred in the discussion of §I3 [cf. Remark 3.6.3].

Next, observe that the operation of “projecting to Π” [i.e., forgetting all of the
data under consideration except for Π] is compatible with the execution of any of
these operations (O1), (O2), (O3), (O4), (O5). That is to say, Π determines a core
of this collection of operations [cf. Corollary 3.6, (i), (ii), (iii)]. Moreover, since
the mono-anabelian reconstruction algorithms of §1 are “purely group-theoretic”
and depend only on the input data constituted by Π, it follows immediately that [by

“projecting to Π” and then applying these algorithms] “(Π � k
×
An)” also forms a

core of this collection of operations [cf. Corollary 3.6, (i), (ii), (iii)]. In particular,

we obtain a natural isomorphism between the “(Π � k
×
An)’s” that occur following

the first and fourth “�’s” of the above diagram.

On the other hand, the “forgetting” operation of (O2) may be thought of as a

sort of section of the “projection to the core (Π � k
×
An)”. This sort of section will

be referred to as a telecore; a telecore frequently comes equipped with an auxiliary
structure, called a contact structure, which corresponds in the present situation
to the isomorphism of underlying fields [stripped of their respective zero elements]

k
×
An

∼→ k
×
� [cf. Corollary 3.6, (ii)]. Even though the core “(Π � k

×
An)”, regarded

as an object obtained by projecting, is constant [up to isomorphism], the section
obtained in this way does not yield a “constant” collection of data [with respect to
the operations of the diagram above] that is compatible with the observable Slog.

Indeed, forgetting the marker “An” of [the constant] k
×
An and then applying log is

not compatible, relative to Slog, with forgetting the marker “An” — i.e., since
log obliterates the ring structures involved [cf. Corollary 3.6, (iv); Remark
3.6.1]. Nevertheless, if, subsequent to applying the operations of (O2), (O3), one

projects back down to “(Π � k
×
An)”, then, as was observed above, one obtains a

natural isomorphism between the initial and final copies of “(Π � k
×
An)”. It is in

this sense that one may think of a telecore as a “core with a time lag”.

One way to summarize the above discussion is as follows: The “purely group-
theoretic” mono-anabelian reconstruction algorithms of §1 allow one to construct

models of scheme-theoretic data [i.e., the “k
×
An”] that satisfy the following three

properties [cf. Remark 3.7.3, (i), (ii)]:

(P1) coricity [i.e., the “property of being a core” of “Π”, “(Π � k
×
An)”];

(P2) comparability [i.e., via the telecore and contact structures discussed

above] with log-subject copies [i.e., the “k
×
�”, which are subject to the

action of log];

(P3) log-observability [i.e., via “Slog”].

One way to understand better what is gained by this mono-anabelian approach is
to consider what happens if one takes a bi-anabelian approach to this situation
[cf. Remarks 3.7.3, (iii), (iv); 3.7.5].
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In the bi-anabelian approach, instead of taking just “Π” as one’s core, one
takes the data

(Π � k
×
model)

— where “kmodel” is some fixed reference model of k — as one’s core [cf.
Corollary 3.7, (i)]. The bi-anabelian version [i.e., fully faithfulness in the style of
the “Grothendieck Conjecture”] of the mono-anabelian theory of §1 then gives rise

to telecore and contact structures by considering the isomorphism k
×
model

∼→ k
×
�

arising from an isomorphism between the “Π’s” that act on k
×
model, k

×
� [cf. Corollary

3.7, (ii)]. Moreover, one may define an observable “Slog” as in the mono-anabelian
case [cf. Corollary 3.7, (iii)]. Just as in the mono-anabelian case, since log obliterates

the ring structures involved, this model k
×
model fails to be simultaneously compatible

with the observable Slog and the telecore and [a slight extension, as described in
Corollary 3.7, (ii), of the] contact structures just mentioned [cf. Corollary 3.7,
(iv)]. On the other hand, whereas in the mono-anabelian case, one may recover
from this failure of compatibility by projecting back down to “Π” [which remains

intact!] and hence to “(Π � k
×
An)”, in the bi-anabelian case, the “k

×
model” portion

of “the core (Π � k
×
model)” — which is an essential portion of the input data for

reconstruction algorithms via the bi-anabelian approach! [cf. Remarks 3.7.3, (iv);
3.7.5, (ii)] — is obliterated by log, thus rendering it impossible to relate the

“(Π � k
×
model)’s” before and after the application of log via an isomorphism that

is compatible with all of the operations involved. At a more technical level, the non-
existence of such a natural isomorphism may be seen in the fact that the coricity of

“(Π � k
×
model)” is only asserted in Corollary 3.7, (i), for a certain limited portion

of the diagram involving “all of the operations under consideration” [cf. also the
incompatibilities of Corollary 3.7, (iv)]. This contrasts with the [manifest!] coricity

of “Π”, “(Π � k
×
An)” with respect to all of the operations under consideration in

the mono-anabelian case [cf. Corollary 3.6, (i), (ii), (iii)].

In this context, one important observation is that if one tries to “subsume” the

model “k
×
model” into Π by “regarding” this model as an object that “arises from the

sole input data Π”, then one must contend with various problems from the point of
view of functoriality — cf. Remark 3.7.4 for more details on such “functorially

trivial models”. That is to say, to regard “k
×
model” in this way means that one

must contend with a situation in which the functorially induced action of Π on

“k
×
model” is trivial!

Finally, we note in passing that the “dynamics” of the various diagrams of
operations [i.e., functors] appearing in the above discussion are reminiscent of the
analogy with physics discussed at the beginning of the present §I4 — i.e., that “Π”

is massless, like light, while “k
×
�” is of positive mass.

§I5. Analogy with p-adic Teichmüller Theory

We have already discussed in §I1 the analogy between the log-Frobenius oper-
ation log and the Frobenius morphism in positive characteristic. This analogy may
be developed further [cf. Remarks 3.6.6, 3.7.2 for more details] into an analogy be-
tween the formalism discussed in §I4 and the notion of a uniformizing MF∇-object
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as discussed in [Mzk1], [Mzk4], i.e., an MF∇-object in the sense of [Falt] that
gives rise to “canonical coordinates” that may be regarded as a sort of p-adic uni-
formization of the variety under consideration. Indeed, in the notation of §I4, the
“mono-anabelian output data (Π � k

×
An)” may be regarded as corresponding

to the “Galois representation” associated to a structure of “uniformizing MF∇-

object” on the scheme-theoretic “(Π � k
×
�)”. The telecore structures discussed

in §I4 may be regarded as corresponding to a sort of Hodge filtration, i.e., an opera-
tion relating the “Frobenius crystal” under consideration to a specific scheme theory

“(Π � k
×
�)”, among the various scheme theories separated from one another by

[the non-ring-homomorphism!] log. The associated contact structures then take
on an appearance that is formally reminiscent of the notion of a connection in the
classical crystalline theory. The failure of the log-observable, telecore, and contact
structures to be simultaneously compatible [cf. Corollaries 3.6, (iv); 3.7, (iv)] may
then be regarded as corresponding to the fact that, for instance in the case of the
uniformizing MF∇-objects determined by indigenous bundles in [Mzk1], [Mzk4],
the Kodaira-Spencer morphism is an isomorphism [i.e., the fact that the Hodge
filtration fails to be a horizontal Frobenius-invariant!].

mono-anabelian theory p-adic theory

log-Frobenius log Frobenius
mono-anabelian output data Frobenius-invariants

telecore structure Hodge filtration
contact structure connection

simultaneous incompatibility of Kodaira-Spencer morphism of an
log-observable, telecore, and indigenous bundle is an

contact structures isomorphism

In the context of this analogy, we observe that the failure of the logarithms
at the various localizations of a number field to extend to a global map involving
the number field [cf. Remark 5.4.1] may be regarded as corresponding to the fail-
ure of various Frobenius liftings on affine opens [i.e., localizations] of a hyperbolic
curve [over, say, a ring of Witt vectors of a perfect field] to extend to a morphism
defined [“globally”] on the entire curve [cf. [Mzk21], Remark 2.6.2]. This lack of
a global extension in the p-adic case means, in particular, that it does not make
sense to pull-back arbitrary coherent sheaves on the curve via such Frobenius lift-
ings. On the other hand, if a coherent sheaf on the curve is equipped with the
structure of a crystal, then a “global pull-back of the crystal” is well-defined and
“canonical”, even though the various local Frobenius liftings used to construct it
are not. In a similar way, although the logarithms at localizations of a number
field are not compatible with the ring structures involved, hence cannot be used to
pull-back arbitrary ring/scheme-theoretic objects, they can be used to “pull-back”
Galois-theoretic structures, such as those obtained by applying mono-anabelian re-
construction algorithms.
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mono-anabelian theory p-adic theory

logarithms at localizations Frobenius liftings on
of a number field affine opens of a hyperbolic curve

nonexistence of global logarithm nonexistence of global Frobenius
on a number field lifting on a hyperbolic curve

incompatibility of log with noncanonicality of local liftings
ring structures of positive characteristic Frobenius

compatibility of log with Galois, Frobenius pull-back of
mono-anabelian algorithms crystals
the result of forgetting “An” the underlying coherent sheaf

[cf. (O2) of §I3] of a crystal

Moreover, this analogy may be developed even further by specializing from
arbitrary uniformizing MF∇-objects to the indigenous bundles of the p-adic Te-
ichmüller theory of [Mzk1], [Mzk4]. To see this, we begin by observing that the
non-rigid dimension of the localizations of a number field “Gk”, “k

×” in the discus-
sion of §I3 may be regarded as analogous to the non-rigidity of a p-adic deformation
of an affine open [i.e., a localization] of a hyperbolic curve in positive character-
istic. If, on the other hand, such a hyperbolic curve is equipped with the crystal
determined by a p-adic indigenous bundle, then, even if one restricts to an affine
open, this filtered crystal has the effect of rigidifying a specific p-adic deformation
of this affine open. Indeed, this rigidifying effect is an immediate consequence of
the fact that the Kodaira-Spencer morphism of an indigenous bundle is an iso-
morphism. Put another way, this Kodaira-Spencer isomorphism has the effect of
allowing the affine open to “entrust its moduli” to the crystal determined by
the p-adic indigenous bundle. This situation is reminiscent of the rigidifying ac-
tions discussed in §I3 of “Gk”, “k×” on certain geometric data arising from a
hyperbolic orbicurve that is related to a once-punctured elliptic curve. That is to
say, the mono-anabelian theory of §1, §2 allows these localizations “Gk”, “k

×” of
a number field to “entrust their ring structures” — i.e., their “arithmetic
holomorphic moduli” — to the hyperbolic orbicurve under consideration. This
leads naturally [cf. Remark 5.10.3, (i)] to the analogy already referred to in §I1:

mono-anabelian theory p-adic theory

number field F hyperbolic curve C in pos. char.
once-punctured ell. curve X over F nilp. ord. indig. bundle P over C

If, moreover, one modifies the canonical rigid integral structures furnished by log-
shells by means of the “Gaussian zeroes” [i.e., the inverse of the “Gaussian poles”]
that appear in the Hodge-Arakelov theory of elliptic curves [cf., e.g., [Mzk6],
§1.1], then one may further refine the above analogy by regarding indigenous bun-
dles as corresponding to the crystalline theta object [which may be thought of as
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an object obtained by equipping a direct sum of trivial line bundles with the inte-
gral structures determined by the Gaussian zeroes] of Hodge-Arakelov theory [cf.
Remark 5.10.3, (ii)]. From this point of view, the mono-anabelian theory of §1,
§2, which may be thought of as centering around the technique of Belyi cuspidal-
izations, may be regarded as corresponding to the theory of indigenous bundles
in positive characteristic [cf. [Mzk1], Chapter II], which centers around the Ver-
schiebung on indigenous bundles. Moreover, the theory of the étale theta function
given in [Mzk18], which centers around the technique of elliptic cuspidalizations,
may be regarded as corresponding to the theory of the Frobenius action on square
differentials in [Mzk1], Chapter II. Indeed, just as the technique of elliptic cuspidal-
izations may be thought of a sort of linearized, simplified version of the technique
of Belyi cuspidalizations, the Frobenius action on square differentials occurs as the
derivative [i.e., a “linearized, simplified version”] of the Verschiebung on indige-
nous bundles. For more on this analogy, we refer to Remark 5.10.3. In passing,
we observe, relative to the point of view that the theory of the étale theta func-
tion given in [Mzk18] somehow represents a “linearized, simplified version” of the
mono-anabelian theory of the present paper, that the issue of mono- versus bi-
anabelian geometry discussed in the present paper is vaguely reminiscent of the
issue of mono- versus bi-theta environments, which constitutes a central theme in
[Mzk18]. In this context, it is perhaps natural to regard the “log-wall” discussed in
§I4 — which forms the principal obstruction to applying the bi-anabelian approach
in the present paper — as corresponding to the “Θ-wall” constituted by the theta
function between the theta and algebraic trivializations of a certain ample line bun-
dle — which forms the principal obstruction to the use of bi-theta environments in
the theory of [Mzk18].

mono-anabelian theory p-adic theory

crystalline theta objects scheme-theoretic
in scheme-theoretic indigenous bundles

Hodge-Arakelov theory [cf. [Mzk1], Chapter I]
Belyi cuspidalizations Verschiebung on pos. char.
in mono-anabelian theory indigenous bundles

of §1 [cf. [Mzk1], Chapter II]
elliptic cuspidalizations Frobenius action on

in the theory of the square differentials
étale theta function [cf. [Mzk18]] [cf. [Mzk1], Chapter II]

Thus, in summary, the analogy discussed above may be regarded as an anal-
ogy between the theory of the present paper and the positive characteristic portion
of the theory of [Mzk1]. This “positive characteristic portion” may be regarded
as including, in a certain sense, the “liftings modulo p2 portion” of the theory of
[Mzk1] since this “liftings modulo p2 portion” may be formulated, to a certain
extent, in terms of positive characteristic scheme theory. If, moreover, one re-
gards the theory of mono-anabelian log-Frobenius compatibility as corresponding
to “Frobenius liftings modulo p2”, then the isomorphism between Galois groups
on both sides of the log-wall may be thought of as corresponding to the Frobenius
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action on differentials induced by dividing the derivative of such a Frobenius lift-
ing modulo p2 by p. This correspondence between Galois groups and differentials
is reminiscent of the discussion in [Mzk6], §1.3, §1.4, of the arithmetic Kodaira-
Spencer morphism that arises from the [scheme-theoretic] Hodge-Arakelov theory
of elliptic curves. Finally, from this point of view, it is perhaps natural to regard the
mono-anabelian reconstruction algorithms of §1 as corresponding to the procedure
of integrating Frobenius-invariant differentials so as to obtain canonical coordinates
[i.e., “q-parameters” — cf. [Mzk1], Chapter III, §1].

mono-anabelian theory p-adic theory

isomorphism between Frobenius action on differentials
Galois groups on arising from 1

p · derivative
both sides of log-wall of mod p2 Frobenius lifting
mono-anabelian construction of can. coords.
reconstruction via integration of
algorithms Frobenius-invariant differentials

The above discussion prompts the following question:

Can one further extend the theory given in the present paper to a theory
that is analogous to the theory of canonical p-adic liftings given in
[Mzk1], Chapter III?

It is the intention of the author to pursue the goal of developing such an “extended
theory” in a future paper. Before proceeding, we note that the analogy of such
a theory with the theory of canonical p-adic liftings of [Mzk1], Chapter III, may
be thought of as a sort of p-adic analogue of the “geodesic flow” portion of the
“rotations and geodesic flows diagram” of §I3:

mono-anabelian theory p-adic theory

mono-anabelian juggling positive characteristic
of present paper, i.e., [plus mod p2] portion of

“rotations” p-adic Teichmüller theory
future extended theory (?), i.e., canonical p-adic liftings

“geodesic flows” in p-adic Teichmüller theory

— that is to say, p-adic deformations correspond to “geodesic flows”, while the
positive characteristic theory corresponds to “rotations” [i.e., the theory of “mono-
anabelian juggling of �, � via log” given in the present paper]. This point of view is
reminiscent of the analogy between the archimedean and nonarchimedean theories
discussed in Table 1 of the Introduction to [Mzk14].

In this context, it is interesting to note that this analogy between the mono-
anabelian theory of the present paper and p-adic Teichmüller theory is reminiscent
of various phenomena that appear in earlier papers by the author:
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(A1) In [Mzk10], Theorem 3.6, an absolute p-adic anabelian result is obtained
for canonical curves as in [Mzk1] by applying the p-adic Teichmüller theory
of [Mzk1]. Thus, in a certain sense [i.e., “Teichmüller =⇒ anabelian” as
opposed to “anabelian =⇒ Teichmüller”], this result goes in the opposite
direction to the direction of the theory of the present paper. On the other
hand, this result of [Mzk10] depends on the analysis in [Mzk9], §2, of the
logarithmic special fiber of a p-adic hyperbolic curve via absolute anabelian
geometry over finite fields.

(A2) The reconstruction of the “additive structure” via the mono-anabelian
algorithms of §1 [cf. the lemma of Uchida reviewed in Proposition 1.3],
which eventually leads [as discussed above], via the theory of §3, to an
abstract analogue of “Frobenius liftings” [i.e., in the form of uniformizing
MF∇-objects] is reminiscent [cf. Remark 5.10.4] of the reconstruction
of the “additive structure” in [Mzk21], Corollary 2.9, via an argument
analogous to an argument that may be used to show the non-existence of
Frobenius liftings on p-adic hyperbolic curves [cf. [Mzk21], Remark 2.9.1].

One way to think about (A1), (A2) is by considering the following chart:

p-adic Teichmüller Future “Teichmüller-like”
Theory (applied to Extension (?) of
anabelian geometry) Mono-anabelian Theory

number fields, mixed char.
Uchida’s Lemma characteristic p local fields equipped with

applied to: special fiber an elliptically admissible
hyperbolic orbicurve

analogue of
Deformation canonical p-adic Frobenius liftings

Theory: Frobenius liftings in future extension (?)
of mono-anabelian theory

Here, the correspondence in the first non-italicized line between hyperbolic curves
in positive characteristic equipped with a nilpotent ordinary indigenous bundle and
number fields [and their localizations] equipped with an elliptically admissible hy-
perbolic orbicurve [i.e., a hyperbolic orbicurve closely related to a once-punctured
elliptic curve] has already been discussed above; the content of the “p-adic Te-
ichmüller theory column” of this chart may be thought of as a summary of the
content of (A1); the correspondence between this column and the “extended mono-
anabelian theory” column may be regarded as a summary of the preceding dis-
cussion. On the other hand, the content of (A2) may be thought of as a sort of
“remarkable bridge”

canonical p-adic
Frobenius liftings

theory of geometric
uniformly toral
neighborhoods

= = = = = = = = = = =

number fields, mixed char.
local fields equipped with
an elliptically admissible
hyperbolic orbicurve
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between the upper right-hand and lower left-hand non-italicized entries of the above
chart. That is to say, the theory of (A2) [i.e., of geometric uniformly toral neigh-
borhoods — cf. [Mzk21], §2] is related to the upper right-hand non-italicized entry
of the chart in that, like the application of “Uchida’s Lemma” represented by this
entry, it provides a means for recovering the ring structure of the base field, given
the decomposition groups of the closed points of the hyperbolic orbicurve. On the
other hand, the theory of (A2) [i.e., of [Mzk21], §2] is related to the lower left-hand
entry of the chart in that the main result of [Mzk21], §2, is obtained by an argument
reminiscent [cf. [Mzk21], Remark 2.6.2; [Mzk21], Remark 2.9.1] of the argument to
the effect that stable curves over rings of Witt vectors of a perfect field never admit
Frobenius liftings.

Note, moreover, that from the point of view of the discussion above of “arith-
metic holomorphic structures”, this bridge may be thought of as a link between the
elementary algebraic approach to reconstructing the “two combinatorial dimen-
sions” of a ring in the fashion of Uchida’s Lemma and the “p-adic differential-
geometric approach” to reconstructing p-adic ring structures in the fashion of
the theory of [Mzk21], §2. Here, we observe that this “p-adic differential-geometric
approach” makes essential use of the hyperbolicity of the curve under consideration.
Indeed, roughly speaking, from the “Teichmüller-theoretic” point of view of the
present discussion, the argument of the proof of [Mzk21], Lemma 2.6, (ii), may be
summarized as follows:

The nonexistence of the desired “geometric uniformly toral neighborhoods”
may be thought of as a sort of nonexistence of obstructions to Teichmüller
deformations of the “arithmetic holomorphic structure” that extend in an
unbounded, linear fashion, like a geodesic flow or Frobenius lifting. On
the other hand, the hyperbolicity of the curve under consideration implies
the existence of topological obstructions — i.e., in the form of “loopifica-
tion” or “crushed components” [cf. [Mzk21], Lemma 2.6, (ii)] — to such
“unbounded” deformations of the holomorphic structure. Moreover, such
“compact bounds” on the deformability of the holomorphic structure are
sufficient to “trap” the holomorphic structure at a “canonical point”, which
corresponds to the original holomorphic [i.e., ring] structure of interest.

Put another way, this “p-adic differential-geometric interpretation of hyperbolicity”
is reminiscent of the dynamics of a rubber band, whose elasticity implies that
even if one tries to stretch the rubber band in an unbounded fashion, the rubber
band ultimately returns to a “canonical position”. Moreover, this relationship be-
tween hyperbolicity and “elasticity” is reminiscent of the use of the term “elastic” in
describing certain group-theoretic aspects of hyperbolicity in the theory of [Mzk20],
§1, §2.

In passing, we observe that another important aspect of the theory of [Mzk21],
§2, in the present context is the use of the inequality of degrees obtained by
“differentiating a Frobenius lifting” [cf. [Mzk21], Remark 2.6.2]. The key
importance of such degree inequalities in the theory of [Mzk21], §2, suggests, relative
to the above chart, that the analogue of such degree inequalities in the theory of
“the analogue of Frobenius liftings in a future extension of the mono-anabelian
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theory” could give rise to results of substantial interest in the arithmetic of number
fields. The author hopes to address this topic in more detail in a future paper.

Finally, we close the present Introduction to the present paper with some
historical remarks. We begin by considering the following historical facts:

(H1) O. Teichmüller, in his relatively short career as a mathematician, made
contributions both to “complex Teichmüller theory” and to the theory of
Teichmüller representatives of Witt rings — two subjects that, at first
glance, appear entirely unrelated to one another.

(H2) In the Introduction to [Ih], Y. Ihara considers the issue of obtaining
canonical p-adic liftings of certain positive characteristic hyperbolic curves
equipped with a correspondence in a fashion analogous to the Serre-Tate
theory of canonical liftings of abelian varieties.

These two facts may be regarded as interesting precursors of the p-adic Teichmüller
theory of [Mzk1], [Mzk4]. Indeed, the p-adic Teichmüller theory of [Mzk1], [Mzk4]
may be regarded, on the one hand, as an analogue for hyperbolic curves of the
Serre-Tate theory of canonical liftings of abelian varieties and, on the other hand,
as a p-adic analogue of complex Teichmüller theory; moreover, the canonical liftings
obtained in [Mzk1], [Mzk4] are, literally, “hyperbolic curve versions of Teichmüller
representatives in Witt rings”. In fact, one may even go one step further to speculate
that perhaps the existence of analogous complex and p-adic versions of “Teichmüller
theory” should be regarded as hinting of a deeper abstract, combinatorial
version of “Teichmüller theory” — in a fashion that is perhaps reminiscent of the
relationship of the notion of a motive to various complex or p-adic cohomology
theories. It is the hope of the author that a possible “future extended theory”
as discussed above — i.e., a sort of “Teichmüller theory” for number fields
equipped with a once-punctured elliptic curve — might prove to be just such
a “Teichmüller theory”.
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Section 0: Notations and Conventions

We shall continue to use the “Notations and Conventions” of [Mzk20], §0;
[Mzk21], §0. In addition, we shall use the following notation and conventions:

Numbers:

In addition to the “field types” NF, MLF, FF introduced in [Mzk20], §0, we
shall also consider the following field types: A(n) complex archimedean field (re-
spectively, real archimedean field; archimedean field), or CAF (respectively, RAF;
AF), is defined to be a topological field that is isomorphic to the field of complex
numbers (respectively, the field of real numbers; either the field of real numbers
or the field of complex numbers). One verifies immediately that any continuous
homomorphism between CAF’s (respectively, RAF’s) is, in fact, an isomorphism of
topological fields.

Combinatorics:

Let E be a partially ordered set. Then [cf. [Mzk16], §0] we shall denote by

Order(E)

the category whose objects are elements e ∈ E, and whose morphisms e1 → e2
[where e1, e2 ∈ E] are the relations e1 ≤ e2. A subset E′ ⊆ E will be called
orderwise connected if for every c ∈ E such a < c < b for some a, b ∈ E′, it follows
that c ∈ E′.

A partially ordered set which is isomorphic [as a partially ordered set] to an
orderwise connected subset of the set of rational integers Z, equipped with its usual
ordering, will be referred to as a countably ordered set. If E is a countably ordered
set, then any choice of an isomorphism of E with an orderwise connected subset
E′ ⊆ Z allows one to define [in a fashion independent of the choice of E′], for
non-maximal (respectively, non-minimal) e ∈ E [i.e., e such that there exists an
f ∈ E that is > e (respectively, < e)], an element “e+ 1” (respectively, “e− 1”) of
E. Pairs of elements of E of the form (e, e+ 1) will be referred to as adjacent.

An oriented graph �Γ is a graph Γ, which we shall refer to as the underlying

graph of �Γ, equipped with the additional data of a total ordering, for each edge e
of Γ, on the set [of cardinality 2] of branches of e [cf., e.g., [Mzk13], the discussion
at the beginning of §1, for a definition of the terms “graph”, “branch”]. In this
situation, we shall refer to the vertices, edges, and branches of Γ as vertices, edges,

and branches of �Γ; write V(�Γ), E(�Γ), B(�Γ), respectively, for the sets of vertices,

edges, and branches of �Γ. Also, whenever Γ satisfies a property of graphs [such

as “finiteness”], we shall say that �Γ satisfies this property. We shall refer to the

oriented graph �Γopp obtained from �Γ by reversing the ordering on the branches

of each edge as the opposite oriented graph to �Γ. A morphism of oriented graphs
is defined to be a morphism of the underlying graphs [cf., e.g., [Mzk13], §1, the
discussion at the beginning of §1] that is compatible with the orderings on the
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edges. Note that any countably ordered set E may be regarded as an oriented
graph — i.e., whose vertices are the elements of E, whose edges are the pairs of
adjacent elements of E, and whose branches are equipped with the [total] ordering
induced by the ordering of E. We shall refer to an oriented graph that arises
from a countably ordered set as linear. We shall refer to the vertex of a linear

oriented graph �Γ determined by a minimal (respectively, maximal) element of the
corresponding countably ordered set as the minimal vertex (respectively, maximal

vertex) of �Γ.

Let �Γ be an oriented graph. Then we shall refer to as a pre-path [of length n]

[where n ≥ 0 is an integer] on �Γ a morphism γ : �Γγ → �Γ, where �Γγ is a finite linear

oriented graph with precisely n edges; we shall refer to as a path [of length n] on �Γ

any isomorphism class [γ] in the category of oriented graphs over �Γ of a pre-path γ
[of length n]. Write

Ω(�Γ)

for the set [i.e., since we are working with isomorphism classes!] of paths on �Γ. If

γ : �Γγ → �Γ is a pre-path on �Γ, then we shall refer to the image of the minimal

(respectively, maximal) vertex of �Γγ as the initial (respectively, terminal) vertex
of γ, [γ]. Two [pre-]paths with the same initial (respectively, terminal; initial and
terminal) vertices will be referred to as co-initial (respectively, co-terminal; co-

verticial). If γ1, γ2 are pre-paths on �Γ such the initial vertex of γ2 is equal to the
terminal vertex of γ1, then one may form the composite pre-path γ2 ◦ γ1 [in the

evident sense], as well as the composite path [γ2] ◦ [γ1] def= [γ2 ◦ γ1]. Thus, the length
of γ2 ◦ γ1 is equal to the sum of the lengths of γ1, γ2.

Next, let

E ⊆ Ω(�Γ)× Ω(�Γ)

be a set of ordered pairs of paths on an oriented graph �Γ. Then we shall say that
E is saturated if the following conditions are satisfied:

(a) (Partial Inclusion of the Diagonal) If ([γ1], [γ2]) ∈ E, then E contains
([γ1], [γ1]) and ([γ2], [γ2]).

(b) (Co-verticiality) If ([γ1], [γ2]) ∈ E, then [γ1], [γ2] are co-verticial.

(c) (Transitivity) If ([γ1], [γ2]) ∈ E and ([γ2], [γ3]) ∈ E, then ([γ1], [γ3]) ∈ E.

(d) (Pre-composition) If ([γ1], [γ2]) ∈ E and [γ3] ∈ Ω(�Γ), then ([γ1]◦[γ3], [γ2]◦
[γ3]) ∈ E, whenever these composite paths are defined.

(e) (Post-composition) If ([γ1], [γ2]) ∈ E and [γ3] ∈ Ω(�Γ), then ([γ3] ◦
[γ1], [γ3] ◦ [γ2]) ∈ E, whenever these composite paths are defined.

We shall say that E is symmetrically saturated if E is saturated and, moreover,
satisfies the following condition:

(f) (Reflexivity) If ([γ1], [γ2]) ∈ E, then ([γ2], [γ1]) ∈ E.

Thus, the set of all co-verticial pairs of paths

Covert(�Γ) ⊆ Ω(�Γ)× Ω(�Γ)
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is symmetrically saturated. Moreover, the property of being saturated (respectively,
symmetrically saturated) is closed with respect to forming arbitrary intersections

of subsets of Ω(�Γ)×Ω(�Γ). In particular, given any subset E ⊆ Covert(�Γ), it makes
sense to speak of the saturation (respectively, symmetric saturation) of E — i.e.,

the smallest saturated (respectively, symmetrically saturated) subset of Covert(�Γ)
containing E.

Let �Γ be an oriented graph. Then we shall refer to a vertex v of �Γ as a nexus

of �Γ if the following conditions are satisfied: (a) the oriented graph �Γv obtained

by removing from �Γ the vertex v, together with all of the edges that abut to v,

decomposes as a disjoint union of two nonempty oriented graphs �Γ<v, �Γ>v; (b)

every edge of �Γ that is not contained in �Γv either runs from a vertex of �Γ<v to

v or from v to a vertex of �Γ>v. In this situation, we shall refer to the oriented

subgraph �Γ≤v (respectively, �Γ≥v) consisting of v, �Γ<v (respectively, �Γ>v), and all

of the edges of �Γ that run to (respectively, emanate from) v as the pre-nexus portion

(respectively, post-nexus portion) of �Γ.

Categories:

Let C, C′ be categories. Then we shall use the notation

Ob(C); Arr(C)

to denote, respectively, the objects and arrows of C. We shall refer to a functor
φ : C → C′ as rigid if every automorphism of φ is equal to the identity [cf. [Mzk16],
§0]. If the identity functor of C is rigid, then we shall say that C is id-rigid.

Let C be a category and �Γ an oriented graph. Then we shall refer to as a
�Γ-diagram {Av, φe} in C a collection of data as follows:

(a) for each v ∈ V(�Γ), an object Av of C;

(b) for each e ∈ E(�Γ) that runs from v1 ∈ V(�Γ) to v2 ∈ V(�Γ), a morphism
φe : Av1 → Av2 of C.

A morphism {Av, φe} → {A′
v, φ

′
e} of �Γ-diagrams in C is defined to be a collection

of morphisms ψv : Av → A′
v for each vertex v of �Γ that are compatible with the φe,

φ′e. We shall refer to an �Γ-diagram in C as commutative if the composite morphisms

determined by any co-verticial pair of paths on �Γ coincide. Write

C[�Γ]

for the category of commutative �Γ-diagrams in C and morphisms of �Γ-diagrams in
C.

If C1, C2, and D are categories, and

Φ1 : C1 → D; Φ2 : C2 → D
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are functors, then we define the “categorical fiber product” [cf. [Mzk16], §0]

C1 ×D C2

of C1, C2 over D to be the category whose objects are triples

(A1, A2, α : Φ1(A1)
∼→ Φ2(A2))

where Ai ∈ Ob(Ci) (for i = 1, 2), α is an isomorphism of D; and whose morphisms

(A1, A2, α : Φ1(A1)
∼→ Φ2(A2))→ (B1, B2, β : Φ1(B1)

∼→ Φ2(B2))

are pairs of morphisms γi : Ai → Bi [in Ci, for i = 1, 2] such that β ◦ Φ1(γ1) =
Φ2(γ2)◦α. One verifies easily that if Φ2 is an equivalence, then the natural projection
functor C1 ×D C2 → C1 is also an equivalence.

We shall use the prefix “ind-” (respectively, “pro-”) to mean, strictly speaking,
a(n) inductive (respectively, projective) system indexed by an ordered set isomor-
phic to the positive (respectively, negative) integers, with their usual ordering. To
simplify notation, however, we shall often denote “ind-objects” via the correspond-
ing “limit objects”, when there is no fear of confusion.

Let C be a category. Then we shall refer to a pair (S,A), where S ∈ Ob(C), and
A ⊆ AutC(S) is a subgroup, as a pre-orbi-object of C. [Thus, we think of the pair
(S,A) as representing the “stack-theoretic quotient of S by A”.] A morphism of
pre-orbi-objects (S1, A1)→ (S2, A2) is an A2-orbit of morphisms S1 → S2 [relative
to the action of A2 on the codomain] that is closed under the action of A1 [on the
domain]. We shall refer to as an orbi-object

{(Sι, Aι);αι,ι′}ι,ι′∈I

any collection of data consisting of pre-orbi-objects (Sι, Aι), which we shall refer to
as representatives [of the given orbi-object], together with “gluing isomorphisms”

αι,ι′ : (Sι, Aι)
∼→ (Sι′ , Aι′) of pre-orbi-objects satisfying the cocycle conditions

αι,ι′′ = αι′,ι′′ ◦ αι,ι′ , for ι, ι′, ι′′ ∈ I. A morphism of orbi-objects is defined to
be a collection of morphisms of pre-orbi-objects from each representative of the
domain to each representative of the codomain which are compatible with the gluing
isomorphisms. The category of orbi-objects associated to C is the category — which
we shall denote

Orb(C)
— whose objects are the orbi-objects of C, and whose morphisms are the morphisms
of orbi-objects. Thus, an object may be regarded as a pre-orbi-object whose group
of automorphisms is trivial; a pre-orbi-object may be regarded as an orbi-object
with precisely one representative. In particular, we obtain a natural functor

C → Orb(C)

which is “functorial” [in the evident sense] with respect to C.
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Section 1: Galois-theoretic Reconstruction Algorithms

In the present §1, we apply the technique of Belyi cuspidalization developed
in [Mzk21], §3, to give a group-theoretic reconstruction algorithm [cf. Theorem
1.9, Corollary 1.10] for hyperbolic orbicurves of strictly Belyi type [cf. [Mzk21],
Definition 3.5] over sub-p-adic fields that is compatible with base-change of the base
field. In the case of function fields, this reconstruction algorithm reduces to a much
more elementary algorithm [cf. Theorem 1.11], which is valid over somewhat more
general base fields, namely base fields which are “Kummer-faithful” [cf. Definition
1.5].

Let X be a hyperbolic curve over a field k. Write KX for the function field of
X. Then the content of following result is a consequence of the well-known theory
of divisors on algebraic curves.

Proposition 1.1. (Review of Linear Systems) Suppose that X is proper,
and that k is algebraically closed. Write Div(f) for the divisor [of zeroes minus
poles on X] of f ∈ KX . If E is a divisor on X, then let us write

Γ×(E)
def
= {f ∈ KX | Div(f) + E ≥ 0}

[where we use the notation “(−) ≥ 0” to denote the effectivity of the divisor “(−)”],
l(E)

def
= dimk(Γ(X,OX(E))). Let D be a divisor on X. Then:

(i) Γ×(D) admits a natural free action by k× whenever it is nonempty; there

is a natural bijection Γ×(D)
∼→ Γ(X,OX(D))\{0} that is compatible with the k×-

actions on either side, whenever the sets of the bijection are nonempty.

(ii) The integer l(D) ≥ 0 is equal to the smallest nonnegative integer d such
that there exists an effective divisor E of degree d on X for which Γ×(D − E) = ∅.
In particular, l(D) = 0 if and only if Γ×(D) = ∅.

Proposition 1.2. (Additive Structure via Linear Systems) Let X, k be
as in Proposition 1.1. Then:

(i) There exist distinct points x, y1, y2 ∈ X(k), together with a divisor D
on X such that x, y1, y2 �∈ Supp(D) [where we write Supp(D) for the support of
D], such that l(D) = 2, l(D −E) = 0, for any effective divisor E = e1 + e2, where
e1 �= e2, {e1, e2} ⊆ {x, y1, y2}.

(ii) Let x, y1, y2, D be as in (i). Then for i = 1, 2, λ ∈ k×, there ex-
ists a unique element fλ,i ∈ Γ×(D) ⊆ KX such that fλ,i(x) = λ, fλ,i(yi) �= 0,
fλ,i(y3−i) = 0.

(iii) Let x, y1, y2, D be as in (i); λ, μ ∈ k× such that λ/μ �= −1; fλ,1 ∈
Γ×(D) ⊆ KX , fμ,2 ∈ Γ×(D) ⊆ KX as in (ii). Then

fλ,1 + fμ,2 ∈ Γ×(D) ⊆ KX
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may be characterized as the unique element g ∈ Γ×(D) ⊆ KX such that g(y1) =
fλ,1(y1), g(y2) = fμ,2(y2). In particular, in this situation, the element λ+ μ ∈ k×
may be characterized as the element g(x) ∈ k×.

Proof. First, we consider assertion (i). Let D be any divisor on X such that
l(D) ≥ 2. By subtracting an appropriate effective divisor from D, we may assume
that l(D) = 2. Then take x ∈ X(k)\Supp(D) to be any point such that OX(D)
admits a global section that does not vanish at x [so l(D − x) = 1]; take y1 ∈
X(k)\(Supp(D)

⋃{x}) to be any point such that OX(D−x) admits a global section
that does not vanish at y1 [so l(D − x − y1) = 0, which implies that l(D − y1) =
1]; take y2 ∈ X(k)\(Supp(D)

⋃{x, y1}) to be any point such that OX(D − x),
OX(D − y1) admit global sections that do not vanish at y2 [so l(D − x − y2) =
l(D − y1 − y2) = 0]. This completes the proof of assertion (i). Now assertions (ii),
(iii) follow immediately from assertion (i). ©

The following reconstruction of the additive structure from divisors and rational
functions is implicit in the argument of [Uchi], §3, Lemmas 8-11 [cf. also [Tama],
Lemma 4.7].

Proposition 1.3. (Additive Structure via Valuation and Evaluation
Maps) Let X, k be as in Proposition 1.1. Then there exists a functorial algo-
rithm for constructing the additive structure on K×

X

⋃{0} [i.e., arising from
the field structure of KX ] from the following data:

(a) the [abstract!] group K×
X ;

(b) the set of [surjective] homomorphisms

VX
def
= {ordx : K×

X � Z}x∈X(k)

[so we have a natural bijection VX
∼→ X(k)] that arise as valuation maps

associated to points x ∈ X(k);

(c) for each homomorphism v = ordx ∈ VX , the subgroup Uv ⊆ K×
X given

by the f ∈ K×
X such that f(x) = 1.

Here, the term “functorial” is with respect to isomorphisms [in the evident sense]
of such triples [i.e., consisting of a group, a set of homomorphisms from the group
to Z, and a collection of subgroups of the group parametrized by elements of this
set of homomorphisms] arising from proper hyperbolic curves [i.e., “X”] over alge-
braically closed fields [i.e., “k”].

Proof. Indeed, first we observe that k× ⊆ K×
X may be constructed as the inter-

section
⋂

v∈VX
Ker(v). Since, for v ∈ VX , we have a direct product decomposition

Ker(v) = Uv × k×, the projection to k× allows us to “evaluate” elements of Ker(v)
[i.e., “functions that are invertible at the point associated to v”], so as to obtain
“values” of such elements ∈ k×. Next, let us observe that the set of homomorphisms
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VX of (b) allows one to speak of divisors and effective divisors associated to [the
abstract group] K×

X of (a). If D is a divisor associated to K×
X , then we may define

Γ×(D) as in Proposition 1.1, and hence compute the integer l(D) as in Proposition
1.1, (ii). In particular, it makes sense to speak of data as in Proposition 1.2, (i),
associated to the abstract data (a), (b), (c). Thus, by evaluating elements of vari-
ous Ker(v), for v ∈ VX , we may apply the characterizations of Proposition 1.2, (ii),
(iii), to construct the additive structure of k×, hence also the additive structure of
K×

X [i.e., by “evaluating” at various v ∈ VX ]. ©

Remark 1.3.1. Note that if G is an abstract group, then the datum of a surjection

v : G � Z may be thought of as the datum of a subgroup H
def
= Ker(v), together

with the datum of a choice of generator of the quotient group G/H
∼→ Z.

Proposition 1.4. (Synchronization of Geometric Cyclotomes) Suppose
that X is proper, and that k is of characteristic zero. If U ⊆ X is a nonempty
open subscheme, then we have a natural exact sequence of profinite groups

1→ ΔU → ΠU → Gk → 1

— where we write ΠU
def
= π1(U)→ Gk

def
= π1(Spec(k)) for the natural surjection of

étale fundamental groups [relative to some choice of basepoints], ΔU for the kernel
of this surjection. Then:

(i) Let U ⊆ X be a nonempty open subscheme, x ∈ X(k)\U(k), Ux
def
=

X\{x} ⊆ X. Then the inertia group Ix of x in ΔU is naturally isomorphic

to Ẑ(1); the kernels of the natural surjections ΔU � ΔUx
, ΠU � ΠUx

are topolog-
ically normally generated by the inertia groups of points of Ux\U [each of which is

naturally isomorphic to Ẑ(1)].

(ii) Let x, Ux be as in (i). Then we have a natural exact sequence of
profinite groups

1→ Ix → Δc-cn
Ux

→ ΔX → 1

— where we write ΔUx � Δc-cn
Ux

for the maximal cuspidally central quotient of
ΔUx [i.e., the maximal intermediate quotient ΔUx � Q� ΔX such that Ker(Q�
ΔX) lies in the center of Q — cf. [Mzk19], Definition 1.1, (i)]. Moreover, applying
the differential of the “E2-term” of the Leray spectral sequence associated to
this group extension to the element

1 ∈ Ẑ = Hom(Ix, Ix) = H0(ΔX , H
1(Ix, Ix))

yields an element ∈ H2(ΔX , H
0(Ix, Ix)) = Hom(MX , Ix), where we write

MX
def
= Hom(H2(ΔX , Ẑ), Ẑ)

[cf. the discussion at the beginning of [Mzk19], §1]; this last element corresponds to
the natural isomorphism

MX
∼→ Ix
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[relative to the well-known natural identifications of Ix, MX with Ẑ(1) — cf., e.g.,
(i) above; [Mzk19], Proposition 1.2, (i)]. In particular, this yields a “purely
group-theoretic algorithm” [cf. Remark 1.9.8 below for more on the meaning
of this terminology] for constructing this isomorphism from the surjection ΔUx �
ΔX .

Proof. Assertion (i) is well-known [and easily verified from the definitions]. Asser-
tion (ii) follows immediately from [Mzk19], Proposition 1.6, (iii). ©

Definition 1.5. Let k be a field of characteristic zero, k an algebraic closure

of k, Gk
def
= Gal(k/k). Then we shall say that k is Kummer-faithful (respectively,

torally Kummer-faithful) if, for every finite extension kH ⊆ k of k, where we write

H
def
= Gal(k/kH) ⊆ Gk, and every semi-abelian variety (respectively, every torus)

A over kH , either of the following two equivalent conditions is satisfied:

(a) We have ⋂
N≥1

N ·A(kH) = {0}

— where N ranges over the positive integers.

(b) The associated Kummer map A(kH) → H1(H,Hom(Q/Z, A(k))) is an
injection.

[To verify the equivalence of (a) and (b), it suffices to consider, on the étale site
of Spec(kH), the long exact sequences in étale cohomology associated to the exact
sequences 0 −→ NA −→ A

N ·−→ A −→ 0 arising from multiplication
by positive integers N .]

Remark 1.5.1. In the notation of Definition 1.5, suppose that k is a torally
Kummer-faithful field, l a prime number. Then it follows immediately from the
injectivity of the Kummer map associated to Gm over any finite extension of k that
contains a primitive l-th root of unity that the cyclotomic character χl : Gk → Z×

l

has open image [cf. the notion of “l-cyclotomic fullness” discussed in [Mzk20],
Lemma 4.5]. In particular, it makes sense to speak of the “power-equivalence class
of χl” [cf. [Mzk20], Lemma 4.5, (ii)] among characters Gk → Z×

l — i.e., the
equivalence class with respect to the equivalence relation ρ1 ∼ ρ2 [for characters
ρ1, ρ2 : Gk → Z×

l ] defined by the condition that ρN1 = ρN2 for some positive integer
N .

Remark 1.5.2. By considering the Weil restrictions of semi-abelian varieties
or tori over finite extensions of k to k, one verifies immediately that one obtains
an equivalent definition of the terms “Kummer-faithful” and “torally Kummer-
faithful” if, in Definition 1.5, one restricts kH to be equal to k.

Remark 1.5.3. In the following discussion, if k is a field, then we denote the
subgroup of roots of unity of k× by μ(k) ⊆ k×.
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(i) Let k be a(n) [not necessarily finite!] algebraic field extension of a number
field such that there exists a nonarchimedean prime of k that is unramified over
some number field contained in k, and, moreover, for every finite extension k† of k,
μ(k†) is finite. Then I claim that:

k is torally Kummer-faithful.

Indeed, since [as one verifies immediately] any finite extension of k satisfies the same
hypotheses as k, one verifies immediately that it suffices to show that

⋂
N (k×)N =

{1} [where N ranges over the positive integers]. Let f ∈ ⋂N (k×)N . If f ∈ μ(k),
then the assumption concerning μ(k) implies immediately that f = 1; thus, we
may assume without loss of generality that f �∈ μ(k). But then there exists a
nonarchimedean prime p of k that is unramified over some number field contained
in k. In particular, if we write kp for the completion of k at p and p for the residue
characteristic of p, then kp embeds into a finite extension of the quotient field of
the ring of Witt vectors of an algebraic closure of Fp. Thus, the fact that f admits
arbitrary p-power roots in kp yields a contradiction. This completes the proof of
the claim.

(ii) It follows immediately from the definitions that “Kummer-faithful =⇒
torally Kummer-faithful”. On the other hand, as was pointed out to the author by
A. Tamagawa, one may construct an example of a field which is torally Kummer-
faithful, but not Kummer-faithful, as follows: Let E be an elliptic curve over a
number field k0 that admits complex multiplication by Q(

√
−1) and, moreover, has

good reduction at every nonarchimedean prime of k0. Let k be an algebraic closure

of k0, Gk0

def
= Gal(k/k0), p a prime number ≡ 1 (mod 4). Write V for the p-adic

Tate module associated to E. Thus, the Gk0 -module V decomposes [since p ≡ 1
(mod 4)] into a direct sum W ⊕W ′ of submodules W,W ′ ⊆ V of rank one. Write
χ : Gk0 → Z×

p for the character determined by W . Thus, [as is well-known] χ is
unramified over every nonarchimedean prime of k0 of residue characteristic l �= p,
as well as over some nonarchimedean prime of k0 of residue characteristic p. But
one verifies immediately [for instance, by considering ramification over Q] that this
implies that, if we write k for the extension field of k0 determined by the kernel
of χ, then μ(k) is finite. Thus, since any finite extension of k0 satisfies the same
hypotheses as k0, we conclude that k satisfies the hypotheses of (i), so k is torally
Kummer-faithful. On the other hand, [by the definition of χ, W , V !] the Kummer
map on E(k) is not injective, so k is not Kummer-faithful.

Remark 1.5.4.

(i) Observe that every sub-p-adic field k [cf. [Mzk5], Definition 15.4, (i)] is
Kummer-faithful, i.e., “sub-p-adic =⇒ Kummer-faithful”. Indeed, to verify this,
one reduces immediately, by base-change, to the case where k is a finitely generated
extension of an MLF, which may be thought of as the function field of a variety over
an MLF. Then by restricting to various closed points of this variety, one reduces
to the case where k itself is an MLF. On the other hand, if k, hence also kH
[cf. the notation of Definition 1.5], is a finite extension of Qp, then A(kH) is an
extension of a finitely generated Z-module by a compact abelian p-adic Lie group,
hence contains an open subgroup that is isomorphic to a finite product of copies of
Zp. In particular, the condition of Definition 1.5, (a), is satisfied.
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(ii) A similar argument to the argument of (i) shows that every finitely gen-
erated extension of a Kummer-faithful field (respectively, torally Kummer-faithful
field) is itself Kummer-faithful (respectively, torally Kummer-faithful field).

(iii) On the other hand, observe that if, for instance, I is an infinite set, then the

field k
def
= Qp(xi)i∈I [which is not a finitely generated extension of Qp] constitutes

an example of a Kummer-faithful field which is not sub-p-adic. Indeed, if, for H,
A as in Definition 1.5, 0 �= f ∈ A(kH) lies in the kernel of the associated Kummer
map, then observe that there exists some finite subset I ′ ⊆ I such that if we set

k′
def
= Qp(xi)i∈I′ , then, for some finite extension k′H ⊆ kH of k′, we may assume

that A descends to a semi-abelian variety A′ over k′H , that f ∈ A′(k′H) ⊆ A(kH),

and that kH = k′H(xi)i∈I′′ , where we set I ′′
def
= I\I ′. Since k′H is algebraically closed

in kH , it thus follows that all roots of f defined over kH are in fact defined over
k′H . Thus, the existence of f contradicts the fact that the sub-p-adic field k′H is
Kummer-faithful. Finally, to see that k is not sub-p-adic, suppose that k ⊆ K,
where K is a finitely generated extension of an MLF K0 of residue characteristic p0
such that K0 is algebraically closed in K. Let l �= p, p0 be a prime number. Then

Qp ⊇ k∗
def
=
⋂
lN

(k×)l
N ⊆ K∗ def

=
⋂
lN

(K×)l
N ⊆ K0

— where one verifies immediately that the additive group generated by k∗ (respec-
tively, K∗) in k (respectively, K) forms a compact open neighborhood of 0 in Qp

(respectively, K0). In particular, it follows that the inclusion k ↪→ K determines a
continuous homomorphism of topological fields Qp ↪→ K0. But this implies imme-
diately that p0 = p, and that Qp ↪→ K0 is a Qp-algebra homomorphism. Thus, the
theory of transcendence degree yields a contradiction [for instance, by considering
the morphism on Kähler differentials induced by k ↪→ K].

(iv) One verifies immediately that the generalized sub-p-adic fields of [Mzk8],
Definition 4.11, are not, in general, torally Kummer-faithful.

Proposition 1.6. (Kummer Classes of Rational Functions) In the situ-
ation of Proposition 1.4, suppose further that k is a Kummer-faithful field. If
U ⊆ X is a nonempty open subscheme, then let us write

κU : Γ(U,O×
U )→ H1(ΠU ,MX)

— where MX
∼= Ẑ(1) is as in Proposition 1.4, (ii) — for the associated Kummer

map [cf., e.g., the discussion at the beginning of [Mzk19], §2]. Also, for d ∈ Z,
let us write Jd → Spec(k) for the connected component of the Picard scheme of
X → Spec(k) that parametrizes line bundles of degree d [cf., e.g., the discussion

preceding [Mzk19], Proposition 2.2]; J
def
= J0; ΠJd

def
= π1(J

d). [Thus, we have a
natural morphism X → J1 that sends a point of X to the line bundle of degree
1 associated to the point; this morphism induces a surjection ΠX � ΠJ1 on
étale fundamental groups whose kernel is equal to the commutator subgroup of ΔX .]
Then:

(i) The Kummer map κU is injective.
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(ii) For x ∈ X(k), write sx : Gk → ΠX for the associated section [well-
defined up to conjugation by ΔX ], tx : Gk → ΠJ1 for the composite of sx with
the natural surjection ΠX � ΠJ1 . Then for any divisor D of degree d on X such
that Supp(D) ⊆ X(k), forming the appropriate Z-linear combination of “tx’s” for
x ∈ Supp(D) [cf., e.g., the discussion preceding [Mzk19], Proposition 2.2] yields a
section tD : Gk → ΠJd ; if, moreover, d = 0, then tD : Gk → ΠJ coincides [up to
conjugation by ΔX ] with the section determined by the identity element ∈ J(k)
if and only if the divisor D is principal.

(iii) Suppose that U = X\S, where S ⊆ X(k) is a finite subset. Then restrict-
ing cohomology classes of ΠU to the various Ix [cf. Proposition 1.4, (i)], for x ∈ S,
yields a natural exact sequence

1→ (k×)∧ → H1(ΠU ,MX)→
(⊕

x∈S

Ẑ
)

— where we identify Hom
Ẑ
(Ix,MX) with Ẑ via the isomorphism Ix

∼→ MX of

Proposition 1.4, (ii); (k×)∧ denotes the profinite completion of k×. Moreover, the
image [via κU ] of Γ(U,O×

U ) in H
1(ΠU ,MX)/(k×)∧ is equal to the inverse image in

H1(ΠU ,MX)/(k×)∧ of the submodule of(⊕
x∈S

Z
)
⊆
(⊕

x∈S

Ẑ
)

determined by the principal divisors [with support in S].

Proof. Assertion (i) follows immediately [by restricting to smaller and smaller
“U ’s”] from the fact [cf. Remark 1.5.4, (ii)] that since k is [torally] Kummer-
faithful, so is the function field KX of X. Assertion (ii) follows from the argument
of [Mzk19], Proposition 2.2, (i), together with the assumption that k is Kummer-
faithful. As for assertion (iii), just as in the proof of [Mzk19], Proposition 2.1, (ii),
to verify assertion (iii), it suffices to verify that H0(Gk,Δ

ab
X ) = 0; but, in light of

the well-known relationship between Δab
X and the torsion points of the Jacobian J ,

the fact that H0(Gk,Δ
ab
X ) = 0 follows immediately from our assumption that k is

Kummer-faithful [cf. the argument applied to Gm in Remark 1.5.1]. ©

Definition 1.7. Suppose that k is of characteristic zero. Let k be an algebraic
closure of k; write kNF ⊆ k for the [“number field”] algebraic closure of Q in k.

(i) We shall say that X is an NF-curve if Xk

def
= X ×k k is defined over kNF [cf.

Remark 1.7.1 below].

(ii) Suppose that X is an NF-curve. Then we shall refer to points of X(k)
(respectively, rational functions on Xk; constant rational functions on Xk [i.e.,

which arise from elements of k]) that descend to kNF [cf. Remark 1.7.1 below] as
NF-points of (respectively, NF-rational functions on; NF-constants on) Xk.

Remark 1.7.1. Suppose that X is of type (g, r). Then observe that X is an
NF-curve if and only if the k-valued point of the moduli stack of hyperbolic curves
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of type (g, r) over Q determined by X arises, in fact, from a kNF-valued point. In
particular, one verifies immediately that if X is an NF-curve, then the descent data
of Xk from k to kNF is unique.

Proposition 1.8. (Characterization of NF-Constants and NF-Rational
Functions) In the situation of Proposition 1.6, (iii), suppose further that U [hence
also X] is an NF-curve. Write

PU ⊆ H1(ΠU ,MX)

for the inverse image of the submodule of(⊕
x∈S

Z
)
⊆
(⊕

x∈S

Ẑ
)

determined by the cuspidal principal divisors [i.e., principal divisors supported
on the cusps] — cf. Proposition 1.6, (iii). Then:

(i) A class η ∈ PU is the Kummer class of a nonconstant NF-rational
function if and only if there exist a positive multiple η† of η and NF-points
xi ∈ U(kx), where i = 1, 2, and kx is a finite extension of k, such that the coho-
mology classes

η†|xi

def
= s∗xi

(η†) ∈ H1(Gkx ,MX)

— where we write sxi : Gkx → ΠU for the [outer] homomorphism determined by
xi [cf. the notation of Proposition 1.6, (ii)] — satisfy η†|x1 = 0 [i.e., = 1, if one
works multiplicatively], η†|x2 �= 0.

(ii) Suppose that there exist nonconstant NF-rational functions ∈ Γ(U,O×
U ).

Then a class η ∈ PU

⋂
H1(Gk,MX) ∼= (k×)∧ [cf. the exact sequence of Proposition

1.6, (iii)] is the Kummer class of an NF-constant ∈ k× if and only if there exist a
nonconstant NF-rational function f ∈ Γ(U,O×

U ) and an NF-point x ∈ U(kx),
where kx is a finite extension of k, such that

κU (f)|x = η|Gkx
∈ H1(Gkx ,MX)

— where we use the notation “|x” as in (i).

Proof. Suppose that Xk descends to a hyperbolic curve XNF over kNF. Then [since

kNF is algebraically closed] any nonconstant rational function on XNF determines
a morphism XNF → P1

kNF
such that the induced map XNF(kNF) → P1

kNF
(kNF) is

surjective. In light of this fact [cf. also the fact that U is also assumed to be an
NF-curve], assertions (i), (ii) follow immediately from the definitions. ©

Now, by combining the “reconstruction algorithms” given in the various results
discussed above, we obtain the main result of the present §1.

Theorem 1.9. (The NF-portion of the Function Field via Belyi Cus-
pidalization over Sub-p-adic Fields) Let X be a hyperbolic orbicurve of
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strictly Belyi type [cf. [Mzk21], Definition 3.5] over a sub-p-adic field [cf.
[Mzk5], Definition 15.4, (i)] k, for some prime p; k an algebraic closure of k;
kNF ⊆ k the algebraic closure of Q in k;

1→ ΔX → ΠX → Gk → 1

— where ΠX
def
= π1(X) → Gk

def
= Gal(k/k) denotes the natural surjection of étale

fundamental groups [relative to some choice of basepoints], and ΔX denotes the
kernel of this surjection — the resulting extension of profinite groups. Then
there exists a functorial “group-theoretic” algorithm [cf. Remark 1.9.8 below
for more on the meaning of this terminology] for reconstructing the “NF-portion
of the function field” of X from the extension of profinite groups 1→ ΔX →
ΠX → Gk → 1; this algorithm consists of the following steps:

(a) One constructs the various surjections

ΠU � ΠY

— where Y is a hyperbolic [NF-]curve that arises as a finite étale covering
of X; U ⊆ Y is an open subscheme obtained by removing an arbitrary

finite collection of NF-points; ΠU
def
= π1(U); ΠY

def
= π1(Y ) ⊆ ΠX —

via the technique of “Belyi cuspidalization”, as described in [Mzk21],
Corollary 3.7, (a), (b), (c). Here, we note that by allowing U to vary, we
obtain a “group-theoretic” construction of ΠU equipped with the collection
of subgroups that arise as decomposition groups of NF-points.

(b) One constructs the natural isomorphisms

Iz
∼→ μ

Ẑ
(ΠU )

def
= MZ

— where U ⊆ Y → X is as in (i), Y is of genus ≥ 2, Z is the canonical
compactification of Y , the points of Z\U are all rational over the base field
kZ of Z, z ∈ (Z\U)(kZ) — via the technique of Proposition 1.4, (ii).

(c) For U ⊆ Y ⊆ Z as in (b), one constructs the subgroup

PU ⊆ H1(ΠU ,μẐ
(ΠU ))

determined by the cuspidal principal divisors via the isomorphisms of
(b) and the characterization of principal divisors given in Proposition 1.6,
(ii) [cf. also the decomposition groups of (a); Proposition 1.6, (iii)].

(d) For U ⊆ Y ⊆ Z, kZ as in (b), one constructs the subgroups

k
×
NF ⊆ K×

ZNF
↪→ lim−→

V

H1(ΠV ,μẐ
(ΠU ))

— where V ranges over the open subschemes obtained by removing finite
collections of NF-points from Z ×kZ k′, for k′ a finite extension of kZ ;

ΠV
def
= π1(V ); KZNF is the function field of the curve ZNF obtained by
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descending Z ×kZ
k to kNF; the “↪→” arises from the Kummer map

— via the subgroups of (c) and the characterizations of Kummer classes
of nonconstant NF-rational functions and NF-constants given in
Proposition 1.8, (i), (ii) [cf. also the decomposition groups of (a)].

(e) One constructs the additive structure on

k
×
NF

⋃
{0}; K×

ZNF

⋃
{0}

[notation as in (d)] by applying the functorial algorithm of Proposition 1.3
to the data of the form described in Proposition 1.3, (a), (b), (c), arising
from the construction of (d) [cf. also the decomposition groups of (a), the
isomorphisms of (b)].

Finally, the asserted “functoriality” is with respect to arbitrary open injective
homomorphisms of extensions of profinite groups [cf. also Remark 1.10.1 below],
as well as with respect to homomorphisms of extensions of profinite groups arising
from a base-change of the base field [i.e., k].

Proof. The validity of the algorithm asserted in Theorem 1.9 is immediate from
the various results cited in the statement of this algorithm. ©

Remark 1.9.1. When k is an MLF [cf. [Mzk20], §0], one verifies immediately
that one may give a tempered version of Theorem 1.9 [cf. [Mzk21], Remark 3.7.1], in
which the profinite étale fundamental group ΠX is replaced by the tempered funda-
mental group of X [and the expression “profinite group” is replaced by “topological
group”].

Remark 1.9.2. When k is an MLF or NF [cf. [Mzk20], §0], the “extension of
profinite groups 1 → ΔX → ΠX → Gk → 1” that appears in the input data for
the algorithm of Theorem 1.9 may be replaced by the single profinite group ΠX

[cf. [Mzk20], Theorem 2.6, (v), (vi)]. A similar remark applies in the tempered case
discussed in Remark 1.9.1.

Remark 1.9.3. Note that unlike the case with kNF, KZNF , the algorithm of
Theorem 1.9 does not furnish a means for reconstructing k, KZ in general — cf.
Corollary 1.10 below concerning the case when k is an MLF.

Remark 1.9.4. Suppose that k is an MLF. Then Gk, which is of cohomological
dimension 2 [cf. [NSW], Theorem 7.1.8, (i)], may be thought of as having one rigid
dimension and one non-rigid dimension. Indeed, the maximal unramified quotient

Gk � Gunr
k

∼= Ẑ

is generated by the Frobenius element, which may be characterized by an entirely
group-theoretic algorithm [hence is preserved by isomorphisms of absolute Galois
groups of MLF’s — cf. [Mzk9], Proposition 1.2.1, (iv)]; thus, this quotient Gk �
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Gunr
k

∼= Ẑ may be thought of as a “rigid dimension”. On the other hand, the
dimension of Gk represented by the inertia group in

Ik ⊆ Gk

[which, as is well-known, is of cohomological dimension 1] is “far from rigid” —
a phenomenon that may be seen, for instance, in the existence [cf., e.g., [NSW],
the Closing Remark preceding Theorem 12.2.7] of isomorphisms of absolute Galois
groups of MLF’s which fail [equivalently — cf. [Mzk20], Corollary 3.7] to be “RF-
preserving”, “uniformly toral”, or “geometric”. By contrast, it is interesting to
observe that:

The “group-theoretic” algorithm of Theorem 1.9 shows that the condition
of being “coupled with ΔX” [i.e., via the extension determined by ΠX ] has
the effect of rigidifying both of the 2 dimensions of Gk [cf. also Corollary
1.10 below].

This point of view will be of use in our development of the archimedean theory in
§2 below [cf., e.g., Remark 2.7.3 below].

Remark 1.9.5.

(i) Note that the functoriality with respect to isomorphisms of the algorithm
of Theorem 1.9 may be regarded as yielding a new proof of the “profinite absolute
version of the Grothendieck Conjecture over number fields” [cf., e.g., [Mzk15], The-
orem 3.4] that does not logically depend on the theorem of Neukirch-Uchida [cf.,
e.g., [Mzk15], Theorem 3.1]. Moreover, to the author’s knowledge:

The technique of Theorem 1.9 yields the first logically independent proof of
a consequence of the theorem of Neukirch-Uchida that involves an explicit
construction of the number fields involved.

Put another way, the algorithm of Theorem 1.9 yields a proof of a consequence of
the theorem of Neukirch-Uchida on number fields in the style of Uchida’s work on
function fields in positive characteristic [i.e., [Uchi]] — cf., especially, Proposition
1.3.

(ii) One aspect of the theorem of Neukirch-Uchida is that its proof relies es-
sentially on the data arising from the decomposition of primes in finite extensions
of a number field — i.e., in other words, on the “global address” of a prime among
all the primes of a number field. Such a “global address” is manifestly annihilated
by the operation of localization at the prime under consideration. In particular,
the crucial functoriality of Theorem 1.9 with respect to change of base field [e.g.,
from a number field to a nonarchimedean completion of the number field] is an-
other reflection of the way in which the nature of the proof of Theorem 1.9 over
number fields differs quite fundamentally from the essentially global proof of the
theorem of Neukirch-Uchida [cf. also Remark 3.7.6, (iii), (v), below]. This “crucial
functoriality” may also be thought of as a sort of essential independence of the
algorithms of Theorem 1.9 from both methods which are essentially global in nature
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[such as methods involving the “global address” of a prime] and methods which
are essentially local in nature [such as methods involving p-adic Hodge theory —
cf. Remark 3.7.6, (iii), (v), below]. This point of view concerning the “essential
independence of the base field” is developed further in Remark 1.9.7 below.

Remark 1.9.6. By combining the theory of the present §1 with the theory
of [Mzk21], §1 [cf., e.g., [Mzk21], Corollary 1.11 and its proof], one may obtain
“functorial group-theoretic reconstruction algorithms”, in a number of cases, for
finite étale coverings of configuration spaces associated to hyperbolic curves. We
leave the routine details to the interested reader.

Remark 1.9.7. One way to think of the construction algorithm in Theorem 1.9
of the “NF-portion of the function field” of a hyperbolic orbicurve of strictly Belyi
type over a sub-p-adic field is the following:

The algorithm of Theorem 1.9 may be thought of as a sort of complete
“combinatorialization” — independent of the base field! — of the
[algebro-geometric object constituted by the] orbicurve under considera-
tion.

This sort of “combinatorialization” may be thought of as being in a similar vein
— albeit much more technically complicated! — to the “combinatorialization” of a
category of finite étale coverings of a connected scheme via the notion of an abstract
Galois category, or the “combinatorialization” of certain aspects of the commutative
algebra of “normal rings with toral singularities” via the abstract monoids that
appear in the theory of log regular schemes [cf. also the Introduction of [Mzk16]
for more on this point of view].

Remark 1.9.8. Typically in discussions of anabelian geometry, the term “group-
theoretic” is applied to a property or construction that is preserved by the isomor-
phisms [or homomorphisms] of fundamental groups under consideration [cf., e.g.,
[Mzk5]]. By contrast, our use of this term is intended in a stronger sense. That is
to say:

We use the term “group-theoretic algorithm” to mean that the algorithm
in question is phrased in language that only depends on the topological
group structure of the fundamental group under consideration.

[Thus, the more “classical” use [e.g., in [Mzk5]] of the term “group-theoretic” cor-
responds, in our discussion of “group-theoretic algorithms”, to the functoriality —
e.g., with respect to isomorphisms of some type — of the algorithm.] In particu-
lar, one fundamental difference between the approach usually taken to anabelian
geometry and the approach taken in the present paper is the following:

The “classical” approach to anabelian geometry, which we shall refer
to as bi-anabelian, centers around a comparison between two geomet-
ric objects [e.g., hyperbolic orbicurves] via their [arithmetic] fundamental
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groups. By contrast, the theory of the present paper, which we shall refer
to as mono-anabelian, centers around the task of establishing “group-
theoretic algorithms” — i.e., “group-theoretic software”— that require as
input data only the [arithmetic] fundamental group of a single geometric
object.

Thus, it follows formally that

“mono-anabelian” =⇒ “bi-anabelian”.

On the other hand, if one is allowed in one’s algorithms to introduce some fixed
reference model of the geometric object under consideration, then the task of
establishing an “algorithm” may, in effect, be reduced to “comparison with the fixed
reference model”, i.e., reduced to some sort of result in “bi-anabelian geometry”.
That is to say, if one is unable to settle the issue of ruling out the use of such
models, then there remains the possibility that

“bi-anabelian”
?

=⇒ “mono-anabelian”.

We shall return to this crucial issue in §3 below [cf., especially, Remark 3.7.3].

Remark 1.9.9. As was pointed out to the author by M. Kim, one may also think
of the algorithms of a result such as Theorem 1.9 as suggesting an approach to
solving the problem of characterizing “group-theoretically” those profinite groups Π
that occur [i.e., in Theorem 1.9] as a “ΠX”. That is to say, one may try to obtain
such a characterization by starting with, say, an arbitrary slim profinite group Π
and then proceeding to impose “group-theoretic” conditions on Π corresponding to
the various steps of the algorithms of Theorems 1.9 — i.e., conditions whose content
consists of minimal assumptions on Π that are necessary in order to execute each
step of the algorithm.

Corollary 1.10. (Reconstruction of the Function Field for MLF’s) Let
X be a hyperbolic orbicurve over an MLF k [cf. [Mzk20], §0]; k an algebraic
closure of k; kNF ⊆ k the algebraic closure of Q in k;

1→ ΔX → ΠX → Gk → 1

— where ΠX
def
= π1(X) → Gk

def
= Gal(k/k) denotes the natural surjection of étale

fundamental groups [relative to some choice of basepoints], and ΔX denotes the
kernel of this surjection — the resulting extension of profinite groups. Then:

(i) There exists a functorial “group-theoretic” algorithm for reconstruct-

ing the natural isomorphism H2(Gk,μẐ
(Gk))

∼→ Ẑ [cf. (a) below], together with

the natural surjection H1(Gk,μẐ
(Gk))

∼→ Gab
k � Ẑ [cf. (b) below] from the

profinite group Gk, as follows:

(a) Write:

μQ/Z(Gk)
def
= lim−→

H

(Hab)tors; μ
Ẑ
(Gk)

def
= Hom(Q/Z,μQ/Z(Gk))
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— where H ranges over the open subgroups of Gk; the notation “(−)tors”
denotes the torsion subgroup of the abelian group in parentheses; the
arrows of the direct limit are induced by the Verlagerung, or transfer, map
[cf. the discussion preceding [Mzk9], Proposition 1.2.1; the proof of [Mzk9],
Proposition 1.2.1]. [Thus, the underlying module of μQ/Z(Gk), μẐ

(Gk) is
unaffected by the operation of passing from Gk to an open subgroup of
Gk.] Then one constructs the natural isomorphism

H2(Gk,μẐ
(Gk))

∼→ Ẑ

“group-theoretically” from Gk via the algorithm described in the proof of
[Mzk9], Proposition 1.2.1, (vii).

(b) By applying the isomorphism of (a) [and the cup-product in group coho-
mology], one constructs the surjection

H1(Gk,μẐ
(Gk))

∼→ Gab
k � Gunr ∼→ Ẑ

determined by the Frobenius element in the maximal unramified quo-
tient Gunr of Gk via the “group-theoretic” algorithm described in the proof
of [Mzk9], Proposition 1.2.1, (ii), (iv).

Here, the asserted “functoriality” is with respect to arbitrary injective open
homomorphisms of profinite groups [cf. also Remark 1.10.1, (iii), below].

(ii) By applying the functorial “group-theoretic” algorithm of [Mzk20],
Lemma 4.5, (v), to construct the decomposition groups of cusps in ΠX , one ob-
tains a ΠX-module μ

Ẑ
(ΠX) as in Proposition 1.4, (ii); Theorem 1.9, (b) [cf. also

Remark 1.10.1, (ii), below]. Then there exists a functorial “group-theoretic”

algorithm for reconstructing the natural isomorphism μ
Ẑ
(Gk)

∼→ μ
Ẑ
(ΠX) [cf.

(c) below; Remark 1.10.1 below] and the image of a certain Kummer map [cf.
(d) below] from the profinite group ΠX [cf. Remark 1.9.2], as follows:

(c) One constructs the natural isomorphism [cf., e.g., [Mzk12], Theorem
4.3]

μ
Ẑ
(Gk)

∼→ μ
Ẑ
(ΠX)

— thought of as an element of the quotient

H1(Gk,μẐ
(ΠX))� Hom(μ

Ẑ
(Gk),μẐ

(ΠX))

determined by the surjection of (b) — as the unique topological genera-
tor of Hom(μ

Ẑ
(Gk),μẐ

(ΠX)) that is contained in the “positive rational

structure” [arising from various Jab, for J ⊆ ΔX an open subgroup] of
[Mzk9], Lemma 2.5, (i) [cf. also [Mzk9], Lemma 2.5, (ii)].

(d) One constructs the image of the Kummer map

k× ↪→ H1(Gk,μẐ
(ΠX)) ↪→ H1(ΠX ,μẐ

(ΠX))
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as the inverse image of the subgroup generated by the Frobenius element

via the surjection H1(Gk,μẐ
(ΠX))

∼→ H1(Gk,μẐ
(Gk))

∼→ Gab
k � Ẑ of

(b) [cf. also the isomorphism of (c)].

(d′) Alternatively, if X is of strictly Belyi type [so that we are in the situ-
ation of Theorem 1.9], then one may construct the image of the Kummer
map of (d) — without applying the isomorphism of (c) — as the com-

pletion of H1(Gk,μẐ
(ΠX))

⋂
k
×
NF [cf. Theorem 1.9, (e)] with respect to

the valuation on the field (H1(Gk,μẐ
(ΠX))

⋂
k
×
NF)

⋃{0} [relative to the

additive structure of Theorem 1.9, (e)] determined by the subring of this

field generated by the intersection Ker(H1(Gk,μẐ
(ΠX))� Ẑ)

⋂
k
×
NF —

where “�” is the surjection of (b), considered up to multiplication by Ẑ×,
an object which is independent of the isomorphism of (c).

Here, the asserted “functoriality” is with respect to arbitrary open injective
homomorphisms of extensions of profinite groups — cf. Remark 1.10.1 below.

(iii) Suppose further that X is of strictly Belyi type [so that we are in the
situation of Theorem 1.9]. Then there exists a functorial “group-theoretic”
algorithm for reconstructing the function field KX of X from the profinite
group ΠX [cf. Remark 1.9.2], as follows:

(e) One constructs the decomposition groups in ΠX of arbitrary closed
points of X by approximating such points by NF-points of X [whose
decomposition groups have already been constructed, in Theorem 1.9, (a)],
via the equivalence of [Mzk12], Lemma 3.1, (i), (iv).

(f) For S a finite set of closed points of X, one constructs the associated
“maximal abelian cuspidalization”

Πc-ab
US

of US
def
= X\S via the algorithm of [Mzk19], Theorem 2.1, (i) [cf. also

[Mzk19], Theorem 1.1, (iii), as well as Remark 1.10.4, below]. Moreover,
by applying the approximation technique of (e) to the Belyi cuspidal-
izations of Theorem 1.9, (a), one may construct the Green’s trivial-
izations [cf. [Mzk19], Definition 2.1; [Mzk19], Remark 15] for arbitrary
pairs of closed points of X such that one point of the pair is an NF-point;
in particular, one may construct the liftings to Πc-ab

US
[from ΠX ] of de-

composition groups of NF-points.

(g) By applying the “maximal abelian cuspidalizations” Πc-ab
US

of (f), together
with the characterization of principal divisors given in Proposition 1.6, (ii)
[cf. also the decomposition groups of (e)], one constructs the subgroup

PUS
⊆ H1(Πc-ab

US
,μ

Ẑ
(ΠX)) (∼= H1(ΠUS

,μ
Ẑ
(ΠX)))

[cf. [Mzk19], Proposition 2.1, (i), (ii)] determined by the cuspidal prin-
cipal divisors via the isomorphisms of Theorem 1.9, (b). Then the
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image of the Kummer map in PUS
may be constructed as the collec-

tion of elements of PUS whose restriction ∈ H1(Gk′ ,μ
Ẑ
(ΠX)) — where

Gk′ ⊆ Gk is an open subgroup corresponding to a finite extension k′ ⊆ k
of k — to a decomposition group of some NF-point [cf. (f)] is contained

in (k′)× ⊆ ((k′)×)∧
∼→ H1(Gk′ ,μ

Ẑ
(ΠX)) [cf. (d) or, alternatively,(d’)].

(h) One constructs the additive structure on [the image — cf. (d) — of]
k×
⋃{0} as the unique continuous extension of the additive structure

on (k×
⋂
k
×
NF)

⋃{0} constructed in Theorem 1.9, (e). One constructs the
image of the Kummer map

K×
X ↪→ lim−→

S

H1(Πc-ab
US

,μ
Ẑ
(ΠX))

by letting S as in (g) vary. One constructs the additive structure on
K×

X

⋃{0} as the unique additive structure compatible, relative to the oper-
ation of restriction to decomposition groups of NF-points [cf. (f)], with the
additive structures on the various (k′)×

⋃{0}, for k′ ⊆ k a finite exten-
sion of k. Also, one may construct the restrictions of elements of K×

X to
decomposition groups not only of NF-points, but also of arbitrary closed
points of X, by approximating as in (e); this allows one [by letting k
vary among finite extensions of k in k] to give an alternative construction
of the additive structure on K×

X

⋃{0} by applying Proposition 1.3 directly

[i.e., over k, as opposed to kNF].

Here, the asserted “functoriality” is with respect to arbitrary open injective
homomorphisms of profinite groups [i.e., of “ΠX”] — cf. Remark 1.10.1 below.

Proof. The validity of the algorithms asserted in Corollary 1.10 is immediate from
the various results cited in the statement of these algorithms. ©

Remark 1.10.1.

(i) In general, the functoriality of Theorem 1.9, Corollary 1.10, when applied to
the operation of passing to open subgroups of ΠX , is to be understood in the sense
of a “compatibility”, relative to dividing the usual functorially induced morphism
on “μ

Ẑ
(ΠX)’s” by a factor given by the index of the subgroups of ΔX that arise

from the open subgroups of ΠX under consideration [cf., e.g., [Mzk19], Remark 1].

(ii) In fact, strictly speaking, the definition of “μ
Ẑ
(ΠU )” in Theorem 1.9, (b),

is only valid if U is a hyperbolic curve of genus ≥ 2; nevertheless, one may extend
this definition to the case where U is an arbitrary hyperbolic orbicurve precisely
by passing to coverings and applying the “functoriality/compatibility” discussed in
(i). We leave the routine details to the reader.

(iii) In a similar vein, note that the isomorphism H2(Gk,μẐ
(Gk))

∼→ Ẑ of

Corollary 1.10, (a), is functorial in the sense that it is compatible with the result of
dividing the usual functorially induced morphism by a factor given by the index of
the open subgroups of Gk under consideration.
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Remark 1.10.2. Just as was the case with Theorem 1.9, one may give a tempered
version of Corollary 1.10 — cf. Remark 1.9.1.

Remark 1.10.3.

(i) The isomorphism of Corollary 1.10, (c), may be thought of as a sort of
“synchronization of [arithmetic and geometric] cyclotomes”, in the style of the
“synchronization of cyclotomes” given in the final display of Proposition 1.4, (ii).

(ii) One may construct the natural isomorphism

Gab
k

∼→ H1(Gk,μẐ
(ΠX))

by applying the displayed isomorphism of Corollary 1.10, (c), to the inverse of the
first displayed isomorphism of Corollary 1.10, (b). By applying this natural isomor-
phism to various open subgroups of Gk, we thus obtain yet another isomorphism
of cyclotomes

μ
Ẑ
(Gk)

∼→ μκ

Ẑ
(ΠX)

def
= Hom(Q/Z, κ(k

×
NF))

— where we write κ(k
×
NF) for the image of k

×
NF in

lim−→
V

H1(ΠV ,μẐ
(ΠU ))

via the inclusion induced by the Kummer map in the display of Theorem 1.9, (d).

Remark 1.10.4. Here, we take the opportunity to correct an unfortunate misprint
in the proof of [Mzk19], Theorem 1.1, (iii). The phrase “Z ′

X → X, Z ′
Y → Y

are diagonal coverings” that appears at the beginning of this proof should read
“Z ′

X → X ×X, Z ′
Y → Y × Y are diagonal coverings”.

Finally, we conclude the present §1 by observing that the techniques developed
in the present §1 may be intepreted as implying a very elementary semi-absolute
birational analogue of Theorem 1.9.

Theorem 1.11. (Semi-absolute Reconstruction of Function Fields of
Curves over Kummer-faithful Fields) Let X be a smooth, proper, geometrically
connected curve of genus gX over a Kummer-faithful field k; KX the function

field of X; ηX
def
= Spec(KX); k an algebraic closure of k;

1→ ΔηX → ΠηX → Gk → 1

— where ΠηX

def
= π1(ηX)→ Gk

def
= Gal(k/k) denotes the natural surjection of étale

fundamental groups [relative to some choice of basepoints], and ΔηX denotes the
kernel of this surjection — the resulting extension of profinite groups. Then
ΔηX , ΠηX , and Gk are slim. For simplicity, let us suppose further [for instance,
by replacing X by a finite étale covering of X] that gX ≥ 2. Then there exists a
functorial “group-theoretic” algorithm for reconstructing the function field
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KX from the extension of profinite groups 1 → ΔηX
→ ΠηX

→ Gk → 1; this
algorithm consists of the following steps:

(a) Let l be a prime number. If ρ : Gk → Z×
l is a character, and M

is an abelian pro-l group equipped with a continuous action by Gk, then
let us write Fρ(M) ⊆ M for the closed subgroup topologically generated
by the closed subgroups of M that are isomorphic to Zl(ρ) [i.e., the Gk-
module obtained by letting Gk act on Zl via ρ] as H-modules, for some
open subgroup H ⊆ Gk. [Thus, Fρ(M) ⊆M depends only on the “power-
equivalence class” of ρ — cf. Remark 1.5.1.] Then the power-equivalence
class of the cyclotomic character χl : Gk → Z×

l may be characterized

by the condition that Fχl
(Δab

ηX
⊗Zl) is not topologically finitely generated.

(b) Let l be a prime number. If M is an abelian pro-l group equipped with
a continuous action by Gk such that M/Fχl

(M) is topologically finitely
generated, then let us write M � T (M) for the maximal torsion-
free quasi-trivial quotient [i.e., maximal torsion-free quotient on which
Gk acts through a finite quotient]. [Thus, one verifies immediately that
“T (M)” is well-defined.] Then one may compute the genus of X via the
formula [cf. the proof of [Mzk21], Corollary 2.10]

2gX = dimQl
(Q(Δab

ηX
⊗ Zl)⊗Ql) + dimQl

(T (Δab
ηX
⊗ Zl)⊗Ql)

— where we write Q(−) def
= (−)/Fχl

(−). In particular, this allows one
to characterize, via the Hurwitz formula, those pairs of open subgroups
Ji ⊆ Hi ⊆ ΔηX

such that “the covering between Ji and Hi is cyclic of or-
der a power of l and totally ramified at precisely one closed point but un-
ramified elsewhere” [cf. the proof of [Mzk21], Corollary 2.10]. Moreover,
this last characterization implies a “group-theoretic” characterization
of the inertia subgroups Ix ⊆ ΔηX

of points x ∈ X(k) [cf. the proof of
[Mzk21], Corollary 2.10; the latter portion of the proof of [Mzk9], Lemma
1.3.9], hence of the quotient ΔηX

� ΔX [whose kernel is topologically

normally generated by the Ix, for x ∈ X(k)]. Finally, the decomposition
group Dx ⊆ ΠηX of x ∈ X(k) may then be constructed as the normal-
izer [or, equivalently, commensurator] of Ix in ΠηX

[cf., e.g., [Mzk12],
Theorem 1.3, (ii)].

(c) One may construct the natural isomorphisms Ix
∼→ MX [where x ∈

X(k); MX is as in Proposition 1.4, (ii)] via the technique of Proposition
1.4, (ii). These isomorphisms determine [by restriction to the Ix] a natural
map

H1(ΠηX ,MX)→
∏

x∈X(k)

Ẑ

[cf. Proposition 1.6, (iii)]. Denote by PηX ⊆ H1(ΠηX ,MX) [cf. Proposi-
tion 1.8] the inverse image in H1(ΠηX

,MX) of the subgroup of∏
x∈X(k)

Ẑ
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consisting of the principal divisors — i.e., divisors D of degree zero
supported on a collection of points ∈ X(kH), where kH ⊆ k is the subfield
corresponding to an open subgroup H ⊆ Gk, whose associated class ∈
H1(H,Δab

X ) [i.e., the class obtained as the difference between the section
“tD” of Proposition 1.6, (ii), and the identity section] is trivial.

(d) The image of the Kummer map

K×
X → H1(ΠηX

,MX)

may be constructed as the subgroup generated by elements θ ∈ PηX
for

which there exists an x ∈ X(k) such that θ|x ∈ H1(Dx,MX) vanishes
[i.e., = 1, if one works multiplicatively] — cf. the technique of Proposition
1.8, (i). Moreover, the additive structure on K×

X

⋃{0} may be recovered
via the algorithm of Proposition 1.3.

Finally, the asserted “functoriality” is with respect to arbitrary open injective
homomorphisms of extensions of profinite groups [cf. Remark 1.10.1, (i)].

Proof. The slimness of ΔηX
follows immediately from the argument applied to

verify the slimness portion of [Mzk21], Corollary 2.10. The validity of the recon-
struction algorithm asserted in Theorem 1.11 is immediate from the various results
cited in the statement of this algorithm. Now, by applying the functoriality of this
algorithm, the slimness of Gk follows immediately from the argument applied in
[Mzk5], Lemma 15.8, to verify the slimness of Gk when k is sub-p-adic. Finally, the
slimness of ΠηX

follows from the slimness of ΔηX
, Gk. ©

Remark 1.11.1.

(i) One verifies immediately that when k is an MLF, the semi-absolute algo-
rithms of Theorem 1.11 may be rendered absolute [i.e., one may construct the kernel
of the quotient “ΠηX

� Gk”] by applying the algorithm that is implicit in the proof
of the corresponding portion of [Mzk21], Corollary 2.10.

(ii) Suppose, in the notation of Theorem 1.11 that k is an NF. Then an absolute
version of the functoriality portion [i.e., the “Grothendieck Conjecture” portion]
of Theorem 1.11 is proven in [Pop] [cf. [Pop], Theorem 2]. Moreover, in [Pop],
Observation [and the following discussion], an algorithm is given for passing from
the absolute data “ΠηX” to the semi-absolute data “(ΠηX ,ΔηX ⊆ ΠηX )”. Thus,
by combining this algorithm of [Pop] with Theorem 1.11, one obtains an absolute
version of Theorem 1.11.

Remark 1.11.2. One may think of the argument used to prove the slimness of
Gk in the proof of Theorem 1.11 [i.e., the argument of the proof of [Mzk5], Lemma
15.8] as being similar in spirit to the proof [cf., e.g., [Mzk9], Theorem 1.1.1, (ii)] of
the slimness of Gk via local class field theory in the case where k is an MLF, as well
as to the proof of the slimness of the geometric fundamental group of a hyperbolic
curve given, for instance, in [MT], Proposition 1.4, via the induced action on the
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torsion points of the Jacobian of the curve, in which the curve may be embedded.
That is to say, in the case where k is an arbitrary Kummer-faithful field, since one
does not have an analogue of local class field theory (respectively, of the embedding
of a curve in its Jacobian), the moduli of hyperbolic curves over k, in the context
of a relative anabelian result for the arithmetic fundamental groups of such curves,
plays the role of the abelianization of Gk (respectively, of the torsion points of the
Jacobian) in the case where k is an MLF (respectively, in the case of the geometric
fundamental group of a hyperbolic curve) — i.e., the role of a “functorial, group-
theoretically reconstructible embedding” of k (respectively, the curve).

Remark 1.11.3. It is interesting to note that the techniques that appear in the
algorithms of Theorem 1.11 are extremely elementary. For instance, unlike the case
with Theorem 1.9, Corollary 1.10, the algorithms of Theorem 1.11 do not depend on
the somewhat difficult [e.g., in their use of p-adic Hodge theory] results of [Mzk5].
Put another way, this elementary nature of Theorem 1.11 serves to highlight the
fact that the only non-elementary portion [in the sense of its dependence of the
results of [Mzk5]] of the algorithms of Theorem 1.9 is the use of the technique of
Belyi cuspidalizations. It is precisely this “non-elementary portion” of Theorem 1.9
that requires us, in Theorem 1.9, to assume that the base field is sub-p-adic [i.e.,
as opposed to merely Kummer-faithful, as in Theorem 1.11].

Remark 1.11.4.

(i) The observation of Remark 1.11.3 prompts the following question:

If the birational version [i.e., Theorem 1.11] of Theorem 1.9 is so much more
elementary than Theorem 1.9, then what is the advantage [i.e., relative to
the anabelian geometry of function fields] of considering the anabelian
geometry of hyperbolic curves?

One key advantage of working with hyperbolic curves, in the context of the theory
of the present paper, lies in the fact that “most” hyperbolic curves admit a core
[cf. [Mzk3], §3; [Mzk10], §2]. Moreover, the existence of “cores” at the level of
schemes has a tendency to imply to existence of “cores” at the level of “étale
fundamental groups considered geometrically”, i.e., at the level of anabelioids [cf.
[Mzk11], §3.1]. The existence of a core is crucial to, for instance, the theory of
the étale theta function given in [Mzk18], §1, §2, and, moreover, in the present
three-part series, plays an important role in the theory of elliptically admissible [cf.
[Mzk21], Definition 3.1] hyperbolic orbicurves. On the other hand, it is easy to see
that “function fields do not admit cores”: i.e., if, in the notation of Theorem 1.11,
we write Loc(ηX) for the category whose objects are connected schemes that admit
a connected finite étale covering which is also a connected finite étale covering of
ηX , and whose morphisms are the finite étale morphisms, then Loc(ηX) fails to
admit a terminal object.

(ii) The observation of (i) is interesting in the context of the theory of §5
below, in which we apply various [mono-]anabelian results to construct “canonical
rigid integral structures” called “log-shells”. Indeed, in the Introduction to
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[Mzk11], it is explained, via analogy to the complex analytic theory of the upper
half-plane, how the notion of a coremay be thought of as a sort of “canonical integral
structure” — i.e., relative to the “modifications of integral structure” constituted
by “going up and down via various finite étale coverings”. Here, it is interesting
to note that this idea of a “canonical integral structure relative to going up and
down via finite étale coverings” may also be seen in the theory surrounding the
property of cyclotomic rigidity in the context of the étale theta function [cf., e.g.,
[Mzk18], Remark 2.19.3]. Moreover, let us observe that these “integral structures
with respect to finite étale coverings” may be thought of as “exponentiated integral
structures” — i.e., in the sense that, for instance, in the case of Gm over Q, these
integral structures are not integral structures relative to the scheme-theoretic base
ring Z ⊆ Q, but rather with respect to the exponent of the standard coordinate U ,
which, via multiplication by various nonnegative integers N , gives rise, in the form
of mappings Un �→ UN ·n, to various finite étale coverings ofGm. Such “non-scheme-
theoretic exponentiated copies of Z” play an important role in the theory of the
étale theta function as the Galois group of a certain natural infinite étale covering
of the Tate curve — cf. the discussion of [Mzk18], Remark 2.16.2. Moreover, the
idea of constructing “canonical integral structures” by “de-exponentiating certain
exponentiated integral structures” may be rephrased as the idea of “constructing
canonical integral structures by applying some sort of logarithm operation”. From
this point of view, such “canonical integral structures with respect to finite étale
coverings” are quite reminiscent of the canonical integral structures arising from
log-shells to be constructed in §5 below.

Remark 1.11.5. In the context of the discussion of Remark 1.11.4, if the hyper-
bolic curve in question is affine, then, relative to the function field of the curve, the
additional data necessary to determine the given affine hyperbolic curve consists
precisely of some [nonempty] finite collection of conjugacy classes of inertia groups
[i.e., “Ix” as in Theorem 11.1, (b)]. Thus, from the point of view of the discussion
of Remark 1.11.3, the technique of Belyi cuspidalizations is applied precisely so as
to enable one to work with this additional data [cf. also the discussion of Remark
3.7.7 below].
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Section 2: Archimedean Reconstruction Algorithms

In the present §2, we re-examine various aspects of the complex analytic the-
ory of [Mzk14] from an algorithm-based, “model-implicit” [cf. Remark 2.7.4 below]
point of view motivated by the Galois-theoretic theory of §1. More precisely, the
“SL2(R)-based approach” of [Mzk14], §1, may be seen in the general theory of
Aut-holomorphic spaces given in Proposition 2.2, Corollary 2.3, while the “paral-
lelograms, rectangles, squares approach” of [Mzk14], §2, is developed further in the
reconstruction algorithms of Propositions 2.5, 2.6. These two approaches are com-
bined to obtain the main result of the present §2 [cf. Corollary 2.7], which consists
of a certain reconstruction algorithm for the “local linear holomorphic structure”
of an Aut-holomorphic orbispace arising from an elliptically admissible hyperbolic
orbicurve. Finally, in Corollaries 2.8, 2.9, we consider the relationship between
Corollary 2.7 and the global portion of the Galois-theoretic theory of §1.

The following definition will play an important role in the theory of the present
§2.

Definition 2.1.

(i) Let X be a Riemann surface [i.e., a complex manifold of dimension one].
Write AX for the assignment that assigns to each connected open subset U ⊆ X
the group

AX(U)
def
= Authol(U)

of holomorphic automorphisms of U — which we think of as being “some distin-
guished subgroup” of the group of self-homeomorphisms Aut(U top) of the under-
lying topological space U top of U . We shall refer to as the Aut-holomorphic space
associated to X the pair

X
def
= (Xtop,AX)

consisting of the underlying topological space Xtop def
= Xtop of X, together with the

assignment AX
def
= AX ; also, we shall refer to the assignment AX = AX as the Aut-

holomorphic structure on Xtop = Xtop [determined by X]. If X is biholomorphic
to the open unit disc, then we shall refer to X as an Aut-holomorphic disc. If X
is a hyperbolic Riemann surface of finite type (respectively, a hyperbolic Riemann
surface of finite type associated to an elliptically admissible [cf. [Mzk21], Definition
3.1] hyperbolic curve over C), then we shall refer to the Aut-holomorphic space X as
hyperbolic of finite type (respectively, elliptically admissible). If U is a collection of
connected open subsets of X that forms a basis for the topology ofX and, moreover,
satisfies the condition that any connected open subset of X that is contained in an
element of U is itself an element of U , then we shall refer to U as a local structure
on Xtop and to the restriction AX|U of AX to U as a [U-local] pre-Aut-holomorphic
structure on Xtop.

(ii) Let X (respectively, Y ) be a Riemann surface; X (respectively, Y) the
Aut-holomorphic space associated to X (respectively, Y ); U (respectively, V) a
local structure on Xtop (respectively, Ytop). Then we shall refer to as a (U ,V)-local
morphism of Aut-holomorphic spaces

φ : X→ Y
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any local isomorphism of topological spaces φtop : Xtop → Ytop with the property
that for any open subset UX ∈ U that maps homeomorphically via φtop onto some
open subset UY ∈ V , φtop induces a bijection AX(UX)

∼→ AY(UY); when U , V are,
respectively, the sets of all connected open subsets of X, Y , then we shall omit
the word “(U ,V)-local” from this terminology; when φtop is a finite covering space
map, we shall say that φ is finite étale. We shall refer to a map X → Y which is
either holomorphic or anti-holomorphic at each point of X as an RC-holomorphic
morphism [cf. [Mzk14], Definition 1.1, (vi)].

(iii) Let Z, Z ′ be orientable topological surfaces [i.e., two-manifolds]. If p ∈ Z,
then let us write

Orn(Z, p)
def
= lim−→

W

π1(W\{p})ab

— where W ranges over the connected open neighborhoods of p in Z; “π1(−)”
denotes the usual topological fundamental group, relative to some basepoint [so
“π1(−)” is only defined up to inner automorphisms, an indeterminacy which may
be eliminated by passing to the abelianization “ab”]; thus, Orn(Z, p) is [noncanon-
ically!] isomorphic to Z. Note that since Z is orientable, it follows that the assign-
ment p �→ Orn(Z, p) determines a trivial local system on Z, whose module of global
sections we shall denote by Orn(Z) [so Orn(Z) is a direct product of copies of Z, in-
dexed by the connected components of Z]. One verifies immediately that any local
isomorphism Z → Z ′ induces a well-defined homomorphism Orn(Z) → Orn(Z ′).
We shall say that any two local isomorphisms α, β : Z → Z ′ are co-oriented if
they induce the same homomorphism Orn(Z) → Orn(Z ′). We shall refer to as a
pre-co-orientation ζ : Z → Z ′ any equivalence class of local isomorphisms Z → Z ′

relative to the equivalence relation determined by the property of being co-oriented
[so a pre-co-orientation may be thought of as a collection of maps Z → Z ′, or, al-
ternatively, as a homomorphism Orn(Z)→ Orn(Z ′)]. Thus, the pre-co-orientations
from the open subsets of Z to Z ′ form a pre-sheaf on Z; we shall refer to as a
co-orientation

ζ : Z → Z ′

any section of the sheafification of this pre-sheaf [so a co-orientation may be thought
of as a collection of maps from open subsets of Z to Z ′, or, alternatively, as a
homomorphism Orn(Z)→ Orn(Z ′)].

(iv) Let X, Y , X, Y, U , V be as in (ii). Then we shall say that two (U ,V)-local
morphisms of Aut-holomorphic spaces φ1, φ2 : X → Y are co-holomorphic if φtop1

and φtop2 are co-oriented [cf. (iii)]. We shall refer to as a pre-co-holomorphicization
ζ : X → Y any equivalence class of (U ,V)-local morphisms of Aut-holomorphic
spaces X → Y relative to the equivalence relation determined by the property
of being co-holomorphic [so a pre-co-holomorphicization may be thought of as a
collection of maps from Xtop to Ytop]. Thus, the pre-co-holomorphicizations from
the Aut-holomorphic spaces determined by open subsets of Xtop to Y form a pre-
sheaf on Xtop; we shall refer to as a co-holomorphicization [cf. also Remark 2.3.2
below]

ζ : X→ Y

any section of the sheafification of this pre-sheaf [so a co-holomorphicization may
be thought of as a collection of maps from open subsets of Xtop to Ytop]. Finally, we
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observe that every co-holomorphicization (respectively, pre-co-holomorphicization)
determines a co-orientation (pre-co-orientation) between the underlying topological
spaces.

Remark 2.1.1. One verifies immediately that there is a natural extension of
the notions of Definition 2.1 to the case of Riemann orbisurfaces, which give rise
to “Aut-holomorphic orbispaces” [not to be confused with the “orbi-objects” of §0,
which will always be identifiable in the present paper by means of the hyphen “-”
following the prefix “orbi”]. Here, we understand the term “Riemann orbisurface”
to refer to a one-dimensional complex analytic stack which is locally isomorphic
to the complex analytic stack obtained by forming the stack-theoretic quotient of
a Riemann surface [i.e., a one-dimensional complex manifold] by a finite group of
[holomorphic] automorphisms [of the Riemann surface]. In particular, a “Riemann
orbiface” is necessarily a Riemann surface over the complement, in the “coarse
space” associated to the orbisurface, of some discrete closed subset.

Remark 2.1.2. One important aspect of the “Aut-holomorphic” approach to the
notion of a “holomorphic structure” is that this approach has the virtue of being
free of any mention of some “fixed reference model” copy of the field of complex
numbers C — cf. Remark 2.7.4 below.

Proposition 2.2. (Commensurable Terminality of RC-Holomorphic
Automorphisms of the Disc) Let X, Y be Aut-holomorphic discs, arising,
respectively, from Riemann surfaces X, Y . Then:

(i) Every isomorphism of Aut-holomorphic spaces X
∼→ Y arises from a

unique RC-holomorphic isomorphism X
∼→ Y .

(ii) Let us regard the group Aut(Xtop) as equipped with the compact-open
topology. Then the subgroup

AutRC-hol(X) ⊆ Aut(Xtop)

of RC-holomorphic automorphisms of X, which [as is well-known] contains
Authol(X) as a subgroup of index two, is closed and commensurably terminal
[cf. [Mzk20], §0]. Moreover, we have isomorphisms of topological groups

Authol(X) ∼= SL2(R)/{±1}; AutRC-hol(X) ∼= GL2(R)/R
×

[where we regard Authol(X), AutRC-hol(X), as equipped with the topology induced
by the topology of Aut(Xtop), i.e., the compact-open topology].

Proof. It is immediate from the definitions that assertion (i) follows formally
from the commensurable terminality [in fact, in this situation, normal terminality
suffices] of assertion (ii). Thus, it suffices to verify assertion (ii). First, we recall
that we have a natural isomorphism of connected topological groups

Authol(X) ∼= SL2(R)/{±1}
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[where we regard Authol(X) as equipped with the compact-open topology]. Next,
let us recall the well-known fact in elementary complex analysis that “a sequence
of holomorphic functions on Xtop that converges uniformly on compact subsets
of Xtop converges to a holomorphic function on Xtop”. [This fact is often ap-
plied in proofs of the Riemann mapping theorem.] This fact implies immedi-
ately that Authol(X), AutRC-hol(X) are closed in Aut(Xtop). Now suppose that
α ∈ Aut(Xtop) lies in the commensurator of Authol(X); thus, the intersection (α ·
Authol(X) ·α−1)

⋂
Authol(X) is a closed subgroup of finite index of Authol(X). But

this implies that (α·Authol(X)·α−1)
⋂
Authol(X) is an open subgroup of Authol(X),

hence [since Authol(X) is connected] that (α · Authol(X) · α−1)
⋂
Authol(X) =

Authol(X), i.e., that α · Authol(X) · α−1 ⊇ Authol(X). Thus, by replacing α by
α−1, we conclude that α normalizes Authol(X), i.e., that α induces an automor-
phism of the topological group Authol(X) ∼= SL2(R)/{±1}, hence also [by Cartan’s
theorem— cf., e.g., [Serre], Chapter V, §9, Theorem 2; the proof of [Mzk14], Lemma
1.10] of the real analytic Lie group SL2(R)/{±1}. Thus, as is well-known, it fol-
lows [for instance, by considering the action of α on the Borel subalgebras of the
complexification of the Lie algebra of SL2(R)/{±1}] that α arises from an element
of GL2(C)/C

× that fixes [relative to the action by conjugation] the Lie subalgebra
sl2(R) of sl2(C). But such an element of GL2(C)/C

× is easily verified to be an
element of GL2(R)/R

×. In particular, by considering the action of α on maximal
compact subgroups of Authol(X) [cf. the proof of [Mzk14], Lemma 1.10], it follows
that α arises from an RC-holomorphic automorphism of X, as desired. ©

In fact, as the following result shows, the notions of an Aut-holomorphic struc-
ture and a pre-Aut-holomorphic structure are equivalent to one another, as well as
to the usual notion of a “holomorphic structure”.

Corollary 2.3. (Morphisms of Aut-Holomorphic Spaces) Let X (respec-
tively, Y ) be a Riemann surface; X (respectively, Y) the Aut-holomorphic space
associated to X (respectively, Y ); U (respectively, V) a local structure on Xtop (re-
spectively, Ytop). Then:

(i) Every (U ,V)-local morphism of Aut-holomorphic spaces

φ : X→ Y

arises from a unique étale RC-holomorphic morphism ψ : X → Y . Moreover,
if, in this situation, X, Y [i.e., Xtop, Ytop] are connected, then there exist pre-
cisely two co-holomorphicizations X→ Y, corresponding to the holomorphic
and anti-holomorphic local isomorphisms from open subsets of X to Y .

(ii) Every pre-Aut-holomorphic structure on Xtop extends to a unique
Aut-holomorphic structure on Xtop.

Proof. Assertion (i) follows immediately from the definitions, by applying Propo-
sition 2.2, (i), to sufficiently small open discs in Xtop. Assertion (ii) follows im-
mediately from assertion (i) by applying assertion (i) to automorphisms of the
Aut-holomorphic spaces determined by arbitrary connected open subsets of Xtop

which determine the same co-holomorphicization as the identity automorphism. ©
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Remark 2.3.1. Note that Corollary 2.3 may be thought of as one sort of “com-
plex analytic analogue of the Grothendieck Conjecture”, that, although formulated
somewhat differently, contains [to a substantial extent] the same essential mathe-
matical content as [Mzk14], Theorem 1.12 — cf. the similarity between the proofs
of Proposition 2.2 and [Mzk14], Lemma 1.10; the application of the p-adic version
of Cartan’s theorem in the proof of [Mzk8], Theorem 1.1 [i.e., in the proof of [Mzk8],
Lemma 1.3].

Remark 2.3.2. It follows, in particular, from Corollary 2.3, (ii), that [in the
notation of Definition 2.1, (iv)] the notion of a co-holomorphicization X→ Y is, in
fact, independent of the choice of the local structures U , V.

Remark 2.3.3. It follows immediately from Corollary 2.3, (i), that any composite
of morphisms of Aut-holomorphic spaces is again a morphism of Aut-holomorphic
spaces.

Corollary 2.4. (Holomorphic Arithmeticity and Cores) Let X be a hyper-
bolic Aut-holomorphic space of finite type associated to a Riemann surface
X [which is, in turn, determined by a hyperbolic curve over C]. Then one may
determine the arithmeticity [in the sense of [Mzk3], §2] of X and, when X is not
arithmetic, construct the Aut-holomorphic orbispace [cf. Remark 2.1.1] associated
to the hyperbolic core [cf. [Mzk3], Definition 3.1] of X, via the following func-
torial algorithm, which involves only the Aut-holomorphic space X as input
data:

(a) Let Utop → Xtop be any universal covering of Xtop [i.e., a connected
covering space of the topological space Xtop which does not admit any non-
trivial connected covering spaces]. Then one may construct the funda-
mental group π1(X

top) as the group of automorphisms Aut(Utop/Xtop)
of Utop over Xtop.

(b) In the notation of (a), by considering the local structure on Utop

consisting of connected open subsets of Utop that map isomorphically onto
open subsets of Xtop, one may construct a natural pre-Aut-holomorphic
structure on Utop — hence also [cf. Corollary 2.3, (ii)] a natural Aut-
holomorphic structure on Utop — by restricting the Aut-holomorphic
structure of X on Xtop; denote the resulting Aut-holomorphic space by U.
Thus, we obtain a natural injection

π1(X
top) = Aut(Utop/Xtop) ↪→ Aut0(U) ⊆ Aut(U)

— where we recall [cf. Proposition 2.2, (ii); Corollary 2.3, (i)] that
Aut(U), equipped with the compact-open topology, is isomorphic, as a
topological group, to GL2(R)/R

×; we write Aut0(U) ⊆ Aut(U) for
the connected component of the identity of Aut(U).

(c) In the notation of (b), X is not arithmetic if and only if the image
of π1(X

top) in Aut0(U) is of finite index in its commensurator Π ⊆
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Aut0(U) in Aut0(U) [cf. [Mzk3], §2, §3]. If X is not arithmetic, then the
Aut-holomorphic orbispace

X→ H

associated to the hyperbolic core H of X may be constructed by form-
ing the “orbispace quotient” of Utop by Π and equipping this quotient with
the pre-Aut-holomorphic structure — which [cf. Corollary 2.3, (ii)] deter-
mines a unique Aut-holomorphic structure — determined by restrict-
ing the Aut-holomorphic structure of U to some suitable local structure as
in (b).

Finally, the asserted “functoriality” is with respect to finite étale morphisms of
Aut-holomorphic spaces arising from hyperbolic curves over C.

Proof. The validity of the algorithm asserted in Corollary 2.4 is immediate from
the constructions that appear in the statement of this algorithm [together with the
references quoted in these constructions]. ©

Remark 2.4.1. One verifies immediately that Corollary 2.4 admits a natural
extension to the case where X arises from a hyperbolic orbicurve over C [cf. Remark
2.1.1].

Remark 2.4.2. Relative to the analogy with the theory of §1 [cf. Remark 2.7.3
below], Corollary 2.4 may be regarded as a sort of holomorphic analogue of results
such as [Mzk10], Theorem 2.4, concerning categories of finite étale localizations of
hyperbolic orbicurves.

Next, we turn our attention to re-examining, from an algorithm-based point
of view, the theory of affine linear structures on Riemann surfaces in the style of
[Mzk14], §2; [Mzk14], Appendix. Following the terminology of [Mzk14], Definition
A.3, (i), (ii), we shall refer to as “parallelograms”, “rectangles”, or “squares” the
distinguished open subsets of C = R+ iR which are of the form suggested by these
respective terms.

Proposition 2.5. (Linear Structures via Parallelograms, Rectangles, or
Squares) Let

U ⊆ C = R+ iR

be a connected open subset. Write

S(U) ⊆ R(U) ⊆ P(U)

for the sets of pre-compact squares, rectangles, and parallelograms in U ; let
Q ∈ {S,R,P}. Then there exists a functorial algorithm for constructing the
parallel line segments, parallelograms, orientations, and “local additive
structures” [in the sense described below] of U that involves only the input data
(U,Q(U)) — i.e., consisting of the abstract set U , equipped with the datum of a
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collection of distinguished open subsets Q(U) [which clearly forms a basis for,
hence determines, the topology of U ] — as follows:

(a) Define a strict line segment L of U to be an intersection of the form

L
def
= Q1

⋂
Q2

— where Q1, Q2 are the respective closures of Q1, Q2 ∈ Q(U); Q1

⋂
Q2 =

∅; L is of infinite cardinality. Define two strict line segments to be
strictly collinear if their intersection is of infinite cardinality. Define
a strict chain of U to be a finite ordered set of strict line segments
L1, . . . , Ln [where n ≥ 2 is an integer] such that Li, Li+1 are strictly
collinear for i = 1, . . . , n − 1. Then one constructs the [closed, bounded]
line segments of U by observing that a line segment may be character-
ized as the union of strict line segments contained a strict chain of U ; an
endpoint of a line segment L is a point of the boundary ∂L of L [i.e., a
point whose complement in L is connected].

(b) Define a ∂Q-parallelogram of U to be a closed subset of U of the form

∂Q
def
= Q\Q — where Q ∈ Q(U); Q denotes the closure of Q. Define a

side of a parallelogram Q ∈ Q(U) to be a maximal line segment contained
in the ∂Q-parallelogram ∂Q. Define two line segments L, L′ of U to be
strictly parallel if there exist non-intersecting sides S, S′ of a parallel-
ogram ∈ Q(U) such that S ⊆ L, S′ ⊆ L′. Then one constructs the pairs
(L,L′) of parallel line segments by observing that L, L′ are parallel if
and only if L is equivalent to L′ relative to the equivalence relation on line
segments generated by the relation of inclusion and the relation of being
strictly parallel.

(c) Define a pre-∂-parallelogram ∂P of U to be a union of the mem-
bers of a family of four line segments {Li}i∈Z/4Z of U such that for any
two distinct points p1, p2 ∈ ∂P , there exists a line segment L such that
∂L = {p1, p2}, and, moreover, for each i ∈ Z/4Z, Li and Li+2 are paral-
lel and non-intersecting, and we have an equality of sets Li

⋂
Li+1 =

(∂Li)
⋂
(∂Li+1) of cardinality one. If ∂P is a pre-∂-parallelogram of U ,

then define the associated pre-parallelogram of U to be the union of line
segments L of U such ∂L ⊆ ∂P . Then one constructs the parallelograms
∈ P(U) of U as the interiors of the pre-parallelograms of U .

(d) Let p ∈ U . Define a frame F = (S1, S2) of U at p to be an ordered pair
of distinct intersecting sides S1, S2 of a parallelogram P ∈ P(U) such that
S1

⋂
S2 = {p}; in this situation, we shall refer to any line segment of U

that has infinite intersection with P as being framed by F . Define two
frames F = (S1, S2), F

′ = (S′
1, S

′
2) of U at p to be strictly co-oriented

if S′
1 is framed by F , and S2 is framed by F ′. Then one constructs the

orientations of U at p [of which there are precisely 2] by observing that
an orientation of U at p may be characterized as an equivalence class
of frames of U at p, relative to the equivalence relation on frames of U
at p generated by the relation of being strictly co-oriented.
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(e) Let p ∈ U . Then given a, b ∈ U , the sum a +p b ∈ U , relative to the
origin p — i.e., the “local additive structure” of U at p — may be
constructed, whenever it is defined, in the following fashion: If a = p,
then a +p b = b; if b = p, then a +p b = a. If a, b �= p, then for P ∈
P(U) such that P contains [distinct] intersecting sides Sa, Sb for which
Sa

⋂
Sb = {p}, ∂Sa = {p, a}, ∂Sb = {p, b}, we take a+p b to be the unique

endpoint of a side of P that �∈ {a, b, p}. [Thus, “a+p b” is defined for a, b
in some neighborhood of p in U .]

Finally, the asserted “functoriality” is with respect to open immersions [of ab-
stract topological spaces] ι : U1 ↪→ U2 [where U1, U2 ⊆ C are connected open subsets]
such that ι maps Q(U1) into Q(U2).

Proof. The validity of the algorithm asserted in Proposition 2.5 is immediate from
the elementary content of the characterizations contained in the statement of this
algorithm. ©

Remark 2.5.1. We shall refer to a frame of U at p ∈ U as orthogonal if it arises
from an ordered pair of distinct intersecting sides of a rectangle ∈ R(U) ⊆ P(U).

Proposition 2.6. (Local Linear Holomorphic Structures via Rectangles
or Squares) Let U , S, R, P, Q be as in Proposition 2.5; suppose further that
Q �= P. Then there exists a functorial algorithm for constructing the “local
linear holomorphic structure” [in the sense described below] of U that involves
only the input data (U,Q(U)) — i.e., consisting of the abstract topological space
U , equipped with the datum of a collection of distinguished open subsets Q(U)
— as follows:

(a) For p ∈ U , write
Ap

for the group of automorphisms of the projective system of connected
open neighborhoods of p in U that are compatible with the “local addi-
tive structures” of Proposition 2.5, (e), and preserve the orthogonal
frames and orientations [at p] of Proposition 2.5, (d); Remark 2.5.1.
Also, we equip Ap with the topology induced by the topologies of the open
neighborhoods of p that Ap acts on; note that the “local additive struc-
tures” of Proposition 2.5, (e), determine an additive structure, hence also
a topological field structure on Ap

⋃{0}. Then we have a natural
isomorphism of topological groups

C× ∼→ Ap

[induced by the tautological action of C× on C ⊇ U ] that is compatible
with the topological field structures on the union of either side with
“{0}”. In particular, one may construct “C× at p” — i.e., the “local
linear holomorphic structure” of U at p — by thinking of this “lo-
cal linear holomorphic structure” as being constituted by the topological
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field Ap

⋃{0}, equipped with its tautological action on the projective
system of open neighborhoods of p.

(b) For p, p′ ∈ U , one constructs a natural isomorphism of topological
groups

Ap
∼→ Ap′

that is compatible with the topological field structures on either side
as follows: If p′ is sufficiently close to p, then the “local additive struc-
tures” of Proposition 2.5, (e), determine homeomorphisms [by “trans-
lation”, i.e., “addition”] from sufficiently small neighborhoods of p onto
sufficiently small neighborhoods of p′; these homeomorphisms thus induce
the desired isomorphism Ap

∼→ Ap′ . Now, by joining an arbitrary p′ to p
via a chain of “sufficiently small open neighborhoods” and composing the
resulting isomorphisms of “local linear holomorphic structures”, one ob-
tains the desired isomorphism Ap

∼→ Ap′ for arbitrary p, p′ ∈ U . Finally,
this isomorphism is independent of the choice of a chain of “sufficiently
small open neighborhoods” used in its construction.

Finally, the asserted “functoriality” is to be understood in the same sense as in
Proposition 2.5.

Proof. The validity of the algorithm asserted in Proposition 2.6 is immediate from
the elementary content of the characterizations contained in the statement of this
algorithm. ©

Remark 2.6.1. Thus, the algorithms of Propositions 2.5, 2.6 may be regarded
as superseding the techniques applied in the proof of [Mzk14], Proposition A.4.
Moreover, just as the theory of [Mzk14], Appendix, was applied in [Mzk14], §2,
one may apply the algorithms of Propositions 2.5, 2.6 to give algorithms for recon-
structing the local linear and orthogonal structures on a Riemann surface equipped
with a nonzero square differential from the various categories which are the topic
of [Mzk14], Theorem 2.3. We leave the routine details to the interested reader.

Corollary 2.7. (Local Linear Holomorphic Structures via Holomorphic
Elliptic Cuspidalization) Let X be an elliptically admissible Aut-holomorphic
orbispace [cf. Remark 2.1.1] associated to a Riemann orbisurface X. Then
there exists a functorial algorithm for constructing the “local linear holo-
morphic structure” [cf. Proposition 2.6] on Xtop that involves only the Aut-
holomorphic space X as input data, as follows:

(a) By the definition of “elliptically admissible”, we may apply Corollary
2.4, (c), to construct the [Aut-holomorphic orbispace associated to the]
semi-elliptic hyperbolic core X → H of X [i.e., X], together with the
unique [cf. [Mzk21], Remark 3.1.1] double covering E → H by an Aut-
holomorphic space [i.e., the covering determined by the unique torsion-
free subgroup of index two of the group Π of Corollary 2.4, (c)]. [Thus,
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E is the Aut-holomorphic space associated to a once-punctured elliptic
curve.]

(b) By considering “elliptic cuspidalization diagrams” as in [Mzk21],
Example 3.2 [cf. also the equivalence of Corollary 2.3, (i)]

E←↩ U→ E

— where U → E is an abelian finite étale covering [which necessarily
extends to a covering of the one-point compactification of Etop]; Etop ←↩
Utop is an open immersion whose image is the complement of a finite
subset of Etop; E←↩ U, U→ E are co-holomorphic — one may construct
the torsion points of [the elliptic curve determined by] E as the points in
the complement of the image of such morphisms U ↪→ E, together with the
group structure on these torsion points [which is induced by the group
structure of the Galois group Gal(U/E)].

(c) Since the torsion points of (b) are dense in Etop, one may construct
the group structure on [the one-point compactification of] Etop [that
arises from the elliptic curve determined by E] as the unique topolog-
ical group structure that extends the group structure on the torsion
points of (b). This group structure determines “local additive struc-
tures” [cf. Proposition 2.5, (e)] at the various points of Etop. Moreover,
by considering one-parameter subgroups of these local additive group struc-
tures, one constructs the line segments [cf. Proposition 2.5, (a)] of Etop;
by considering translations of line segments, relative to these local additive
group structures, one constructs the pairs of parallel line segments [cf.
Proposition 2.5, (b)] of Etop, hence also the parallelograms, frames,
and orientations [cf. Proposition 2.5, (c), (d)] of Etop.

(d) Let V be the Aut-holomorphic space determined by a parallelogram Vtop ⊆
Etop [cf. (c)]. Then the one-parameter subgroups of the [topological] group
AV(V

top) [∼= SL2(R)/{±1} — cf. Proposition 2.2, (ii); Corollary 2.3,
(i); the Riemann mapping theorem of elementary complex analysis] are
precisely the closed connected subgroups for which the complement of some
connected open neighborhood of the identity element fails to be connected.
If S is a one-parameter subgroup of AV(V

top), p ∈ Vtop, and L is a line
segment one of whose endpoints is equal to p, then L is tangent to S · p
at p if and only if any pairs of sequences of points of L\{p}, (S · p)\{p},
converge to the same element of the quotient space

Vtop\{p}� P(V, p)

determined by identifying positive real multiples of elements of Vtop\{p},
relative to the local additive structure at p. In particular, one may con-
struct the orthogonal frames of Etop as the frames consisting of pairs of
line segments L1, L2 emanating from a point p ∈ Etop that are tan-
gent, respectively, to orbits S1 · p, S2 · p of one-parameter subgroups
S1, S2 ⊆ AV(V

top) such that S2 is obtained from S1 by conjugating S1

by an element of order four [i.e., “±i”] of a compact one-parameter
subgroup [i.e., a “one-dimensional torus”] of AV(V

top) that fixes p.
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(e) For p ∈ Etop, write
Ap

for the group of automorphisms of the projective system of connected
open neighborhoods of p in Etop that are compatible with the “local ad-
ditive structures” of (c) and preserve the orthogonal frames and
orientations [at p] of (c), (d) [cf. Proposition 2.6, (a)]. Then just
as in Proposition 2.6, (a), we obtain topological field structures on

Ap

⋃{0}, together with compatible isomorphisms Ap
∼→ Ap′ , for p′ ∈

Etop. This system of “Ap’s” may be thought of as a system of “local
linear holomorphic structures” on Etop or Xtop.

Finally, the asserted “functoriality” is with respect to finite étale morphisms of
Aut-holomorphic orbispaces arising from hyperbolic orbicurves over C.

Proof. The validity of the algorithm asserted in Corollary 2.7 is immediate from
the constructions that appear in the statement of this algorithm [together with the
references quoted in these constructions]. ©

Remark 2.7.1. It is by no means the intention of the author to assert that the
technique applied in Corollary 2.7, (b), (c), to recover the “local additive structure”
via elliptic cuspidalization is the unique way to construct this local additive struc-
ture. Indeed, perhaps the most direct approach to the problem of constructing the
local additive structure is to compactify the given once-punctured elliptic curve and
then to consider the group structure of the [connected component of the identity
of the] holomorphic automorphism group of the resulting elliptic curve. By com-
parison to this direct approach, however, the technique of elliptic cuspidalization
has the virtue of being compatible with the “hyperbolic structure” of the hyperbolic
orbicurves involved. In particular, it is compatible with the various “hyperbolic fun-
damental groups” of these orbicurves. This sort of compatibility with fundamental
groups plays an essential role in the nonarchimedean theory [cf., e.g., the theory
of [Mzk18], §1, §2]. On the other hand, the “direct approach” described above is
not entirely unrelated to the approach via elliptic cuspidalization in the sense that,
if one thinks of the torsion points in the latter approach as playing an analogous
role to the role played by the “entire compactified elliptic curve” in the former
approach, then the latter approach may be thought of as a sort of discretization
via torsion points — cf. the point of view of Hodge-Arakelov theory, as discussed in
[Mzk6], [Mzk7] — of the former approach. Here, we note that the density of torsion
points in the archimedean theory of the elliptic cuspidalization is reminiscent of the
density of NF-points in the nonarchimedean theory of the Belyi cuspidalization [cf.
§1].

Remark 2.7.2. In light of the role played by the technique of elliptic cuspidal-
ization both in Corollary 2.7 and in the theory of [Mzk18], §1, §2, it is of interest
to compare these two theories. From an archimedean point of view, the theory of
[Mzk18] may be roughly summarized as follows: One begins with the uniformization

G� G/qZ
∼→ E
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of an elliptic curve E over C by a copy G of C×. Here, the “q-parameter” of E
may be thought of as being an element

q ∈ H def
= G⊗Gal(G/E)

[where we recall that Gal(G/E) ∼= Z]. Then one thinks of the theta function
associated to E as a function Θ : G→ H [i.e., a function defined on G with values
in H]. From this point of view, the various types of rigidity considered in the theory
of [Mzk18] may be understood in the following fashion:

(a) Cyclotomic rigidity corresponds to the portion of the tautological iso-

morphism H
∼→ G⊗Gal(G/E) involving the maximal compact subgroups,

i.e., the copies of S1
def
= {z ∈ C× | |z| = 1} ⊆ C×.

(b) Discrete rigidity corresponds to the portion of the tautological isomor-

phism H
∼→ G⊗Gal(G/E) involving the quotients by the maximal compact

subgroups, i.e., the copies of R>0
def
= {z ∈ R | z > 0} ∼= C×/S1.

(c) Constant rigidity corresponds to considering the normalization of Θ given
by taking the values of Θ at the points of G corresponding to ±

√
−1 to

be ±1.

In particular, the “canonical copy of C×” that arises from (a), (b) — i.e., H — is
related to the “copies of C×” that occur as the “Ap” of Corollary 2.7, (e), in the
following way: Ap is given by the linear holomorphic automorphisms of the tangent
space to a point of H. That is to say, roughly speaking, Ap (∼= C×) is related to
H (∼= C×) by the operation of “taking the logarithm”, followed by the operation of
“taking Aut(−)” [of the resulting linearization].

Remark 2.7.3. It is interesting to note that just as the absolute Galois group
Gk of an MLF k may be regarded as a two-dimensional object with one rigid and
one non-rigid dimension [cf. Remark 1.9.4], the topological group C× is also a
two-dimensional object with one rigid dimension — i.e.,

S1
def
= {z ∈ C× | |z| = 1} ⊆ C×

[a topological group whose automorphism group is of order 2] — and one non-rigid
dimension — i.e.,

R>0
def
= {z ∈ R | z > 0} ⊆ C×

[a topological group that is isomorphic to R, hence has automorphism group given
by R× — i.e., a “continuous family of dilations”]. Moreover, just as, in the context
of Theorem 1.9, Corollary 1.10, considering Gk equipped with its outer action
on ΔX has the effect of rendering both dimensions of Gk rigid [cf. Remark 1.9.4],
considering “C×” as arising, in the fashion discussed in Corollary 2.7, from a certain
Aut-holomorphic orbispace has the effect of rigidifying both dimensions of C×. We
refer to Remark 2.7.4 below for more on this analogy between the

(i) outer action of Gk on ΔX
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and the notion of an

(ii) Aut-holomorphic orbispace

associated to a hyperbolic orbicurve. Finally, we observe that from the point of
view of the problem of

finding an algorithm to construct the base field of a hyperbolic orbicurve
from (i), (ii),

one may think of Theorem 1.9 and Corollaries 1.10, 2.7 as furnishing solutions to
various versions of this problem.

Remark 2.7.4. The usual definition of a “holomorphic structure” on a Riemann
surface is via local comparison to some fixed model of the topological field C. The
local homeomorphisms that enable this comparison are related to one another by
homeomorphisms of open neighborhoods of C that are holomorphic. On the other
hand, this definition does not yield any absolute description — i.e., a description
that depends on mathematical structures that do not involve explicit use of models
— of what precisely is meant by the notion of a “holomorphic structure”. Instead,
it relies on relating/comparing the given manifold to the fixed model of C — an
approach that is “model-explicit”. By contrast, the notion of a topological space
[i.e., consisting of the datum of a collection of subsets that are to be regarded as
“open”] is absolute, or “model-implicit”. In a similar vein, the approach to quasi-
conformal or conformal structures via the datum of a collection of parallelograms,
rectangles, or squares [cf. Propositions 2.5, 2.6; Remark 2.6.1; the theory of [Mzk14]]
is “model-implicit”. The approach to “holomorphic structures” on a Riemann sur-
face via the classical notion of a “conformal structure” [i.e., the datum of various
orthogonal pairs of tangent vectors] is, so to speak, “relatively model-implicit”, i.e.,
“model-implicit” modulo the fact that it depends on the “model-explicit” definition
of the notion of a differential manifold — which may be thought of as a sort of “lo-
cal linear structure” that is given by local comparison to the local linear structure
of Euclidean space. From this point of view:

The notions of an “outer action of Gk on ΔX” and an “Aut-holomorphic
orbispace” [cf. Remark 2.7.3, (i), (ii)] have the virtue of being “model-
implicit” — i.e., they do not depend on any sort of [local] comparison to
some fixed reference model.

In this context, it is interesting to note that all of the examples given so far of
“model-implicit” definitions depend on data consisting either of subsets [e.g., open
subsets of a topological space; parallelograms, rectangles, or squares on a Riemann
surface] or endomorphisms [e.g., the automorphisms that appear in a Galois cat-
egory; the automorphisms that appear in an Aut-holomorphic structure]. [Here, in
passing, we note that the appearance of “endomorphisms” in the present discussion
is reminiscent of the discussion of “hidden endomorphisms” in the Introduction to
[Mzk21].] Also, we observe that this dichotomy between model-explicit and model-
implicit definitions is strongly reminiscent of the distinction between bi-anabelian
and mono-anabelian geometry discussed in Remark 1.9.8.
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Finally, we relate the archimedean theory of the present §2 to the Galois-
theoretic theory of §1, in the case of number fields, via a sort of archimedean analogue
of Corollary 1.10.

Corollary 2.8. (Galois-theoretic Reconstruction of Aut-holomorphic
Spaces) Let X, k ⊆ k ⊇ kNF, and 1 → ΔX → ΠX → Gk → 1 be as in Theorem
1.9; suppose further that k is a number field [so kNF = k], and [for simplic-
ity — cf. Remark 2.8.2 below] that X is a curve. Then one may think of each

archimedean prime of the field k
×
NF

⋃{0} (∼= kNF) constructed in Theorem 1.9,

(e), as a topology on k
×
NF

⋃{0} satisfying certain properties. Moreover, for each
such archimedean prime v, there exists a functorial “group-theoretic” al-
gorithm for reconstructing the Aut-holomorphic space Xv associated to

Xv
def
= X ×k kv

[where we write kv for the completion of k
×
NF

⋃{0} at v] from the topological
group ΠX ; this algorithm consists of the following steps:

(a) Define a Cauchy sequence {xj}j∈N of NF-points [of Xv] to be a se-
quence of NF-points xj [i.e., conjugacy classes of decomposition groups of
NF-points in ΠX — cf. Theorem 1.9, (a)] such that there exists a finite
set of NF-points S — which we shall refer to as a conductor for the
Cauchy sequence — satisfying the following two conditions: (i) xj �∈ S for
all but finitely many j ∈ N; (ii) for every NF-rational function f on Xk
as in Theorem 1.9, (d), whose divisor of poles avoids S, the sequence of
[non-infinite, for all but finitely many j — cf. (i)] values {f(xj) ∈ kv}j∈N

forms a Cauchy sequence [in the usual sense] of kv. Two Cauchy se-
quences {xj}j∈N, {yj}j∈N of NF-points which admit a common conductor
S will be called equivalent if for every NF-rational function f on Xk
as in Theorem 1.9, (d), whose divisor of poles avoids S, the sequences
of [non-infinite, for all but finitely many j] values {f(xj)}j∈N, {f(yj)}j∈N

form Cauchy sequences in kv that converge to the same element of kv.
For U ⊆ kv an open subset and f an NF-rational function on Xk as in
Theorem 1.9, (d), we obtain a set N(U, f) of Cauchy sequences of NF-
points by considering the Cauchy sequences of NF-points {xj}j∈N such
that f(xj) [is finite and] ∈ U , for all j ∈ N. Then one constructs the
topological space

Xtop = Xv(kv)

as the set of equivalence classes of Cauchy sequences of NF-points,
equipped with the topology defined by the sets “N(U, f)”.

(b) Let UX ⊆ Xtop, Uv ⊆ kv be connected open subsets and f a NF-
rational function on Xk as in Theorem 1.9, (d), such that the func-
tion defined by f on UX [i.e., by taking limits of Cauchy sequences of

values in kv — cf. (a)] determines a homeomorphism fU : UX
∼→ Uv.

Write Authol(Uv) for the group of self-homeomorphisms Uv
∼→ Uv (⊆ kv),

which, relative to the topological field structure of kv, can locally [on
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Uv] be expressed as a convergent power series with coefficients in kv;

AX(UX)
def
= f−1

U ◦ Authol(Uv) ◦ fU ⊆ Aut(UX). Then one constructs the
Aut-holomorphic structure AX on Xtop as the unique [cf. Corollary
2.3, (ii)] Aut-holomorphic structure that extends the pre-Aut-holomorphic
structure determined by the groups “AX(UX)”; we take Xv to be the Aut-
holomorphic space determined by the objects (Xtop,AX).

Finally, the asserted “functoriality” is with respect to arbitrary open injective
homomorphisms of profinite groups [i.e., of “ΠX”] that are compatible with the
respective choices of archimedean valuations [i.e., “v”].

Proof. The validity of the algorithm asserted in Corollary 2.8 is immediate from
the constructions that appear in the statement of this algorithm [together with the
references quoted in these constructions]. ©

Remark 2.8.1. One verifies immediately that the isomorphism class of the pair
(1→ ΔX → ΠX → Gk → 1, v) depends only on the restriction of v to the subfield

k×
⋃{0} ⊆ k

×
NF

⋃{0}.
Remark 2.8.2. One verifies immediately that Corollary 2.8 [as well as Corollary
2.9 below] may be extended to the case where X is a hyperbolic orbicurve that is
not necessarily a curve [so Xv will be an Aut-holomorphic orbispace].

Remark 2.8.3. One verifies immediately that any elliptically admissible hyper-
bolic orbicurve defined over a number field is of strictly Belyi type. In particular, if
one is given an elliptically admissible hyperbolic orbicurve X that is defined over a
number field k, then it makes sense to apply Corollary 2.7 to the Aut-holomorphic
[orbi]spaces constructed in Corollary 2.8. This compatibility between Corollaries 2.7,
2.8 [cf. also Corollary 2.9 below] is one reason why it is of interest to construct the
local additive structures as in Corollary 2.7, (c), directly from the Aut-holomorphic
structure as opposed to via the “parallelogram-theoretic” approach of Proposition
2.5, 2.6 [cf. also Remark 2.6.1], which is more suited to “strictly archimedean
situations” — i.e., situations in which one is not concerned with regarding Aut-
holomorphic orbispaces as arising from hyperbolic orbicurves over number fields.

Corollary 2.9. (Global-Archimedean Elliptically Admissible Compat-
ibility) In the notation of Corollary 2.8, suppose further that X is elliptically
admissible; take the Aut-holomorphic space X of Corollary 2.7 to be the Aut-
holomorphic space determined by the objects (Xtop,AX) constructed in Corollary
2.8. Then one may construct, in a functorially algorithmic fashion, an iso-
morphism between the topological field kv of Corollary 2.8 and the topological
fields “Ap

⋃{0}” of Corollary 2.7, (e), in the following way:

(a) Let x ∈ Xv(kv) be an NF-point. The local additive structures on Etop [cf.
Corollary 2.7, (c)] determine local additive structures on Xtop; let �v
be an element of a sufficiently small neighborhood UX ⊆ Xtop of x in Xtop
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that admits such a local additive structure. Then for each NF-rational
function f that vanishes at x, the assignment

(�v, f) �→ lim
n→∞

n · f( 1
n
·x �v) ∈ kv

[where “·x” is the operation arising from the local additive structure at x]
depends only on the image df |x ∈ ωx of f in the Zariski cotangent space
ωx to Xv at x and, moreover, determines a topological embedding

ιUX,x : UX ↪→ Homkv
(ωx, kv)

that is compatible with the “local additive structures” of the domain
and codomain.

(b) By letting the neighborhoods UX of a fixed NF-point x vary, the resulting
ιUX,x determine an isomorphism of topological fields

Ax

⋃
{0} ∼→ kv

via the condition of compatibility [with respect to the ιUX,x] with the nat-
ural actions of Ax, kv, respectively, on the domain and codomain of ιUX,x.
Moreover, as x varies, these isomorphisms are compatible with the iso-
morphisms Ax1

⋃{0} ∼→ Ax2

⋃{0} [where x1, x2 ∈ X(kv) are NF-points]
of Corollary 2.7, (e).

Finally, the asserted “functoriality” is to be understood in the sense described in
Corollary 2.8.

Proof. The validity of the algorithm asserted in Corollary 2.9 is immediate from
the constructions that appear in the statement of this algorithm [together with the
references quoted in these constructions]. ©
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Section 3: Nonarchimedean Log-Frobenius Compatibility

In the present §3, we give an interpretation of the nonarchimedean local portion
of the theory of §1 in terms of a certain compatibility with the “log-Frobenius func-
tor” [in essence, a version of the usual “logarithm” at the various nonarchimedean
primes of a number field]. In order to express this compatibility, certain abstract
category-theoretic ideas — which center around the notions of observables, telecores,
and cores — are introduced [cf. Definition 3.5]. These notions allow one to express
the log-Frobenius compatibility of the mono-anabelian construction algorithms of §1
[cf. Corollary 3.6], as well as the failure of log-Frobenius compatibility that occurs if
one attempts to take a “bi-anabelian” approach to the situation [cf. Corollary 3.7].

Definition 3.1.

(i) Let k be anMLF, k an algebraic closure of k, Gk
def
= Gal(k/k). Write Ok ⊆ k

for the ring of integers of k, O×
k ⊆ Ok for the group of units of Ok, and O�

k ⊆ Ok

for the multiplicative monoid of nonzero elements [cf. [Mzk17], Example 1.1, (i)];
we shall use similar notation for other subfields of k. Let Πk be a topological group,
equipped with a continuous surjection εk : Πk � Gk. Note that the [p-adic, if k is
of residue characteristic p] logarithm determines a Πk-equivariant isomorphism

logk : k∼
def
= (O×

k
)pf

∼→ k

[where “pf” denotes the perfection [cf., e.g., [Mzk16], §0]; the Πk-action is the
action obtained by composing with εk] of the topological group k

∼ onto the additive
topological group k. Next, let us refer to an abelian monoid [e.g., an abelian group]
whose subgroup of torsion elements is [abstractly] isomorphic to Q/Z as torsion-
cyclotomic; let T be one of the following categories [cf. §0 for more on the prefix
“ind-”]:

· TF: ind-topological fields and homomorphisms of ind-topological fields;

· TCG: torsion-cyclotomic ind-compact abelian topological groups and ho-
momorphisms of ind-topological groups;

· TLG: torsion-cyclotomic ind-locally compact abelian topological groups
and homomorphisms of ind-topological groups;

· TM: torsion-cyclotomic ind-topological abelian monoids and homomor-
phisms of ind-topological monoids;

· TS: ind-locally compact topological spaces and morphisms of ind-topological
spaces;

· TS�: ind-locally compact abelian topological groups and homomorphisms
of ind-topological groups [so we have a natural full embedding TLG ↪→
TS�].

If T is equal to TF (respectively, TCG; TLG; TM; TS; TS�), then let Mk ∈
Ob(T) be the object determined by k (respectively, the object determined by O×

k
;
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the object determined by k
×
; the object determined by O�

k
; any object of TS

equipped with a faithful continuous Gk-action; any object of TS� equipped with
a faithful continuous Gk-action). We shall refer to as a model MLF-Galois T-pair
any collection of data (a), (b), (c) of the following form:

(a) the topological group Πk,
(b) the object Mk ∈ Ob(T),
(c) the action of Πk on Mk

[so the quotient Πk � Gk may be recovered as the image of the homomorphism
Πk → Aut(Mk) arising from the action of (c)]; we shall often use the abbreviated
notation (Πk �Mk) for this collection of data (a), (b), (c).

(ii) We shall refer to any collection of data (Π �M) consisting of a topological
group Π, an object M ∈ Ob(T), and a continuous action of Π on M as an MLF-
Galois T-pair if, for some model MLF-Galois T-pair (Πk �Mk) [where the notation

is as in (i)], there exist an isomorphism of topological groups Πk
∼→ Π and an

isomorphism of objects Mk

∼→ M of T that are compatible with the respective
actions of Πk, Π onMk,M ; in this situation, we shall refer to Π as the Galois group,
to the surjection Π� G determined by the action of Π on M [cf. (i)] as the Galois
augmentation, to G as the arithmetic Galois group, and to M as the arithmetic
data of the MLF-Galois T-pair (Π �M); if, in this situation, the surjection Πk �
Gk arises from the étale fundamental group of an arbitrary hyperbolic orbicurve
(respectively, a hyperbolic orbicurve of strictly Belyi type) over k, then we shall
refer to the MLF-Galois T-pair (Π � M) as being of hyperbolic orbicurve type
(respectively, of strictly Belyi type); if, in this situation, the surjection Πk � Gk is
an isomorphism, then we shall refer to the MLF-Galois T-pair (Π � M) as being
of mono-analytic type [cf. Remark 5.6.1 below for more on this terminology]. A
morphism of MLF-Galois T-pairs

φ : (Π1 �M1)→ (Π2 �M2)

consists of a morphism of objects φM :M1 →M2 of T, together with a compatible
[relative to the respective actions of Π1, Π2 on M1, M2] continuous homomorphism
of topological groups φΠ : Π1 → Π2 that induces an open injective homomor-
phism between the respective arithmetic Galois groups; if, in this situation, φM
(respectively, φΠ) is an isomorphism, then we shall refer to φ as a T-isomorphism
(respectively, Galois-isomorphism).

(iii) Write
CMLF
T

for the category whose objects are the MLF-Galois T-pairs and whose morphisms
are the morphisms of MLF-Galois T-pairs. Also, we shall use the same notation,
except with “C” replaced by

C (respectively, C; C)

to denote the various subcategories determined by the T-isomorphisms (respec-
tively, Galois-isomorphisms; isomorphisms); we shall use the same notation, with
“MLF” replaced by

MLF-hyp (respectively, MLF-sB; MLF�)
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to denote the various full subcategories determined by the objects of hyperbolic
orbicurve type (respectively, of strictly Belyi type; of mono-analytic type). Since

[in the notation of (i)] the formation of O�
k

(respectively, k
×
; O×

k
; O×

k
) from k

(respectively, O�
k
; O�

k
; k

×
) is clearly intrinsically defined [i.e., depends only on the

“input data of an object of T”], we thus obtain natural functors

CMLF
TF → CMLF

TM ; CMLF
TM → CMLF

TLG ; CMLF
TM → CMLF

TCG ; CMLF
TLG → CMLF

TCG

— i.e., by taking the multiplicative group of nonzero integral elements [i.e., the
elements a ∈ k× such that a−n fails to converge to 0, as N � n → +∞] of the
arithmetic data, the associated groupification Mgp of the arithmetic data M , the
subgroup of invertible elements M× of the arithmetic data M , or the maximal
compact subgroups of the subgroups of the arithmetic data obtained as subgroups
of invariants for various open subgroups of the Galois group. Finally, we shall write

TG

for the category of topological groups and continuous homomorphisms and

TG ⊇ TGhyp ⊇ TGsB

for the subcategories determined, respectively, by the étale fundamental groups of
arbitrary hyperbolic orbicurves over MLF’s and the étale fundamental groups of hy-
perbolic orbicurves of strictly Belyi type over MLF’s, and the homomorphisms that
induce open injections on the quotients constituted by the absolute Galois groups
of the base field MLF’s; also, we shall use the same notation, except with “TG” re-
placed by TG to denote the various subcategories determined by the isomorphisms.

Thus, for T ∈ {TF,TCG,TLG,TM,TS,TS�}, the assignment (Π � M) �→ Π
determines various compatible natural functors

CMLF
T → TG

[as well as double underlined versions of these functors].

(iv) Observe that [in the notation of (i)] the field structure of k determines,
via the inverse morphism to logk, a structure of topological field on the topological
group k∼. Since the various operations applied here to construct this field struc-
ture on k∼ [such as, for instance, the power series used to define logk] are clearly
intrinsically defined [cf. the natural functors defined in (iii)], we thus obtain that
the construction that assigns

(the ind-topological field k, with its natural Πk-action)

�→ (the ind-topological field k∼, with its natural Πk-action)

determines a natural functor

logTF,TF : CMLF
TF → CMLF

TF

— which we shall refer to as the log-Frobenius functor [cf. Remark 3.6.2 below].
Since logk determines a functorial isomorphism between the fields k, k∼, it follows
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immediately that the functor logTF,TF is isomorphic to the identity functor [hence, in
particular, is an equivalence of categories]. By composing logTF,TF with the various
natural functors defined in (iii), we also obtain, for T ∈ {TLG,TCG,TM}, a functor

logTF,T : CMLF
TF → CMLF

T

— which [by abuse of terminology] we shall also refer to as “the log-Frobenius
functor”. In a similar vein, the assignments

(the ind-topological field k, with its natural Πk-action)

�→ (the ind-topological space k
×
, with its natural Πk-action)

(the ind-topological field k, with its natural Πk-action)

�→ (the ind-topological space (k
×
)pf, with its natural Πk-action)

determine natural functors

λ× : CMLF
TF → CMLF

TS ; λ×pf : CMLF
TF → CMLF

TS

together with diagrams of functors

CMLF
TF

log
TF,TF−→ CMLF

TF⏐⏐�λ×pf
ιlog

�

⏐⏐�λ×

CMLF
TS = CMLF

TS

CMLF
TF⏐⏐�λ×
ι×
�

⏐⏐�λ×pf

CMLF
TS

— where we write ιlog : λ×◦logTF,TF → λ×pf for the natural transformation induced

by the natural inclusion “(k∼)× ↪→ k∼ = (O×
k
)pf ↪→ (k

×
)pf” and ι× : λ× → λ×pf

for the natural transformation induced by the natural map “k
× → (k

×
)pf”. Finally,

we note that the subfield of Galois-invariants “(k∼)Πk” of the field “k∼” obtained
by the above construction [i.e., the arithmetic data of an object in the image of
the log-Frobenius functor logTF,TF] is equipped with a natural “compactum” — i.e.,

the compact submodule of k∼ = (O×
k
)pf determined by the image of the subgroup

O×
k = (O×

k
)Πk ⊆ O×

k
of Galois-invariants of O×

k
— which we shall refer to as the

pre-log-shell
λ(Π�M) ⊆ log

arith
TF,TF((Π �M))

[where (Π � M) ∈ Ob(CMLF
TF )] of the arithmetic data log

arith
TF,TF((Π � M)) of the

object determined by applying the log-Frobenius functor logTF,TF to the object

(Π
κ
� M).

(v) In the notation of (i), suppose further that T ∈ {TLG,TCG,TM}; let
(Π �M) be an MLF-Galois T-pair. Then we shall refer to the profinite Π-module

μ
Ẑ
(M)

def
= Hom(Q/Z,M)

[which is isomorphic to Ẑ] as the cyclotome associated to (Π �M). Also, we shall

write μQ/Z(M)
def
= μ

Ẑ
(M)⊗Q/Z.
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(vi) Recall the “image via the Kummer map of the multiplicative group of an
algebraic closure of the base field”

k
×
↪→ lim−→

J

H1(J,μ
Ẑ
(Π))

[where “J” ranges over the open subgroups of Π] — which was constructed via a

purely “group-theoretic” algorithm in Corollary 1.10, (d), (h), for Π ∈ Ob(TGsB).
Write

Anab

for the category whose objects are pairs(
Π,Π � {k× ↪→ lim−→

J

H1(J,μ
Ẑ
(Π))}

)
consisting of an object Π ∈ Ob(TGsB), together with the image of the Kummer map
reviewed above, equipped with its topological field structure and natural action via
Π — all of which is to be understood as constructed via the “group-theoretic” algo-
rithms of Corollary 1.10, (d), (h) [cf. Remark 3.1.2 below] — and whose morphisms

are the morphisms induced by isomorphisms of TGsB. Thus, we obtain a natural
functor

TGsB κAn−→ Anab

which [as is easily verified] is an equivalence of categories, a quasi-inverse for which

is given by the natural projection functor Anab→ TGsB.

Remark 3.1.1. Observe that [in the notation of Definition 3.1, (i)] the topology
on the field k, the groups k× and O×

k , or the monoid O�
k is completely determined

by the field, group, or monoid structures of these objects. Indeed, the topology
on O×

k is precisely the profinite topology; the topologies on k, k×, and O�
k are

determined by the topology on the subset O×
k ⊆ O�

k ⊆ k× ⊆ k [cf. the various

natural functors of Definition 3.1, (iii); the fact that O×
k ⊆ k× may be characterized

as the subgroup of elements divisible by arbitrary powers of some prime number].
Suppose that T �= TS,TS�. Then note that one may apply this observation to the
various subfields, subgroups, or submonoids obtained from the arithmetic data of an
MLF-Galois T-pair by taking the invariants with respect to some open subgroup of
the Galois group. Thus, we conclude that one obtains an entirely equivalent theory
if one omits the specification of the topology, as well as of the “ind-” structure [i.e.,
one works with the inductive limit fields, groups, or monoids, as opposed to the
inductive systems of such objects] from the objects of T considered in Definition
3.1, (i). In particular, the data that forms an object of CMLF

TM is precisely the data
used to construct the “model p-adic Frobenioids” of [Mzk17], Example 1.1.

Remark 3.1.2. It is important to note that, by definition, the algorithms of
Corollary 1.10 form an essential portion of each object of the category Anab. Put
another way, the “software” constituted by these algorithms is not just executed
once, leaving behind some “output data” that suffices for the remainder of the
development of the theory, but rather executed over and over again within each
object of Anab.
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Remark 3.1.3. One natural variant of the notion of an “MLF-Galois T-pair
of hyperbolic orbicurve type” is the notion of an “MLF-Galois T-pair of tempered
hyperbolic orbicurve type”, i.e., the case where [in the notation of Definition 3.1,
(ii)] Πk � Gk arises from the tempered fundamental group of a hyperbolic orbicurve
over k [cf. Remarks 1.9.1, 1.10.2]. We leave to the reader the routine details of
developing the resulting tempered version of the theory to follow.

Proposition 3.2. (Monoid Cyclotomes and Kummer Maps) Let T ∈
{TM,TF}; (Π � MT) ∈ Ob(CMLF

T ) an MLF-Galois T-pair, with arithmetic Ga-

lois group Π � G. Write (Π � MTM) ∈ Ob(CMLF
TM ) for the object obtained from

(Π � MT) by applying the identity functor if T = TM or by applying the natural
functor of Definition 3.1, (iii), if T = TF. Then:

(i) The arguments given in the proof of [Mzk9], Proposition 1.2.1, (vii), yield a

functorial [i.e., relative to CMLF
T , in the evident sense — cf. Remark 3.2.2 below]

algorithm for constructing the natural isomorphism

H2(G,μ
Ẑ
(MTM))

∼→ Ẑ

— i.e., by composing the natural isomorphism [of “Brauer groups”]

H2(G,μQ/Z(MTM))
∼→ H2(G,Mgp

TM)

[where “gp” denotes the groupification of a monoid] with the inverse of the natural
isomorphism [of “Brauer groups”]

H2(Gunr, (Munr
TM )gp)

∼→ H2(G,Mgp
TM)

[where Munr
TM ⊆ MTM denotes the submonoid of elements fixed by the kernel of

the quotient G � Gunr of Corollary 1.10, (b)] followed by the natural composite
isomorphism

H2(Gunr, (Munr
TM )gp)

∼→ H2(Gunr, (Munr
TM )gp/(Munr

TM )×)
∼→ H2(Ẑ,Z)

∼→ Q/Z

[where “×” denotes the subgroup of invertible elements of a monoid; the isomor-

phism (Munr
TM )gp/(Munr

TM )×
∼→ Z is obtained by considering a generator of the

monoid Munr
TM /(M

unr
TM )× ∼= N; we apply the isomorphism Gunr ∼→ Ẑ of Corollary

1.10, (b)] and then applying the functor Hom(Q/Z,−) to the resulting isomorphism

H2(G,μQ/Z(MTM))
∼→ Q/Z [cf. also Remark 3.2.1 below].

(ii) By considering the action of open subgroups H ⊆ Π on elements of MTM

that are roots of elements of MH
TM [i.e., the submonoid of MTM consisting of H-

invariant elements], we obtain a functorial [i.e., relative to CMLF
T , in the evident

sense] algorithm for constructing the Kummer maps

MH
TM → H1(H,μ

Ẑ
(MTM)); MTM → lim−→

J

H1(J,μ
Ẑ
(MTM))

— where “J” ranges over the open subgroups of Π. In particular, the “μ
Ẑ
(MTM)” in

the above display may be replaced by “μ
Ẑ
(G)” [cf. Remarks 3.2.1, 3.2.2 below]; if,
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moreover, (Π � MT) is of hyperbolic orbicurve type, then the “μ
Ẑ
(MTM)” in

the above display may be replaced by “μ
Ẑ
(Π)” [cf. Corollary 1.10, (c)] or “μκ

Ẑ
(Π)”

[cf. Remark 1.10.3, (ii)] — cf. Remark 3.2.2 below.

(iii) Suppose that (Π �MT) is of strictly Belyi type. Then the construction
of Corollary 1.10, (h), determines an additive structure [hence, in particular, a
topological field structure] on the union with “{0}” of the group generated by
the image of the Kummer map

MTM → lim−→
J

H1(J,μ
Ẑ
(MTM))

of (ii). In particular, these constructions yield a functorial [i.e., relative to CMLF
T ,

in the evident sense — cf. Remark 3.2.2 below] algorithm for constructing this
topological field structure.

(iv) If (Π∗ � M∗
T) ∈ Ob(CMLF

T ), then the natural functor of Definition 3.1,
(iii), induces an injection

IsomCMLF
T

((Π �MT), (Π
∗ �M∗

T)) ↪→ IsomTG(Π,Π
∗)

on sets of isomorphisms; this injection is a bijection if T = TM, or if [T is either
TM or TF, and] (Π �MT), (Π

∗ �M∗
T) are of strictly Belyi type. In particular,

if (Π �MT) is of hyperbolic orbicurve type, then the group

AutCMLF
T

((Π �MT))

— which is isomorphic to a subgroup of AutTG(Π) that contains the subgroup of
AutTG(Π) determined by the inner automorphisms of Π — is center-free; the

categories TGhyp, TGsB, TGhyp, TGsB, CMLF-hyp
T , CMLF-sB

T , CMLF-hyp

T
, CMLF-sB

T
are

id-rigid [cf. §0].

(v) The algorithm of (iii) yields a natural [1-]factorization

CMLF-sB
TF −→ CMLF-sB

T

log
T,T′−→ CMLF-sB

T′

— where T′ ∈ {TF,TLG,TCG,TM}; the first arrow is the natural functor of Def-
inition 3.1, (iii), if T = TM, or the identity functor if T = TF — of the [“sB”
versions of the] log-Frobenius functors logTF,T′ : CMLF

TF → CMLF
T′ of Definition

3.1, (iv). Moreover, the functor logT,T is isomorphic to the identity functor
[hence, in particular, is an equivalence of categories].

Proof. Assertions (i), (ii), (iii), (v) are immediate from the constructions that
appear in the statement of these assertions [together with the references quoted
in these constructions]. The injectivity portion of assertion (iv) follows from the
functorial algorithms of assertions (i), (ii) [which imply that automorphisms of
(Π � MTM) that act trivially on Π necessarily act trivially on MTM]. In light of
this injectivity, the center-free-ness portion of assertion (iv) follows immediately
from the slimness of Π [cf., e.g., [Mzk20], Proposition 2.3, (ii)]. The surjectivity
portion of assertion (iv) follows from assertion (iii), when (Π � MT), (Π

∗ � M∗
T)
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are of strictly Belyi type, and from considering the “copy of MTM
∼→ O�

k
embedded

in abelianizations of open subgroups of G
∼→ Gk via local class field theory” [cf.,

e.g., [Mzk9], Proposition 1.2.1, (iii), (iv)], together with assertions (i), (ii) [cf. also
the first displayed isomorphism of Corollary 1.10, (b)], when T = TM. ©

Remark 3.2.1. Note that the algorithm applied to construct the natural isomor-
phism of Corollary 1.10, (a), is essentially the same as the algorithm of Proposition
3.2, (i). In particular, this algorithm does not require that (Π � MT) be of hy-
perbolic orbicurve type. Thus, by imposing the condition of “compatibility with
the natural isomorphism of Corollary 1.10, (a)”, we thus obtain, in the context of
Proposition 3.2, (i), a functorial algorithm for constructing the natural isomorphism

μ
Ẑ
(MTM)

∼→ μ
Ẑ
(G)

[cf. also Remark 1.10.3, (ii)].

Remark 3.2.2. Note that [cf. Remark 1.10.1, (iii)] the functoriality of Propo-

sition 3.2, (i), when applied to the isomorphism H2(G,μ
Ẑ
(MTM))

∼→ Ẑ, is to be

understood in the sense of a “compatibility”, relative to dividing the “Ẑ” that ap-
pears as the codomain of these isomorphisms by a factor given by the index of the
image of the induced open homomorphism on arithmetic Galois groups [cf. Defini-
tion 3.1, (ii)]. A similar remark [cf. Remark 1.10.1, (i)] applies to the cyclotome
“μ

Ẑ
(Π)” that appears in Proposition 3.2, (ii). We leave the routine details to the

reader.

In a similar vein, one may consider Kummer maps for “O×” [as opposed to
“O�”], in which case the natural isomorphism of Remark 3.2.1 is only determined

up to a Ẑ×-multiple [cf. [Mzk17], Remark 2.4.2].

Proposition 3.3. (Unit Kummer Maps) Let T ∈ {TLG,TCG}. Let (Π �

M) ∈ Ob(CMLF
T ) be an MLF-Galois T-pair, with arithmetic Galois group Π� G.

Then:

(i) By considering the action of open subgroups H ⊆ Π on elements of M that
are roots of elements of MH [i.e., the subgroup of M consisting of H-invariant

elements], we obtain a functorial [i.e., relative to CMLF
T , in the evident sense]

algorithm for constructing the Kummer maps

MH → H1(H,μ
Ẑ
(M)); M → lim−→

J

H1(J,μ
Ẑ
(M))

— where “J” ranges over the open subgroups of Π. In this situation [unlike the

situation of Proposition 3.2, (ii)], the natural isomorphism μ
Ẑ
(M)

∼→ μ
Ẑ
(G) [cf.

Remark 3.2.1] is only determined up to a {±1}- (respectively, Ẑ×-)multiple if
T = TLG (respectively, T = TCG) [cf. (ii) below; [Mzk17], Remark 2.4.2, in the
case T = TCG].
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(ii) If (Π∗ � M∗) ∈ Ob(CMLF
T ), then any isomorphism (Π � M)

∼→ (Π∗ �

M∗) induces isomorphisms Π
∼→ Π∗, μ

Ẑ
(M)

∼→ μ
Ẑ
(M∗), which determine an in-

jection

IsomCMLF
T

((Π �M), (Π∗ �M∗)) ↪→ IsomTG(Π,Π
∗)× IsomTG(μẐ

(M),μ
Ẑ
(M∗))

— which is a bijection if T = TCG. If T = TLG, then the homomorphism
IsomCMLF

T

((Π � M), (Π∗ � M∗)) → IsomTG(Π,Π
∗) is surjective, with fibers of

cardinality two.

Proof. The portion of assertion (i) concerning Kummer maps is immediate from
the definitions and the references quoted. The portion of assertion (i) concerning

the isomorphism μ
Ẑ
(M)

∼→ μ
Ẑ
(G) follows by observing that the algorithm of Propo-

sition 3.2, (i) [cf. also Remark 3.2.1] may be applied, up to a {±1}- (respectively,
Ẑ×-)indeterminacy, if T = TLG (respectively, T = TCG). The injectivity portion
of assertion (ii) follows from assertion (i) via a similar argument to the argument
used to derive the injectivity portion of Proposition 3.2, (iv), from Proposition 3.2,
(i), (ii); the surjectivity onto IsomTG(Π,Π

∗) follows from a similar argument to
the argument applied to prove the surjectivity portion of Proposition 3.2, (iv). If
T = TCG (respectively, T = TLG), then the remainder of assertion (ii) follows by

observing that there is a natural action of Ẑ× on M (respectively, observing that

as soon as an automorphism of (Π �M) preserves the submonoid O�
k
⊆ k

× ∼=M

[i.e., preserves the “positive elements” of k
×
/O×

k
∼= Q], one may apply the functorial

algorithm of Proposition 3.2, (i)). ©

Lemma 3.4. (Topological Distinguishability of Additive and Mul-

tiplicative Structures) In the notation of Definition 3.1, (i), let α : k×
∼→ k×

be an automorphism of the topological group k×, αpf : (k×)pf → (k×)pf the
automorphism induced on the perfection. Then αpf((O�

k )
pf) �⊆ (O×

k )
pf.

Proof. Indeed, since O×
k is easily verified to be the maximal compact subgroup of

k×, α induces an isomorphism O×
k

∼→ O×
k . Thus, αpf((O×

k )
pf) = (O×

k )
pf, so an in-

clusion αpf((O�
k )

pf) ⊆ (O×
k )

pf would imply that (O�
k )

pf ⊆ (O×
k )

pf, a contradiction.
©

Definition 3.5.

(i) We shall refer to as a diagram of categories D = (�ΓD, {Dv}, {De}) any
collection of data as follows:

(a) an oriented graph �ΓD [cf. §0];
(b) for each vertex v of �ΓD, a category Dv;

(c) for each edge e of �ΓD that runs from a vertex v1 to a vertex v2, a functor
De : Dv1 → Dv2 .

Let D = (�ΓD, {Dv}, {De}) be a diagram of categories. Then observe that any path

[γ] [cf. §0] on �ΓD that runs from a vertex v1 to a vertex v2 determines — i.e.,
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by composing the various functors “De”, for edges e that appear in this path — a
functor D[γ] : Dv1 → Dv2 . We shall refer to the diagram of categories E obtained

by restricting the data of D to an oriented subgraph �ΓE of �ΓD as a subdiagram of
categories of D.

(ii) Let D = (�ΓD, {Dv}, {De}) be a diagram of categories. Then we shall refer
to as a family of homotopies H = (EH, {ζ	}) on D any collection of data as follows:

(a) a saturated [cf. §0] set EH ⊆ Ω(�ΓD)×Ω(�ΓD) of ordered pairs of paths on
�ΓD, which we shall refer to as the boundary set of the family of homotopies

H; we shall refer to every path on �ΓD that occurs as a component of an
element of EH as a boundary set path;

(b) for each � = ([γ1], [γ2]) ∈ EH, a natural transformation ζ	 : D[γ1] →
D[γ2] — which we shall refer to as a homotopy from [γ1] to [γ2] — such
that the following conditions are satisfied: ζ([γ],[γ]) is the identity natural
transformation for each ([γ], [γ]) ∈ EH; if � = ([γ1], [γ2]), �

′ = ([γ2], [γ3]),
and �′′ = ([γ1], [γ3]) belong to EH, then ζ	′′ = ζ	′ ◦ ζ	; if, for some

[γ3], [γ4] ∈ Ω(�ΓD), the pairs � = ([γ1], [γ2]) and �
′ = ([γ3]◦[γ1]◦[γ4], [γ3]◦

[γ2] ◦ [γ4]) belong to EH, then ζ	′ = D[γ3] ◦ ζ	 ◦ D[γ4].

If, in this situation, EH is the smallest [cf. §0] saturated subset of Ω(�ΓD)× Ω(�ΓD)
that contains a given subset E∗

H ⊆ EH, then we shall say that the family of ho-
motopies H = (EH, {ζ	}) is generated by the homotopies indexed by E∗

H. We
shall refer to a family of homotopies H = (EH, {ζ	}) on D as symmetric if EH
is symmetrically saturated [cf. §0]. [Thus, if H = (EH, {ζ	}) is symmetric, then
every ζ	 is an isomorphism.] We shall refer to a collection of families of homo-
topies {Hι = (EHι , {ζι	ι

})}ι∈I on D as being compatible if there exists a family of
homotopies H = (EH, {ζ	}) on D such that, for each ι ∈ I, �ι ∈ EHι , we have
EHι ⊆ EH and ζι	ι

= ζ	ι .

(iii) Let D = (�ΓD, {Dv}, {De}) be a diagram of categories. Then we shall refer
to as an observable S = (S, vS,H) [on D] any collection of data as follows:

(a) a diagram of categories S = (�ΓS , {Sv}, {Se}) that contains D as a subdi-

agram of categories [so �ΓD ⊆ �ΓS ];

(b) a vertex vS of �ΓS , which we shall refer to as the observation vertex, such

that the set of vertices of �ΓS\�ΓD is equal to {vS}, and, moreover, every

edge of �ΓS\�ΓD runs from a vertex of �ΓD to vS;

(c) a family of homotopies H on S such that every boundary set path of H
has terminal vertex equal to vS.

Let S = (S, vS,H) be an observable on D. Then we shall say that S is symmetric
if H is symmetric. We shall say that S is a core [on D] if the boundary set of H is
equal to the set of all co-verticial pairs of paths on the underlying oriented graph
�ΓS of S with terminal vertex equal to vS [which implies that S is symmetric], and,

moreover, every vertex of �ΓD appears as the initial vertex of a path on �ΓS with
terminal vertex equal to vS. Suppose that S is a core on D. Then we shall refer to
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the observation vertex of S as the core vertex of S and [by abuse of terminology,
when there is no fear of confusion] to SvS

as a “core on D”.

(iv) LetS = (S, vS,H) be a core on a diagram of categoriesD = (�ΓD, {Dv}, {De}).
Then we shall refer to as a telecore T = (T ,J ) on D over the core S any collection
of data as follows:

(a) a diagram of categories T = (�ΓT , {Tv}, {Te}) that contains S as a subdi-

agram of categories [so �ΓD ⊆ �ΓS ⊆ �ΓT ] such that �ΓT , �ΓS have the same

vertices, and, moreover, every edge of �ΓT \�ΓS runs from vS to a vertex of
�ΓD; we shall refer to such edges of �ΓT as the telecore edges;

(b) J is a family of homotopies on T such that J |S = H whose boundary

set is equal to the subset of Ω(�ΓT ) of pairs ([γ3] ◦ [γ1], [γ3] ◦ [γ2]), where
([γ1], [γ2]) is a co-verticial pair of paths on �ΓT with terminal vertex equal

to vS, and [γ3] is a path on �ΓT with initial vertex equal to vS.

In this situation, a family of homotopies Hcnct on T that is compatible with J will
be referred to as a contact structure for the telecore T .

(v) Let D = (�ΓD, {Dv}, {De}) and D′ = (�ΓD′ , {D′
v′}, {De′}) be diagrams of

categories. Then a 1-morphism of diagrams of categories

Φ : D → D′

is defined to be a collection of data follows:

(a) a morphism of oriented graphs Φ
Γ : �ΓD → �ΓD′ ;

(b) for each vertex v of �ΓD, a functor Φv : Dv → D′
Φ�Γ(v)

;

(c) for each edge e of �ΓD that runs from a vertex v1 to a vertex v2, an

isomorphism of functors Φe : D′
Φ�Γ(e)

◦ Φv1
∼→ Φv2

◦ De.

A 2-morphism Θ : Φ→ Ψ between 1-morphisms Φ,Ψ : D → D′ such that Φ
Γ = Ψ
Γ
is defined to be a collection of natural transformations {Θv : Φv → Ψv}, where v
ranges over the vertices of �ΓD, such that

Ψe ◦ (D′
Φ�Γ(e)

◦Θv1) = (Θv2 ◦ De) ◦ Φe : D′
Φ�Γ(e)

◦ Φv1 → Ψv2 ◦ De

for each edge e of �ΓD that runs from a vertex v1 to a vertex v2. We shall say
that a 1-morphism Φ : D → D′ is an equivalence of diagrams of categories if there
exists a 1-morphism Ψ : D′ → D such that Ψ ◦ Φ, Φ ◦ Ψ are [2-]isomorphic to the
respective identity 1-morphisms of D, D′. If D (respectively, D′) is equipped with
a family of homotopies H (respectively, H′), then we shall say that an equivalence

Φ : D ∼→D′ is compatible withH, H′ if Φ
Γ induces a bijection between the boundary
sets of H, H′, and, moreover, the natural transformations that constitute H, H′

[cf. the data of (ii), (b)] are compatible [in the evident sense] with the natural
transformations that constitute Φ [cf. the data (c) in the above definition]; in this
situation, one verifies immediately that if Φ is compatible with H, H′, then so is
any equivalence Ψ : D ∼→ D′ that is isomorphic to Φ. We shall say that D is vertex-

rigid (respectively, edge-rigid) if, for every vertex v (respectively, edge e) of �ΓD, the
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category Dv (respectively, the functor De) is id-rigid (respectively, rigid) [cf. §0].
If D is vertex-rigid and edge-rigid, then we shall say that D is totally rigid. Thus,
if D is edge-rigid, then any equivalence Φ : D ∼→ D′ is completely determined by
Φ
Γ and the {Φv} [i.e., the data (a), (b) in the above definition]. In a similar vein,

if D is vertex-rigid, then any two isomorphic equivalences Φ,Ψ : D ∼→ D′ admit a
unique [2-]isomorphism Φ

∼→ Ψ. In particular, if D is vertex-rigid, then it is natural
to speak of the automorphism group Aut(D) of D, i.e., the group determined by
the isomorphism classes of self-equivalences of D.

(vi) Let D = (�ΓD, {Dv}, {De}) be a diagram of categories; � a nexus of �ΓD [cf.
§0]; D≤�, D≥� the subdiagrams of categories determined, respectively, by the pre-

and post-nexus portions of �ΓD [cf. §0]. Then we shall say that D is totally �-rigid if
the pre-nexus portion D≤� is totally rigid. Let us suppose that D is totally �-rigid.
Write

Aut�(D≤�) ⊆ Aut(D≤�)

for the subgroup of isomorphism classes of self-equivalences of D≤� that preserve
� and induce a self-equivalence of D� that is isomorphic to the identity self-
equivalence. Let Φ≤� : D≤�

∼→ D≤� be a self-equivalence whose isomorphism class

[Φ≤�] ∈ Aut�(D≤�). Then Φ≤� extends naturally to an equivalence Φ : D ∼→ D
which is the identity on �ΓD≥� and which associates to each vertex v �= � of �ΓD≥�
the identity self-equivalence of Dv. [Here, we observe that the isomorphism of func-
tors of (v), (c), is naturally determined by the isomorphism of (Φ≤�)� with the
identity self-equivalence of D�.] Moreover, this assignment

Φ≤� �→ Φ

clearly maps isomorphic equivalences to isomorphic equivalences and is compatible
with composition of equivalences. In particular, this assignment yields a natu-
ral “action” of the group Aut�(D≤�) on D. We shall refer to the resulting self-
equivalences of D as nexus self-equivalences of D [relative to the nexus �] and the
resulting classes of self-equivalences of D [i.e., arising from isomorphism classes of
“Φ≤�”] as nexus-classes of self-equivalences of D [relative to the nexus �].

Remark 3.5.1. If one just works with diagrams of categories without considering
any observables, then it is difficult to understand the “global structure” of the
diagram since [by definition!] it does not make sense to speak of the relationship
between objects that belong to different categories [e.g., at distinct vertices of the
diagram]. Thus:

The notion of an observable may be thought of as a sort of “partial pro-
jection of the dynamics of a diagram of categories” onto a single category,
within which it makes sense to compare objects that arise from distinct
categories at distinct vertices of the diagram.

Moreover:

A core on a diagram of categories may be thought of as an extraction of a
certain portion of the data of the objects at the various categories in the
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diagram that is invariant with respect to the “dynamics” arising from the
application of the various functors in the diagram.

Put another way, one may think of a core as a sort of “constant portion” of the
diagram that lies, in a consistent fashion, “under the entire diagram” [cf. the use
of the term “core” in the theory of [Mzk11], §2]. Then:

A telecore may be thought of as a sort of partial section — i.e., given by
the telecore edges — of the “structure morphisms to the core” which does
not disturb the coricity [i.e., the property of being a core] of the original
core.

Moreover, although, in the definition of a telecore, we do not assume the existence
of families of homotopies that guarantee the compatibility of applying composites
of functors by traveling along arbitrary co-verticial pairs of paths emanating from
the core vertex, any failure of such a compatibility may always be eliminated —
in a fashion reminiscent of a “telescoping sum” — by projecting back down to
the core vertex [cf. the discussion of Remark 3.6.1, (ii), (c), below]. Put another
way, one may think of a telecore as a device that satisfies a sort of “time lag
compatibility”, i.e., as a device whose “compatibility apparatus” does not go into
operation immediately, but only after a certain “time lag” [arising from the necessity
to travel back down to the core vertex]. Also, for more on the meaning of cores and
telecores, we refer to Remark 3.6.5 below.

The terminology of Definition 3.5 makes it possible to formulate the first main
result of the present §3.

Corollary 3.6. (MLF-Galois-theoretic Mono-anabelian Log-Frobenius
Compatibility) Write

X def
= CMLF-sB

T
; E def

= TGsB; N def
= CMLF-sB

TS

— where [in the notation of Definition 3.1] T ∈ {TM,TF}. Consider the diagram
of categories D

. . . X log−→ X log−→ X . . .

. . . id�+1
↘

⏐⏐�id� ↙ id�−1
. . .

X⏐⏐�λ×
⏐⏐�λ×pf

N⏐⏐�
E⏐⏐�κAn

Anab⏐⏐�
E
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— where we use the notation “log”, “λ×”, “λ×pf” for the evident [double-underlined/
overlined] restrictions of the arrows “logT,T”, “λ

×”, “λ×pf” of Definition 3.1, (iv)
[cf. also Proposition 3.2, (iii), (v)]; for positive integers n ≤ 6, we shall denote by
D≤n the subdiagram of categories of D determined by the first n [of the six]
rows of D; we write L for the countably ordered set determined [cf. §0] by the

infinite linear oriented graph �Γopp
D≤1

[so the elements of L correspond to vertices

of the first row of D] and

L† def
= L ∪ {�}

for the ordered set obtained by appending to L a formal symbol � [which we think
of as corresponding to the unique vertex of the second row of D] such that � < �,
for all � ∈ L; id� denotes the identity functor at the vertex � ∈ L; the notation
“. . . ” denotes an infinite repetition of the evident pattern. Then:

(i) For n = 4, 5, 6, D≤n admits a natural structure of core on D≤n−1. That is
to say, loosely speaking, E, Anab “form cores” of the functors in D.

(ii) The assignments(
Π,Π � {k× ↪→ lim−→

J

H1(J,μ
Ẑ
(Π))}

)
�→ (Π � O�

k
), (Π � k

×⋃{0})

determine [i.e., for each choice of T] a natural “forgetful” functor

Anab
φAn−→ X

which is an equivalence of categories, a quasi-inverse for which is given by
the composite πAn : X → Anab of the natural projection functor X → E with
κAn : E → Anab; write ηAn : φAn ◦πAn

∼→ idX for the isomorphism arising from the
“group-theoretic” algorithms of Corollary 1.10 [cf. also Proposition 3.2, (ii), (iii)].
Moreover, φAn gives rise to a telecore structure TAn on D≤4, whose underlying
diagram of categories we denote by DAn, by appending to D≤5 telecore edges

Anab

. . . φ�+1 ↙
⏐⏐�φ� ↘ φ�−1 . . .

. . . X log−→ X log−→ X . . .

Anab
φ�−→ X

from the core Anab to the various copies of X in D≤2 given by copies of φAn, which
we denote by φ�, for � ∈ L†. That is to say, loosely speaking, φAn determines a
telecore structure on D≤4. Finally, for each � ∈ L†, let us write [β0

�] for the path

on �ΓDAn
of length 0 at � and [β1

�] for the path on �ΓDAn
of length ∈ {4, 5} [i.e.,

depending on whether or not � = �] that starts from �, descends [say, via λ×]
to the core vertex “Anab”, and returns to � via the telecore edge φ�. Then the
collection of natural transformations

{η��, η
−1
��, η�, η

−1
� }�∈L,�∈L†
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— where we write η�� for the identity natural transformation from the arrow φ� :
Anab→ X to the composite arrow id� ◦ φ� : Anab→ X and

η� : (DAn)[β1�]
∼→ (DAn)[β0�]

for the isomorphism arising from ηAn — generate a contact structure HAn on
the telecore TAn.

(iii) The natural transformations

ιlog,� : λ× ◦ id� ◦ log→ λ×pf ◦ id�+1, ι× : λ× → λ×pf

[cf. Definition 3.1, (iv)] belong to a family of homotopies on D≤3 that determines
on D≤3 a structure of observable Slog on D≤2 and, moreover, is compatible with
the families of homotopies that constitute the core and telecore structures of (i),
(ii).

(iv) The diagram of categories D≤2 does not admit a structure of core on
D≤1 which [i.e., whose constituent family of homotopies] is compatible with [the
constituent family of homotopies of ] the observable Slog of (iii). Moreover, the
telecore structure TAn of (ii), the contact structure HAn of (ii), and the
observable Slog of (iii) are not simultaneously compatible [but cf. Remark
3.7.3, (ii), below].

(v) The unique vertex � of the second row of D is a nexus of �ΓD. More-
over, D is totally �-rigid, and the natural action of Z on the infinite linear

oriented graph �ΓD≤1
extends to an action of Z on D by nexus-classes of self-

equivalences of D. Finally, the self-equivalences in these nexus-classes are com-
patible with the families of homotopies that constitute the cores and observ-
able of (i), (iii); these self-equivalences also extend naturally [cf. the technique of
extension applied in Definition 3.5, (vi)] to the diagram of categories [cf. Definition
3.5, (iv), (a)] that constitutes the telecore of (ii), in a fashion that is compatible
with both the family of homotopies that constitutes this telecore structure [cf.
Definition 3.5, (iv), (b)] and the contact structure HAn of (ii).

Proof. In the following, if φ is a functor appearing in D, then let us write [φ]

for the path on the underlying oriented graph �ΓD of D determined by the edge
corresponding to φ [cf. §0]. Now assertion (i) is immediate from the definitions and
the fact that the algorithms of Corollary 1.10 are “group-theoretic” in the sense
that they are expressed in language that depends only on the profinite group given
as “input data”.

Next, we consider assertion (ii). The portion of assertion (ii) concerning φAn

and TAn is immediate from the definitions and the “group-theoretic” algorithms of
Corollary 1.10 [cf. also Proposition 3.2, (ii), (iii)]. Thus, it suffices to show the
existence of a contact structure HAn as described. To this end, let us first ob-
serve that the isomorphism of log with the identity functor [cf. Definition 3.1, (iv);
Proposition 3.2, (v)] is compatible [in the evident sense] with the natural tranforma-
tions {η��, η

−1
��, η�, η

−1
� }�∈L,�∈L† . On the other hand, this compatibility implies

that one may, in effect, “contract” D≤2 down to a single vertex [equipped with the
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category X ] and the various paths from � to Anab down to a single edge — i.e.,
that, up to redundancies, one is, in effect, dealing with a diagram of categories with
two vertices “X” and “Anab” joined by two [oriented] edges φAn, πAn. Now the
existence of a family of homotopies that contains the collection of natural transfor-
mations {η��, η�, η

−1
� }�∈L,�∈L† follows immediately. This completes the proof of

assertion (ii).

Next, we consider assertion (iii). Write Elog for the set of ordered pairs of

paths on �ΓD≤3
[i.e., the underlying oriented graph of D≤3] consisting of pairs of

paths of the following three types:

(1) ([λ×] ◦ [id�] ◦ [log] ◦ [γ], [λ×pf] ◦ [id�+1] ◦ [γ]), where [γ] is a path on D≤3

whose terminal vertex lies in the first row of D≤3;

(2) ([λ×] ◦ [γ], [λ×pf] ◦ [γ]), where [γ] is a path on D≤3 whose terminal vertex
lies in the second row of D≤3;

(3) ([γ], [γ]), where [γ] is a path on D≤3 whose terminal vertex lies in the
third row of D≤3.

Then one verifies immediately that Elog satisfies the conditions (a), (b), (c), (d),
(e) given in §0 for a saturated set. Moreover, the natural transformation(s) ιlog,�
(respectively, ι×) determine(s) the homotopies for pairs of paths of type (1) (re-
spectively, (2)). Thus, we obtain an observable Slog, as desired. Moreover, it is
immediate from the definitions — i.e., in essence, because the various Galois groups
that appear remain “undisturbed” by the various manipulations involving arithmetic
data that arise from “ιlog,�”, “ι×” — that this family of homotopies is compatible
with the families of homotopies that constitute the core and telecore structures of
(i), (ii). This completes the proof of assertion (iii).

Next, we consider assertion (iv). Suppose that D≤2 admits a structure of core
on D≤1 in a fashion that is compatible with the observable Slog of (iii). Then
this core structure determines, for � ∈ L, a homotopy ζ0 for the pair of paths
([id�+1], [id�] ◦ [log]); thus, by composing the result ζ ′0 of applying λ× to ζ0 with
the homotopy ζ1 associated [via Slog] to the pair of paths ([λ×]◦ [id�]◦ [log], [λ×pf]◦
[id�+1]) [of type (1)], we obtain a natural transformation

ζ ′1 = ζ1 ◦ ζ ′0 : λ× ◦ id�+1 → λ×pf ◦ id�+1

— which, in order for the desired compatibility to hold, must coincide with the
homotopy ζ2 associated [viaSlog] to the pair of paths ([λ

×]◦[id�+1], [λ
×pf]◦[id�+1])

[of type (2)]. On the other hand, by writing out explicitly the meaning of such an
equality ζ ′1 = ζ2, we conclude that we obtain a contradiction to Lemma 3.4. This
completes the proof of the first incompatibility of assertion (iv). The proof of the
second incompatibility of assertion (iv) is entirely similar. That is to say, if we
compose on the right with [φ�+1] the various paths that appeared in the proof of
the first incompatibility, then in order to apply the argument applied in the proof
of the first incompatibility, it suffices to relate the paths

[id�+1] ◦ [φ�+1]; [id�] ◦ [log] ◦ [φ�+1]
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[a task that was achieved in the proof of the first incompatibility by applying the
core structure whose existence was assumed in the proof of the first incompatibility].
In the present situation, applying the homotopy η��+1 of the contact structureHAn

yields a homotopy [φ�]� [id�+1]◦[φ�+1]; on the other hand, we obtain a homotopy

[φ�]� [id�] ◦ [φ�]� [id�] ◦ [β1
�] ◦ [log] ◦ [φ�+1]

� [id�] ◦ [log] ◦ [φ�+1]

by applying the homotopy η�� of the contact structure HAn, followed by the homo-
topies of the telecore TAn, followed by the homotopy η� of the contact structureHAn.
Thus, by applying the argument applied in the proof of the first incompatibility, we
obtain two mutually contradictory homotopies [λ×]◦ [φ�]� [λ×pf]◦ [id�+1]◦ [φ�+1].
This completes the proof of the second incompatibility of assertion (iv).

Finally, we consider assertion (v). The total �-rigidity in question follows
immediately from Proposition 3.2, (iv) [cf. also the final portion of Proposition 3.2,
(v)]. The remainder of assertion (v) follows immediately from the definitions. This
completes the proof of assertion (v). ©

Remark 3.6.1.

(i) The “output” of the “log-Frobenius observable” Slog of Corollary 3.6, (iii),
may be summarized intuitively in the following diagram:

. . . Π�+1
∼→ Π�+1

∼→ Π�
∼→ Π�

� � � � . . .

. . . k
×
�+1 → (k

×
�+1)

pf ←↩ k
×
� → (k

×
�)

pf

∼→ Π�−1
∼→ Π�−1 . . .

. . . � �

←↩ k
×
�−1 → (k

×
�−1)

pf . . .

— where the arrows “→” are the natural morphisms [cf. ι×!]; k
×
�, for � ∈ L, is a

copy of “k
×
” that arises, via id�, from the vertex � of D≤1; the arrows “←↩” are the

inclusions arising from the fact that k
×
� is obtained by applying the log-Frobenius

functor log to k
×
�+1 [cf. ιlog,�!]; the isomorphic “Π�’s” that act on the various

k
×
�’s and their perfections correspond to the coricity of E [cf. Corollary 3.6, (i)].

Finally, the incompatibility assertions of Corollary 3.6, (iv), may be thought of as
a statement of the non-existence of some “universal reference model”

k
×
model

that maps isomorphically to the various k
×
�’s in a fashion that is compatible with

the various arrows “→”, “←↩” of the above diagram — cf. also Corollary 3.7, (iv),
below.
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(ii) In words, the content of Corollary 3.6 may be summarized as follows [cf.
the “intuitive diagram” of (i)]:

(a) The Galois groups that act on the various objects under consideration
are compatible with all of the operations involved — in particular, the op-
erations constituted by the functors log, κAn, φAn and the various related
families of homotopies — cf. the coricity asserted in Corollary 3.6, (i).

(b) By contrast, the operation constituted by the log-Frobenius functor [as
“observed” via the observable Slog] is not compatible with the field struc-

ture of the fields [i.e., “k”] involved [cf. Corollary 3.6, (iv)].

(c) As a consequence of (a), the “group-theoretic reconstruction” of the base
field via Corollary 1.10 is compatible with all of the operations involved,
except “momentarily” when log acts on the output of φAn — an operation
which “temporarily obliterates” the field structure of this output, although
this field structure may be recovered by projecting back down to E [cf. (a)]
and applying κAn. This sort of “conditional compatibility” — i.e., up to a
“brief temporary exception” — is expressed in the telecoricity asserted in
Corollary 3.6, (ii).

In particular, if one thinks of the various operations involved as being “software”
[cf. Remark 1.9.8], then the projection to E — i.e., the operation of looking at the
Galois group — is compatible with simultaneous execution of all the “software”
[in particular, including log!] under consideration; the “group-theoreticity” of the
algorithms of Corollary 1.10 implies that Anab, κAn satisfy a similar “compatibility
with simultaneous execution of all software” [cf. Remark 3.1.2] property.

Remark 3.6.2.

(i) The reasoning that lies behind the name “log-Frobenius functor” may be
understood as follows. At a very naive level, the natural logarithm may be thought
of as a sort of “raising to the ε-th power” [where ε → 0 is some indefinite positive
infinitesimal] — i.e., “ε” plays the role in characteristic [ε →]0 of “p” in charac-
teristic p > 0. More generally, the logarithm frequently appears in the context of
Frobenius actions, in particular in discussions involving canonical coordinates, such
as in [Mzk1], Chapter III, §1.

(ii) In general, Frobenius morphisms may be thought of as “compression mor-
phisms”. For instance, this phenomenon may be seen in the most basic example of
a Frobenius morphism in characteristic p > 0, i.e., the morphism

t �→ tp

on Fp[t]. Put another way, the “compression” operation inherent in a Frobenius
morphism may be thought of as an approximation of some sort of “absolute con-
stant object” [such as Fp]. In the context of the log-Frobenius functor, this sort
of compression phenomenon may be seen in the pre-log-shells defined in Definition
3.1, (iv), which will play a key role in the theory of §5 below.
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(iii) Whereas the log-Frobenius functor obliterates the field [or ring] structure
[cf. Remark 3.6.1, (ii), (b)] of the fields involved, the usual Frobenius morphism in
positive characteristic is compatible with the ring structure of the rings involved.
On the other hand, unlike generically smooth morphisms, the Frobenius morphism
in positive characteristic has the effect of “obliterating the differentials” of the
schemes involved.

Remark 3.6.3. The diagram D of Corollary 3.6 — cf., especially, the first two
rows D≤2 and the various natural actions of Z discussed in Corollary 3.6, (v) —
may be thought of as a sort of combinatorial version of Gm — cf. the point of
view of Remark 1.9.7.

Remark 3.6.4. One verifies immediately that one may give a tempered version
of Propositions 3.2, 3.3; Corollary 3.6 [cf. Remarks 1.9.1, 1.10.2].

Remark 3.6.5. The notions of “core” and “telecore” are reminiscent of certain
aspects of “Hensel’s lemma” [cf., e.g., [Mzk21], Lemma 2.1]. That is to say, if one
compares the successive approximation operation applied in the proof of Hensel’s
lemma [cf., e.g., the proof of [Mzk21], Lemma 2.1] to the various operations [in the
form of functors] that appear in a diagram of categories, then one is led to the
following analogy:

cores ←→ sets of solutions of “étale”, i.e., “slope zero” equations

telecores ←→ sets of solutions of “positive slope” equations

— i.e., where one thinks of applications of Hensel’s lemma in the context of mixed
characteristic, so the property of being “étale in characteristic p > 0” may be
regarded as corresponding to “slope zero”. That is to say, the “étale case” of
Hensel’s lemma is the easiest to understand. In this “étale case”, the invertibil-
ity of the Jacobian matrix involved implies that when one executes each successive
approximation operation, the set of solutions lifts uniquely, i.e., “transports isomor-
phically” through the operation. This sort of “isomorphic transport” is reminiscent
of the definition of a core on a diagram of categories. On the other hand, the “pos-
itive slope case” of Hensel’s lemma is a bit more complicated [cf., e.g., the proof of
[Mzk21], Lemma 2.1]. That is to say, although the set of solutions does not quite
“transport isomorphically” in the simplest most transparent fashion, the fact that
the Jacobian matrix involved is invertible up to a factor of p implies that the set
of solutions “essentially transports isomorphically, up to a brief temporary lag” —
cf. the “brief temporary exception” of Remark 3.6.1, (ii), (c). Put another way, if
one thinks in terms of connections on bases on which p is nilpotent, in which case
formal integration takes the place of the “successive approximation operation” of
Hensel’s lemma, then one has the following analogy:

cores ←→ vanishing pn-curvature

telecores ←→ nilpotent pn-curvature

[where we refer to [Mzk4], Chapter II, §2; [Mzk7], §2.4, for more on “pn-curvature”]
— cf. Remark 3.7.2 below.
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Remark 3.6.6.

(i) In the context of the analogy between telecores and “positive slope situa-
tions” discussed in Remark 3.6.5, one question that may occur to some readers is
the following:

What are the values of the positive slopes implicitly involved in a telecore?

At the time of writing, it appears to the author that, relative to this analogy, one
should regard telecores as containing “all positive slopes”, or, alternatively, “positive
slopes of an indeterminate nature”, which one may think of as corresponding to the
lengths of the various paths emanating from the core vertex that one may travel
along before descending back down to the core [cf. Remark 3.5.1]. Indeed, from the
point of view of the analogy [discussed in Remark 3.7.2 below] with the uniformizing
MF∇-objects constructed in [Mzk1], [Mzk4], this is natural, since uniformizing
MF∇-objects also involve, in effect, “all positive slopes”. Moreover, since telecores
are of an “abstract, combinatorial nature” [cf. Remark 1.9.7] — i.e., not of a “linear,
module-theoretic nature”, as is the case with MF∇-objects — it seems somewhat
natural that this “combinatorial non-linearity” should interfere with any attempts
to “separate out the various distinct positive slopes”, via, for instance, a “linear
filtration”, as is often possible in the case of MF∇-objects.

(ii) From the point of view of the analogy with [uniformizing] MF∇-objects,
one has the following [rough] correspondence:

slope zero ←→ Frobenius “�” (an isomorphism)

positive slope ←→ Frobenius “�” pn· (an isomorphism)

[where “�” is to be understood as shorthand for the phrase “acts via”; n is a
positive integer]. Perhaps the most fundamental example in the p-adic theory of
such a [uniformizing] MF∇-object arises from the p-adic Galois representation
obtained by extracting p-power roots of the standard unit U on the multiplicative
group Gm over Zp, in which case the “positive slope” involved corresponds to the
action

dlog(U) = dU/U �→ p · dlog(U)

induced by the Frobenius morphism U �→ Up. In the situation of Corollary 3.6, an
analogue of this sort of correspondence may be seen in the “temporary failure of
coricity” [cf. Remark 3.6.1, (ii), (c); the failure of coricity documented in Corollary
3.6, (iv)] of the “mono-anabelian telecore” of Corollary 3.6, (ii). That is to say,
mutiplication by a positive power of p corresponds precisely to this “temporary
failure of coricity”, a failure that is remedied [where the “remedy” corresponds
to the isomorphism that appears by “pealing off” an appropriate power of p] by
projecting back down to Anab, an operation which [in light of the “group-theoretic
nature” of the algorithms applied in κAn] induces an isomorphism of, for instance,
the base-field reconstructed after the application of log with the base-field that was
reconstructed prior to the application of log.

Remark 3.6.7. Note that in the situation of Corollary 3.6 [cf. also the ter-
minology introduced in Definition 3.5], although we have formulated things in the
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language of categories and functors, in fact, the mathematical constructs in which
we are ultimately interested have much more elaborate structures than categories
and functors. That is to say:

In fact, what we are really interested in is not so much “categories” and
“functors”, but rather “types of data” and “operations” [i.e., algorithms!]
that convert some “input type of data” into some “output type of data”.

One aspect of this state of affairs may be seen in the fact that the crucial functors
log, κAn of Corollary 3.6 are equivalences of categories [which, moreover, are, in
certain cases, isomorphic to the identity functor! — cf. Definition 3.1, (iv), (vi)] —
i.e., from the point of view of the purely category-theoretic structure [cf., e.g., the
point of view of [Mzk14], [Mzk16], [Mzk17]!] of “X”, “E”, or “Anab”, these functors
are “not doing anything”. On the other hand, from the point of view of “types of
data” and “operations” on these “types of data” [cf. Remark 3.6.1], the operations
constituted by the functors log, κAn are highly nontrivial. To some extent, this state
of affairs may be remedied by working with appropriate observables [i.e., which serve
to project the operations constituted by functors between different categories down
into arrows in a single category — cf. Remark 3.5.1], as in Corollary 3.6, (iii), (iv).
Nevertheless, the use of observables does not constitute a fundamental solution
to the issue raised above. It is the hope of the author to remedy this state of
affairs in a more definitive fashion in a future paper by introducing appropriate
“enhancements” to the usual theory of categories and functors.

To understand what is gained in Corollary 3.6 by the mono-anabelian theory
of §1, it is useful to consider the following “bi-anabelian analogue” of Corollary 3.6.

Corollary 3.7. (MLF-Galois-theoretic Bi-anabelian Log-Frobenius In-
compatibility) In the notation and conventions of Corollary 3.6, suppose, further,
that T = TF. Consider the diagram of categories D†

. . . X ×E X
logX−→ X ×E X

logX−→ X ×E X . . .

. . . pr�+1
↘

⏐⏐�pr� ↙ pr�−1
. . .

X⏐⏐�λ×
⏐⏐�λ×pf

N⏐⏐�
E

— where the second to fourth rows of D† are identical to the second to fourth rows

of the diagram D of Corollary 3.6; D†
≤1 is obtained by applying the “categorical

fiber product” (−)×EX [cf. §0] to D≤1; pr� denotes the projection to the first
factor on the copy of X ×E X at the vertex � ∈ L. Also, let us write

π� : X ×E X → X
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for the projection to the second factor on the copy of X×EX at the vertex � ∈ L,

D‡

for the result of appending these arrows π� to D† — where we think of the
codomain “X” of the arrows π� as a new “core” vertex lying in the first row

of D‡ “under” the various copies of “X ×E X” at the vertices of L — and D‡
≤n

[where n ∈ {1, 2, 3, 4}] for the subdiagram of D‡ constituted by D†
≤n, together with

the newly appended arrows π�. Then:

(i) D† = D†
≤4 (respectively, D‡

≤1) admits a natural structure of core on D†
≤3

(respectively, D†
≤1). That is to say, loosely speaking, E “forms a core” of the func-

tors in D†; the “second factor” X “forms a core” of the functors in D‡
≤1. [Thus,

we think of the second factor of the various fiber product categories X ×E X as
being a “universal reference model” — cf. Remark 3.7.3 below.]

(ii) Write

δX : X → X ×E X

for the natural diagonal functor and

θbi : prbi1
∼→ prbi2

for the isomorphism between the two projection functors prbi1 , pr
bi
2 : X×EX →

X that arises from the functoriality — i.e., the bi-anabelian [or “Grothendieck
Conjecture”-type] portion [cf. Remark 1.9.8] — of the “group-theoretic” algorithms
of Corollary 1.10. Then δX is an equivalence of categories, a quasi-inverse
for which is given by the projection to the second factor πX : X ×E X → X ; θbi

determines an isomorphism θX : δX ◦ πX ∼→ idX×EX . Moreover, δX gives rise to a

telecore structure Tδ on D†
≤1, whose underlying diagram of categories we denote

by D‡
δ, by appending to D‡

≤1 telecore edges

X

. . . δ�+1 ↙
⏐⏐�δ� ↘ δ�−1 . . .

. . . X ×E X
logX−→ X ×E X

logX−→ X ×E X . . .

from the core X to the various copies of X ×E X in D†
≤1 given by copies of δX ,

which we denote by δ�, for � ∈ L. That is to say, loosely speaking, δX determines

a telecore structure on D†
≤1. Finally, let us write D∗ for the diagram of categories

obtained by gluing [in the evident sense] D‡
δ to D‡ along D‡

≤1 and then appending
an edge

X δ�−→ X

from the core vertex of D‡
δ to the vertex at � [i.e., the unique vertex of the second

row of D‡] given by a copy of the identity functor; for each � ∈ L, let us write

[γ0�] for the path on �ΓD∗ of length 0 at � and [γ1�] for the path on �ΓD∗ of length
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2 that starts from �, descends via π� to the core vertex, and returns to � via the
telecore edge δ�. Then the collection of natural transformations

{θ��, θ
−1
��, θ�, θ

−1
� }�∈L

— where we write θ�� for the identity natural transformation from the arrow δ� :
X → X to the composite arrow pr� ◦ δ� : X → X and

θ� : D∗
[γ1�]

∼→ D∗
[γ0�]

for the isomorphism arising from θX — generate a family of homotopies Hδ

on D∗ [hence, in particular, by restriction, a contact structure on the telecore
Tδ]. Finally, D∗ = D∗

≤4 admits a natural structure of core on D∗
≤3 in a fashion

compatible with the core structure of D†
≤4 on D†

≤3 discussed in (i) [that is to say,

loosely speaking, E “forms a core” of the functors in D∗].

(iii) Write

ι
log,� : λ× ◦ pr� ◦ logX → λ×pf ◦ pr�+1, ι×

def
= ι× : λ× → λ×pf

for the natural transformations determined by the natural transformations of Corol-
lary 3.6, (iii). Then these natural transformations ι

log,�, ι× belong to a family of

homotopies on D†
≤3 that determines on D†

≤3 a structure of observable S
†
log on

D†
≤2 and, moreover, is compatible with the families of homotopies that constitute

the core and telecore structures of (i), (ii).

(iv) The diagram of categories D†
≤2 does not admit a structure of core on

D†
≤1 which [i.e., whose constituent family of homotopies] is compatible with [the

constituent family of homotopies of ] the observable S
†
log of (iii). Moreover, the

telecore structure Tδ of (ii), the family of homotopies Hδ of (ii), and the

observable S
†
log of (iii) are not simultaneously compatible.

(v) The vertex � of the second row of D∗ is a nexus of �ΓD∗ . Moreover, D∗ is
totally �-rigid, and the natural action of Z on the infinite linear oriented graph
�ΓD†

≤1
extends to an action of Z on D∗ by nexus-classes of self-equivalences of

D∗. Finally, the self-equivalences in these nexus-classes are compatible with Hδ

[cf. (ii)], as well as with the families of homotopies that constitute the cores,
telecore, and observable of (i), (ii), (iii).

Proof. The proofs of the various assertions of the present Corollary 3.7 are entirely
similar to the proofs of the corresponding assertions of Corollary 3.6. ©

Remark 3.7.1. In some sense, the purpose of Corollary 3.7 is to examine what
happens if the mono-anabelian theory of §1 is not available, i.e., if one is in a
situation in which one may only apply the bi-anabelian version of this theory. This
is the main reason for our assumption that “T = TF” in Corollary 3.7 — that is
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to say, when T = TM, one is obliged to apply Proposition 3.2, (v), a result whose
proof requires one to invoke the mono-anabelian theory of §1.

Remark 3.7.2. The “Frobenius-theoretic” point of view of Remarks 3.6.2, 3.6.5,
3.6.6 motivates the following observation:

The situation under consideration in Corollaries 3.6, 3.7 is structurally
reminiscent of the situation encountered in the p-adic crystalline theory,
for instance, when one considers the MF∇-objects of [Falt].

That is to say, the core E plays the role of the “absolute constants”, given, for
instance, in the p-adic theory by [absolutely] unramified extensions of Zp. The
isomorphism

θbi : prbi1
∼→ prbi2

[cf. Corollary 3.7, (ii)] between the two projection functors prbi1 , pr
bi
2 : X ×EX → X

is formally reminiscent of the notion of a(n) [integrable] connection in the crystalline
theory. The diagonal functor

δX : X → X ×E X

[cf. Corollary 3.7, (ii)] is formally reminiscent of the diagonal embedding into the
divided power envelope of the product of a scheme with itself in the crystalline
theory. Moreover, since, in the crystalline theory, this divided power envelope may
itself be regarded as a crystal, the [various divided powers of the ideal defining the]
diagonal embedding may then be regarded as a sort of Hodge filtration on this crys-
tal. That is to say, the telecore structure of Corollary 3.7, (ii), may be regarded as
corresponding to the Hodge filtration, or, for instance, in the context of the theory
of indigenous bundles [cf., e.g., [Mzk1], [Mzk4]], to the Hodge section. Thus, from
this point of view, the second incompatibility of assertion (iv) of Corollaries 3.6,
3.7, is reminiscent of the fact that [in general] the Frobenius action on the crystal
underlying an MF∇-object fails to preserve the Hodge filtration. For instance, in
the case of indigenous bundles, this failure to preserve the Hodge section may be
regarded as a consequence of the isomorphicity of the Kodaira-Spencer morphism
associated to the Hodge section. On the other hand, the log-Frobenius-compatibility
of the mono-anabelian models discussed in Corollary 3.6 may be regarded as corre-
sponding to canonical Frobenius actions on the crystals constituted by the divided
power envelopes discussed above — cf. the uniformizing MF∇-objects constructed
in [Mzk1], [Mzk4]. Moreover, the compatibility of the coricity of E , Anab with the
telecore and contact structures of Corollary 3.6, (ii), on the one hand, and the “log-
Frobenius observable” Slog of Corollary 3.6, (iii), on the other hand, is reminiscent
of the construction of the Galois representation associated to an MF∇-object by
considering the submodule that lies in the 0-th step of the Hodge filtration and,
moreover, is fixed by the action of Frobenius [cf. Remark 3.7.3, (ii), below]. Thus,
in summary, we have the following “dictionary”:

the coricity of E ←→ absolutely unramified constants

bi-anabelian isomorphism of projection functors ←→ integrable connections

diagonal functor δX telecore str. ←→ Hodge filtration/section
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bi-anabelian log-incompatibility ←→ Kodaira-Spencer isomorphism

“forgetful” functor φAn telecore str. ←→ underlying vector bundle of MF∇-object

mono-anabelian log-compatibility ←→ [positive slope!] uniformizing MF∇-objects

[where “str.” stands for “structure”]. This analogy with MF∇-objects will be
developed further in §5 below.

Remark 3.7.3. The significance of Corollary 3.7 in the context of our discussion
of the mono-anabelian versus the bi-anabelian approach to anabelian geometry [cf.
Remark 1.9.8] may be understood as follows.

(i) We begin by considering the conditions that we wish to impose on the
framework in which we are to work. First of all, we wish to have some sort of
fixed reference model of “X”. The fact that this model is to be fixed throughout
the discussion then translates into the requirement that this copy of X be a core,
relative to the various “operations” performed during the discussion. On the other
hand, one does not wish for this model to remain “completely unrelated to the
operations of interest”, but rather that it may be related, or compared, to the various
copies of this model that appear as one executes the operations of interest. In our
situation, we wish to be able to relate the “fixed reference model” to the copies
of this model — i.e., “log-subject copies” — that are subject to the log-Frobenius
operation [i.e., functor — cf. Remark 3.6.7]. Moreover, since the log-Frobenius
functor is isomorphic to the identity functor [cf. Proposition 3.2, (v)], hence may
only be “properly understood” in the context of the natural transformations “ι×”
and “ιlog”, we wish for everything that we do to be compatible with the operation
of “making an observation” via these natural transformations. Thus, in summary,
the main conditions that we wish to impose on the framework in which we are to
work are the following:

(a) coricity of the model;
(b) comparability of the model to log-subject copies of the model;
(c) consistent observability of the various operations executed [especially

log].

In the context of the various assertions of Corollaries 3.6, 3.7, these three aspects
correspond as follows:

(a) ←→ the coricity of (i), the “coricity portion” of the telecore structure of (ii),

(b) ←→ the telecore and contact structures/families of homotopies of (ii),

(c) ←→ the “log-observable” of (iii).

[Here, we refer to the content of Definition 3.5, (iv), (b), as the “coricity portion”
of a telecore structure.] In the case of Corollary 3.7, the “fixed reference model” is
realized by applying a “category-theoretic base-change” (−) ×E X , as in Corollary
3.7, i.e., the copy of “X” used to effect this base-change serves as the “fixed reference
model”; in the case of Corollary 3.6, the “fixed reference model” is given by “Anab”
[i.e., especially, the second piece of parenthesized data “(−,−)” in the definition of
Anab — cf. Definition 3.1, (vi)]. Also, we observe that the second incompatibility of
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assertion (iv) of Corollaries 3.6, 3.7 asserts, in effect, that neither of the approaches
of these two corollaries succeeds in simultaneously realizing conditions (a), (b), (c),
in the strict sense.

(ii) Let us take a closer look at the mono-anabelian approach of Corollary
3.6 from the point of view of the discussion of (i). From the point of view of
“operations performed”, this approach may be summarized as follows: One starts
with “Π”, applies the mono-anabelian algorithms of Corollary 1.10 to obtain an
object of Anab, then forgets the “group-theoretic origins” of such objects to obtain
an object of X [cf. the telecore structure of Corollary 3.6, (ii)], which is subject to the
action of log; this action of log obliterates the ring structure [indeed, it obliterates
both the additive and multiplicative structures!] of the arithmetic data involved,
hence leaving behind, as an invariant of log, only the original “Π”, to which one
may again apply the mono-anabelian algorithms of Corollary 1.10.

Π �

⎛⎜⎜⎝
Π

�

k
×
An

⎞⎟⎟⎠ �

⎛⎜⎜⎝
Π

�

k
×
� � log

⎞⎟⎟⎠ � Π �

⎛⎜⎜⎝
Π

�

k
×
An

⎞⎟⎟⎠
The point of the mono-anabelian approach is that although log obliterates the ring
structures involved [cf. the second incompatibility of Corollary 3.6, (iv)], E — i.e.,
“Π” — remains constant [up to isomorphism] throughout the application of the
various operations; this implies that the “purely group-theoretic constructions” of
Corollary 1.10 — i.e., Anab, κAn — also remain constant throughout the application
of the various operations. In particular, in the above diagram, despite the fact

that log obliterates the ring structure of “k
×
�”, the operations executed induce an

isomorphism between all the “Π’s” that appear, hence an isomorphism between the

initial and final “(Π � k
×
An)’s”. At a more technical level, this state of affairs may

be witnessed in the fact that although [cf. the proof of the second incompatibility
of Corollary 3.6, (iv)] there exist incompatible composites of homotopies involving
the families of homotopies that constitute the telecore, contact, and observable
structures involved, these composites become compatible as soon as one augments
the various paths involved with a path back down to the core vertex “Anab”. At a
more philosophical level:

This state of affairs, in which the application of log does not immediately

yield an isomorphism of “k
×
’s”, but does after “pealing off the operation

of forgetting the group-theoretic construction of k
×
An”, is reminiscent of the

situation discussed in Remark 3.6.6, (ii), concerning

“Frobenius � pn· (an isomorphism)”

[i.e., where Frobenius induces an isomorphism after “pealing off” an ap-
propriate power of p].

(iii) By contrast, the bi-anabelian approach of Corollary 3.7 may be understood
in the context of the present discussion as follows: One starts with an arbitrarily
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declared “model” copy “Π � k
×
model” of X , then forgets the fact that this copy was

arbitrarily declared a model [cf. the telecore structure of Corollary 3.7, (ii)]; this

yields a copy “Π � k
×
�” of X on which log acts in a fashion that obliterates the ring

structure of the arithmetic data involved, hence leaving behind, as an invariant of
log, only the original “Π”.⎛⎜⎜⎝

Π

�

k
×
model

⎞⎟⎟⎠ �

⎛⎜⎜⎝
Π

�

k
×
� � log

⎞⎟⎟⎠ � Π

Thus, unlike the case with the mono-anabelian approach, if one tries to work with

another model “Π � k
×
model” after applying log, then the “k

×
model” portion of this

new model cannot be related to the “k
×
model” portion of the original model in a con-

sistent fashion — i.e., such a relation is obstructed by log, which obliterates the ring

structure of k
×
model. Moreover, unlike the case with the mono-anabelian approach,

there is “no escape route” in the bi-anabelian approach [i.e., which requires the
use of models] from this situation given by taking a path back down to some core
vertex [i.e., such as “Anab”]. Relative to the analogy with usual Frobenius actions
[cf. Remark 3.6.6, (ii)], this situation is reminiscent of the Frobenius action on the
ideal defining the diagonal of a divided power envelope

I ⊆ O
S

PD

× S

[where S is, say, smooth over Fp] — i.e., Frobenius simply maps I to 0 in a fashion
that does not allow one to “recover, in an isomorphic fashion, by pealing off a power
of p”. [Indeed, the data necessary to “peal off a power of p” consists, in essence, of
a Frobenius lifting — which is, in essence, equivalent to the datum of a uniformizing
MF∇-object — cf. Remark 3.7.2; the theory of [Mzk1], [Mzk4].] In particular:

Although it is difficult to give a completely rigorous formulation of the

question “bi-anabelian
?

=⇒ mono-anabelian” raised in Remark 1.9.8, the
state of affairs discussed above strongly suggests a negative answer to this
question.

(iv) The following questions constitute a useful guide to understanding better
the gap that lies between the “success of the mono-anabelian approach” and the
“failure of the bi-anabelian approach”, as documented in (i), (ii), (iii):

(a) In what capacity — i.e., as what type of mathematical object [cf. Re-
mark 3.6.7] — does one transport — i.e., “effect the coricity of” [cf. con-

dition (a) of (i)] — the fixed reference model of “k
×
” down to “future

log-generations” [i.e., smaller elements of L]?

(b) On precisely what type of data [cf. Remark 3.6.7] does the comparison
[cf. condition (b) of (i)] via telecore/contact structures depend?

That is to say, in the mono-anabelian approach, the answer to both questions is
given by E [i.e., “Π”], Anab; by contrast, in the bi-anabelian approach, the answer
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to (b) necessarily requires the inclusion of the “model k
×
model” — a requirement that

is incompatible with the coricity required by (a) [i.e., since log obliterates the ring

structure of k
×
model].

(Galois [core] )

� �

(Galois [of model] )

(
Galois + log-subject

arithmetic data

)

Fig. 1: Mono-anabelian comparison only requires “Galois input data”.

(Galois [core] )

� �(
Galois + model

arithmetic data

)
. . .

?
∼→ . . .

(
Galois + log-subject

arithmetic data

)

Fig. 2: Bi-anabelian comparison requires “arithmetic input data”.

One way to understand this state of affairs is as follows. If one attempts to construct
a “bi-anabelian version of Anab”, then the requirement of coricity means that the

“model k
×
model” employed in the bi-anabelian reconstruction algorithm of such a

“bi-anabelian version of Anab” must be compatible with the various isomorphisms

k
×
model

∼→ k
×
� of Remark 3.6.1, (i) — where we recall that the various distinct

k
×
�’s are related to one another by log — i.e., compatible with the “building”, or

“edifice”, of k
×
�’s constituted by these isomorphisms together with the diagram

of Remark 3.6.1, (i). That is to say, in order for the required coricity to hold,
this bi-anabelian reconstruction algorithm must be such that it only depends on

the ring structure of k
×
model “up to log” — i.e., the algorithm must be immune to

the confusion [arising from log] of the additive and multiplicative structures that
constitute this ring structure. On the other hand, the bi-anabelian approach to
reconstruction clearly does not satisfy this property [i.e., it requires that the ring

structure of k
×
model be left intact].

Remark 3.7.4. In the context of the issue of distinguishing between the mono-
anabelian and bi-anabelian approaches to anabelian geometry [cf. Remark 3.7.3],
one question that is often posed is the following:

Why can’t one somehow sneak a “fixed refence model” into a “mono-
anabelian reconstruction algorithm” by finding, for instance,

some copy of Q or Qp

inside the Galois group “Π” and then building up some copy of the hyper-
bolic orbicurve under consideration over this base field [i.e., this copy of Q,



94 SHINICHI MOCHIZUKI

Qp], which one then takes as one’s “model”, thus allowing one to “reduce”
mono-anabelian problems to bi-anabelian ones [cf. Remark 1.9.8]?

One important observation, relative to this question, is that although it is not so
difficult to “construct” such copies of Q or Qp from Π, it is substantially more
difficult to

construct copies of the algebraic closures of Q or Qp in such a way that
the resulting absolute Galois groups are isomorphic to the appropriate
quotient of the given Galois group “Π” in a functorial fashion [cf. Remark
3.7.5 below].

Moreover, once one constructs, for instance, a universal pro-finite étale covering
of an appropriate hyperbolic orbicurve on which Π acts [in a “natural”, functorial
fashion], one must specify [cf. question (a) of Remark 3.7.3, (iv)] in what capacity
— i.e., as what type of mathematical object — one transports [i.e., “effects the
coricity of”] this pro-hyperbolic orbicurve model down to “future log-generations”.
Then if one only takes a naive approach to these issues, one is ultimately led to the
arbitrary introduction of “models” that fail to be immune to the application of the
log-Frobenius functor — that is to say, one finds oneself, in effect, in the situation of
the “bi-anabelian approach” discussed in Remark 3.7.3. Thus, the above discussion
may be summarized in flowchart form, as follows:

construction of model [universal pro-covering] schemes without essential use of Π

⇓

natural functorial action of Π on model scheme is trivial

⇓

must supplement model scheme with Π
∼→ Gal(model scheme)

⇓

essentially equivalent situation to “bi-anabelian approach”.

Put another way, if one tries to sneak a “fixed refence model” that may be con-
structed without essential use of “Π” into a “mono-anabelian reconstruction algo-
rithm”, then one finds oneself confronted with the following two mutually exclusive
choices concerning the type of mathematical object [cf. question (a) of Remark
3.7.3, (iv)] that one is to assign to this model:

(∗) the model arises from “Π” =⇒ “functorially trivial model”;
(∗∗) the model does not arise from “Π” =⇒ “bi-anabelian approach”.

In particular, Figures 1 and 2 of Remark 3.7.3, (iv), are not [at least in an “a priori
sense”] “essentially equivalent”.

Remark 3.7.5.

(i) From the point of view of “constructing models of the base field from Π”
[cf. the discussion of Remark 3.7.4], one natural approach to the issue of finding
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“Galois-compatible models” is to work with Kummer classes of scheme-theoretic
functions, since Kummer classes are tautologically compatible with Galois actions.
[Indeed, the use of Kummer classes is one important aspect of the theory of §1.]
Moreover, in addition to being “tautologically Galois-compatible”, Kummer classes
also have the virtue of fitting into a container

H(Π)
def
= H1(Π,μ

Ẑ
(Π))

[cf. Corollary 1.10, (d), where we take “ΠX” to be Π] which inherits the coricity
of Π [cf. question (a) of Remark 3.7.3, (iv)] in a very natural, tautological fashion.
Thus, once one characterizes, in a “group-theoretic” fashion, the “Kummer subset”
of this containerH(Π) [i.e., the subset constituted by the Kummer classes that arise
from scheme-theoretic functions], it remains to reconstruct the additive structure
on [the union with {0} of] the set of Kummer classes [cf. the theory of §1]. If one
takes the point of view of the question posed in Remark 3.7.4, then it is tempting
to try to use “models” solely as a means to reconstruct this additive structure.

This approach, which combines the “purely group-theoretic” [i.e., “mono-
anabelian”] container H(Π) with the indirect use of “models” to recon-
struct the additive structure [or the Kummer subset], may be thought of
as a sort of intermediate alternative between the “mono-anabelian” and
“bi-anabelian” approaches discussed so far; in the discussion to follow,
we shall refer to this sort of intermediate approach as “pseudo-mono-
anabelian”.

With regard to implementing this pseudo-mono-anabelian approach, we observe
that the “automorphism version of the Grothendieck Conjecture” [i.e., the functo-
riality of the algorithms of Corollary 1.10, applied to automorphisms] allows one
to conclude that the additive structure “pulled back from a model scheme via the
Kummer map” is rigid [i.e., remains unaffected by automorphisms of Π]. On the
other hand, the “isomorphism version of the Grothendieck Conjecture” [i.e., the
functoriality of the algorithms of Corollary 1.10, applied to isomorphisms — cf.
the isomorphism θbi of Corollary 3.7, (ii)] allows one to conclude that this additive
structure is independent of the choice of model.

(ii) The pseudo-mono-anabelian approach gives rise to a theory that satisfies
many of the useful properties satisfied by the mono-anabelian theory. Thus, at first
glance, it is tempting to consider simply abandoning the mono-anabelian approach,
in favor of the pseudo-mono-anabelian approach. Closer inspection reveals, how-
ever, that the situation is not so simple. Indeed, relative to the coricity requirement
of Remark 3.7.3, (i), (a), there is no problem with allowing the “hidden models” on
which the pseudo-mono-anabelian approach depends in an essential way to remain
hidden. On the other hand, the issue of relating [cf. Remark 3.7.3, (i), (b)] these
hidden models to log-subject copies of these models is more complicated. Here, the
central problem may be summarized as follows [cf. Remark 3.7.3, (iv), (a), (b)]:

Problem (∗type): Find a type of mathematical object that [in the context
of the framework discussed in Remark 3.7.3, (i)] serves as a common type
of mathematical object for both “coric models” and “log-subject copies”,
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thus rendering possible the comparison of “coric models” and “log-subject
copies”.

That is to say, in the mono-anabelian approach, this “common type” is furnished
by the objects that constitute E and [in light of the “group-theoreticity” of the algo-
rithms of Corollary 1.10] Anab; in the bi-anabelian approach, the “common object”
is furnished by the “copy of X that appears in the base-change (−) ×E X”. Note
that it is precisely the existence of this “common type of mathematical object” that
renders possible the definition of the telecore structure — cf., especially, the functor
δX of Corollary 3.7, (ii). In particular, we note that the definition of the diagonal
functor δX is possible precisely because of the equality of the types of mathematical
object involved in the two factors of X ×E X . On the other hand, if, in imple-
menting the pseudo-mono-anabelian approach, one tries to use, for instance, E [i.e.,
without including the “hidden model”!], then although this yields a framework in
which it is possible to work with the “mono-anabelian container H(Π)”, this does
not allow one to describe the contents [i.e., the Kummer subset with its ring struc-
ture] of this container. That is to say, if one describes these “contents” via “hidden
models”, then the data contained in the “common type” is not sufficient for the
operation of relating this description to the “conventional description of contents”
that one wishes to apply to the log-subject copies. Indeed, if the coric models and
log-subject copies only share the container H(Π), but not the description of its
contents — i.e., the description for the coric models is some “mysterious descrip-
tion involving hidden models”, while the description for the log-subject copies is the
“standard Kummer map description” — then, a priori, there is no reason that these
two descriptions should coincide. For instance, if the “mysterious description” is
not related to the “standard description” via some common description applied to
a common type of mathematical object, then, a priori, the “mysterious description”
could be [among a vast variety of possibilities] one of the following:

(1) Instead of embedding the [nonzero elements of the] base field into H(Π)
via the usual Kummer map, one could consider the embedding obtained
by composing the usual Kummer map with the automorphism induced by
some automorphism of the quotient Π� Gk [cf. the notation of Corollary
1.10, where we take “ΠX” to be Π] which is not of scheme-theoretic origin
[cf., e.g., [NSW], the Closing Remark preceding Theorem 12.2.7].

(2) Alternatively, instead of embedding the function field of the curve under
consideration into H(Π) via the usual Kummer map, one could consider
the embedding obtained by composing the usual Kummer map with the

automorphism of H(Π) given by muliplication by some element ∈ Ẑ×.

Thus, in order to ensure that such pathologies do not arise, it appears that there
is little choice but to include the ring/scheme-theoretic models in the common type
that one adopts as a “solution to (∗type)”, so that one may apply the “standard
Kummer map description” in a simultaneous, consistent fashion to both the coric
data and the log-subject data. But [since these models are “functorially obstructed
from being subsumed into Π”— cf. Remark 3.7.4] the inclusion of such ring/scheme-
theoretic models amounts precisely to the “bi-anabelian approach” discussed in
Remark 3.7.3 [cf., especially, Figure 2 of Remark 3.7.3, (iv)].
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(iii) From a “physical” point of view, it is natural to think of data that sat-
isfies some sort of coricity — such as the étale fundamental group Π — as being

“massless”, like light. By comparison, the arithmetic data “k
×
” — on which the

log-Frobenius functor acts non-isomorphically — may be thought of as being like
matter which has “weight”. This dichotomy is reminiscent of the dichotomy dis-
cussed in the Introduction to [Mzk16] between “étale-like” and “Frobenius-like”
structures. Thus, in summary:

coricity, “étale-like” structures ←→ massless, like light

“Frobenius-like” structures ←→ matter of positive mass.

From this point of view, the discussion of (i), (ii) may be summarized as follows:
Even if the container H(Π) is massless, it one tries to use it to carry “cargo of
substantial weight”, then the resulting package [of container plus cargo] is no longer
massless. On the other hand, the very existence of mono-anabelian algorithms as
discussed in §1, §2 corresponds, in this analogy, to the “conversion of light into
matter” [cf. the point of view of Remark 1.9.7]!

(iv) Relative to the dichotomy discussed in the Introduction to [Mzk16] between
“étale-like” and “Frobenius-like” structures, the problem observed in the present
paper with the bi-anabelian approach may be thought of as an example of the
phenomenon of the non-applicability of Galois [i.e., “étale-like”] descent with respect
to “Frobenius-like” morphisms [i.e., the existence of descent data for a “Frobenius-
like” morphism which cannot be descended to an object on the codomain of the
morphism]. In classical arithmetic geometry, this phenomenon may be seen, for
instance, in the non-descendability of Galois-invariant coherent ideals with respect
to morphisms such as Spec(k[t]) → Spec(k[tn]) [where n ≥ 2 is an integer; k is a
field], or [cf. the discussion of “X ×E X” in Remark 3.7.2] the difference between
an integrable connection and an integrable connection equipped with a compatible
Frobenius action [e.g., of the sort that arises from an MF∇-object].

Remark 3.7.6. With regard to the pseudo-mono-anabelian approach discussed
in Remark 3.7.5, one may make the following further observations.

(i) In order to carry out the pseudo-mono-anabelian approach [or, a fortiori,
the mono-anabelian approach], it is necessary to use the full

profinite étale fundamental group

of a hyperbolic orbicurve, say, of strictly Belyi type. That is to say, if, for instance,
one attempts to use the geometrically pro-Σ fundamental group of a hyperbolic
curve [i.e., where Σ is a set of primes which is not equal to the set of all primes],
then the crucial injectivity of the Kummer map [cf. Proposition 1.6, (i)] fails to
hold. In particular, this failure of injectivity means that one cannot work with the
crucial additive structure on [the union with {0} of] the image of the Kummer map.

(ii) In a similar vein, if one attempts to work, for instance, with the absolute
Galois group of a number field — i.e., in the absence of any geometric fundamental
group of a hyperbolic orbicurve over the number field — then, in order to work
with Kummer classes, one must contend with the nontrivial issue of finding an

appropriate [profinite] cyclotome [i.e., copy of “Ẑ(1)”] to replace the “curve-based
cyclotome MX” of Proposition 1.4, (ii) [cf. also Remark 1.9.5].
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(iii) Next, we observe that if one attempts to construct “models of the base
field” via the theory of “characters of qLT-type” as in [Mzk20], §3 [cf. also the
theory of [Mzk2], §4], then although [just as was the case with Kummer classes]
such “qLT-models of the base field” are tautologically Galois-compatible and admit
a coricity inherited from the coricity of Π, [unlike the case with Kummer classes]
the essential use of p-adic Hodge theory implies that the resulting “construction of
the base field” [cf. the discussion of Remark 1.9.5] is

incompatible with the operation of passing from global [e.g., number] fields
to local fields

[i.e., does not admit an analogue of the first portion of Corollary 1.10, (h)], hence
also incompatible with the operation of relating the resulting “constructions of the
base field”at different localizations of a number field. Such localization [i.e., in the
terminology of §5, “panalocalization”] properties will play a key role in the theory
of §5 below.

(iv) In the context of (iii), it is interesting to note that geometrically pro-Σ
fundamental groups as in (i) also fail to be compatible with localization. Indeed,
even if some sort of pro-Σ analogue of the theory of §1 is, in the future, obtained
for the primes lying over prime numbers ∈ Σ, such an analogue is impossible at the
primes lying over prime numbers �∈ Σ [since, as is easily verified, at such primes, the
automorphisms of Gk [notation of Corollary 1.10] that are not of scheme-theoretic
origin may extend, in general, to automorphisms of the full arithmetic [geometri-
cally pro-Σ] fundamental group].

(v) At the time of writing, it appears to be rather difficult to give a mono-
anabelian “group-theoretic” algorithm as in Theorem 1.9 in the case of num-
ber fields by somehow “gluing together” [mono-anabelian, “group-theoretic”] al-
gorithms [cf. the approach via p-adic Hodge theory discussed in (iii)] applied at
nonarchimedean completions of the number field. That is to say, if one tries, for
instance, to construct a number field F as a subset of the product of copies of F
constructed at various nonarchimedean completions of F , then it appears to be
a highly nontrivial issue to reconstruct the correspondences between the various
“local copies” of F . Indeed, if one attempts to work with abelianizations of local
and global Galois groups and apply class field theory [i.e., in the fashion of [Uchi],
in the case of function fields], then one may only recover the “global copy” of F×

embedded in the idèles up to an indeterminacy that involves, in particular, various
“solenoids” [cf., e.g., [ArTt], Chapter Nine, Theorem 3]. On the other hand, if one
attempts to work with local and global Kummer classes, then one must contend
with the phenomenon that it is not clear how to lift local Kummer classes to global
Kummer classes; that is to say, the indeterminacies that occur for such liftings
are of a nature roughly reminiscent of the global Kummer classes whose vanishing
is implied by the so-called Leopoldt Conjecture [i.e., in its formulation concerning
p-adic localizations of units of a number field], which is unknown in general at the
time of writing.

Remark 3.7.7.

(i) One way to interpret the fact that the log-Frobenius operation log is not a
ring homomorphism [cf. the discussion of Remarks 3.7.3, 3.7.4, 3.7.5] is to think of
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“log” as constituting a sort of “wall” that separates the two “distinct scheme
theories” that occur before and after its application. The étale fundamental groups
that arise in these “distinct scheme theories” thus necessarily correspond to dis-

tinct, unrelated basepoints. Thus, if, for i = 1, 2, Gi
out
� Δi is a copy of the

outer Galois action on the geometric fundamental group “Gk
out
� ΔX” of Theo-

rem 1.9 that arises in one of these two “distinct scheme theories” separated by the
“log-wall”, then although this log-wall cannot be penetrated by ring structures [i.e.,
by “scheme theory”], it can be penetrated by the abstract profinite group structure
of the Gi — cf. the Galois-equivariance of the map “logk” of Definition 3.1, (i).
Moreover, since the “abstract outer action pair” [i.e., an abstract profinite group

equipped with an outer action by another abstract profinite group] G2
out
� Δ2 is

clearly isomorphic to the composite abstract outer action pair G1
∼→ G2

out
� Δ2 [as

well as, by definition, the abstract outer action pair G1
out
� Δ1 ] — i.e.,(

G1
out
� Δ1

)
∼→

(
G1

∼→ G2
out
� Δ2

)
∼→

(
G2

out
� Δ2

)
— we thus conclude that the log-wall can be penetrated by the isomorphism class

of the abstract outer action pair Gi
out
� Δi.

G1
∼→

out
�

Δ1

log

log

log

∼→ G2

out
�

Δ2

(ii) Once one has made the observations made in (i), it is natural to proceed to
consider what sort of “additional data” may be shared on both sides of the log-wall.

Typically, “purely group-theoretic structures” constructed from “Gi
out
� Δi” serve

as natural containers for such additional data [cf., e.g., the discussion of Remark
3.7.5]. Thus, the additional data may be thought as some sort of a choice [cf. the
dotted arrows in the diagram below] among various possibilities [cf. the “©’s” in
the diagram below] housed in such a group-theoretic container.

		
©

©

©

©

©

log

log

log

log

©

©

©

© �		

©

From this point of view:
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The fundamental difference that distinguishes the pseudo-mono-anabelian
approach discussed in Remark 3.7.5 from the mono-anabelian approach is
the issue of whether this “choice” is specified in terms that depend on
the scheme theory that gives rise to the choice [i.e., the pseudo-mono-
anabelian case] or not [i.e., the mono-anabelian case, in which the choice
may be specified in language that depends only on the abstract group

structure of, say, “Gi
out
� Δi”].

In fact, the discussion in Remark 3.7.5, (ii) [cf. also Figs. 1, 2 of Remark 3.7.3,
(iv)], may be depicted via a similar illustration to the above illustration of the “log-
wall” in which the “log-wall” is replaced by a “model-wall” separating “reference
models” from “log-subject copies” of such models. In Remark 3.7.5, (ii), special
attention was given to the situation in which the “additional data” consists of
the “additive structure” on the image of the Kummer map. When the Δi’s of (i)
are given by the birational geometric fundamental groups “ΔηX

” of Theorem 1.11,
another example of such “additional data” in which the specification of the “choice”
depends on “scheme theory” [and hence cannot, at least a priori, be shared on both
sides of the log-wall] is given by the specification of some finite collection of closed
points corresponding to the cusps of some affine hyperbolic curve that lies in some
given scheme theory [cf. Remark 1.11.5].

(iii) With regard to the issue of “specifying some finite collection of closed
points corresponding to the cusps of an affine hyperbolic curve” discussed in the
final portion of (ii), we note that in certain special cases, a “purely group-theoretic”
specification is in fact possible. For instance, if, in the notation of Theorem 1.11,
X is a hyperelliptic curve whose unique nontrivial k-automorphism is given by its
hyperelliptic involution, then the set of points fixed by the hyperelliptic involution
constitutes such an example in which a “purely group-theoretic” specification can
be made by considering the conjugacy classes of inertia groups “Ix” fixed by the
unique nontrivial outer automorphism of ΔηX that commutes with the given outer
action of Gk on ΔηX

.

(iv) The “log-wall” discussed in (i) is reminiscent of the constant indeterminacy
arising from morphisms of Frobenius type [i.e., which thus constitute a “wall” that
cannot be penetrated by constant rigidity] in the theory of the étale theta function
[cf. [Mzk18], Corollary 5.12 and the following remarks], as well as of the subtleties
that arise from the Frobenius morphism in the context of anabelian geometry in
positive characteristic [cf., e.g., [Stix]].

Remark 3.7.8.

Many of the arguments in the various remarks following Corollaries 3.6, 3.7
are not formulated entirely rigorously. Thus, in the future, it is quite possible that
certain of the obstacles pointed out in these remarks can be overcome. Nevertheless,
we presented these remarks in the hope that they could aid in elucidating the
content of and motivation [from the point of view of the author] behind the various
rigorously formulated results of the present paper.
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Section 4: Archimedean Log-Frobenius Compatibility

In the present §4, we present an archimedean version [cf. Corollary 4.5] of the
theory of §3, i.e., we interpret the theory of §2 in terms of a certain compatibility
with the “log-Frobenius functor”.

Definition 4.1.

(i) Let k be a CAF [cf. §0]. Write Ok ⊆ k for the subset of elements of absolute
value ≤ 1, O×

k ⊆ Ok for the subgroup of units [i.e., elements of absolute value equal
to 1 — cf. [Mzk17], Definition 3.1, (ii)], O�

k ⊆ Ok for the multiplicative monoid of

nonzero elements, and k∼ � k×
def
= k\{0} for the universal covering of k×. Thus,

k∼ � k× is uniquely determined, up to unique isomorphism, as a pointed topological
space and, moreover, [as is well-known] may be constructed explicitly by considering
homotopy classes of paths on k×; moreover, the pointed topological space k∼ admits
a natural topological group structure, determined by the topological group structure
of k×. Note that the “inverse” of the exponential map k → k× [given by the usual
power series] determines an isomorphism of topological groups

logk : k∼
∼→ k

— which we shall refer to as the logarithm associated to k. Next, let

Xell

be an elliptically admissible Aut-holomorphic orbispace [cf. Definition 2.1, (i); Re-
mark 2.1.1]. We shall refer to as a [k-]Kummer structure on Xell any isomorphism
of topological fields

κk : k
∼→ AXell

def
= AXell

⋃
{0}

— where we write AXell
for the “Ap” of Corollary 2.7, (e) [equipped with various

topological and algebraic structures], which may be identified [hence considered as

an object that is independent of “p”] via the various isomorphisms “Ap
∼→ Ap′”

of Corollary 2.7, (e), together with the functoriality of the algorithms of Corollary
2.7. Note that k, k×, k∼, and AXell

are equipped with natural Aut-holomorphic
structures, with respect to which κk determines co-holomorphicizations between k
and AXell

, as well as between k∼ and AXell
; moreover, these co-holomorphicizations

are compatible with logk. Next, let

T ∈ {TF,TCG,TLG,TM,TH,TH�}

— where TF, TCG, TLG, TM as in Definition 3.1, (i), and we write

TH

for the category of connected Aut-holomorphic orbispaces and morphisms of Aut-
holomorphic orbispaces [cf. Remark 2.1.1], and

TH�
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for the category of connected Aut-holomorphic groups [i.e., Aut-holomorphic spaces
equipped with a topological group structure such that both the Aut-holomorphic
and topological group structures arise from a single connected complex Lie group
structure] and homomorphisms of Aut-holomorphic groups. If T is equal to TF

(respectively, TCG; TLG; TM; TH; TH�), then let Mk ∈ Ob(T) be the object
determined by k (respectively, the object determined by O×

k ; the object deter-
mined by k×; the object determined by O�

k ; any object of TH equipped with a

co-holomorphicization κMk
: Mk → AXell

; any object of TH� equipped with an
Aut-holomorphic homomorphism κMk

: Mk → AXell
(⊆ AXell

) [relative to the mul-
tiplicative structure of AXell

]); if T �= TH,TH� and κk is a k-Kummer structure on
Xell, then write κMk

: Mk → AXell
for the restriction of κk to Mk ⊆ k. We shall

refer to as a model Aut-holomorphic T-pair any collection of data (a), (b), (c) of
the following form:

(a) the elliptically admissible Aut-holomorphic orbispace Xell,
(b) the object Mk ∈ Ob(T),
(c) the datum κMk

:Mk → AXell
.

Also, we shall refer to the datum κMk
of (c) as the Kummer structure of the model

Aut-holomorphic T-pair; we shall often use the abbreviated notation (Xell
κ
� Mk)

for this collection of data (a), (b), (c).

(ii) We shall refer to any collection of data (X
κ
�M) consisting of an elliptically

admissible Aut-holomorphic orbispace X, an object M ∈ Ob(T), and a datum

κM : M → AX, which we shall refer to as the Kummer structure of (X
κ
� M),

as an Aut-holomorphic T-pair if the following conditions are satisfied: (a) κM is
a continuous map between the underlying topological spaces whenever T �= TH;
(b) κM is a collection of continuous maps from open subsets of the underlying
topological space ofM to the underlying topological space of AX whenever T = TH;

(c) for some model Aut-holomorphic T-pair (Xell
κ
� Mk) [where the notation is as

in (i)], there exist an isomorphism Xell
∼→ X of objects of TH and an isomorphism

Mk
∼→M of objects of T that are compatible with the respective Kummer structures

κMk
: Mk → AXell

, κM : M → AX. In this situation, we shall refer to X as the
structure-orbispace and to M as the arithmetic data of the Aut-holomorphic T-pair

(X
κ
� M); if, in this situation, the structure-orbispace X arises from a hyperbolic

orbicurve which is of strictly Belyi type [cf. Remark 2.8.3], then we shall refer to

the Aut-holomorphic T-pair (X
κ
� M) as being of strictly Belyi type. A morphism

of Aut-holomorphic T-pairs

φ : (X1
κ
� M1)→ (X2

κ
� M2)

consists of a morphism of objects φM :M1 →M2 of T, together with a compatible
[relative to the respective Kummer structures] finite étale morphism φX : X1 → X2

of TH; if, in this situation, φM (respectively, φX) is an isomorphism, then we shall
refer to φ as a T-isomorphism (respectively, structure-isomorphism).

(iii) Write

CholT
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for the category whose objects are the Aut-holomorphic T-pairs and whose mor-
phisms are the morphisms of Aut-holomorphic T-pairs. Also, we shall use the same
notation, except with “C” replaced by

C (respectively, C; C)

to denote the various subcategories determined by the T-isomorphisms (respec-
tively, structure-isomorphisms; isomorphisms); we shall use the same notation, with
“hol” replaced by

hol-sB

to denote the various full subcategories determined by the objects of strictly Belyi
type. Since [in the notation of (i)] the formation of O�

k (respectively, k×; O×
k ; O×

k )
from k (respectively, O�

k ; O�
k ; k

×) is clearly intrinsically defined [i.e., depends only
on the “input data of an object of T”], we thus obtain natural functors

CholTF → CholTM; CholTM → CholTLG; CholTM → CholTCG; CholTLG → CholTCG

— i.e., by taking the multiplicative monoid of nonzero elements of absolute value
≤ 1 of the arithmetic data [i.e., nonzero elements of the closure of the set of elements
a such that an → 0 as n→∞], the associated groupification Mgp of the arithmetic
data M , the subgroup of invertible elements M× of the arithmetic data M , or the
maximal compact subgroup of the arithmetic data. Finally, we shall write

TH ⊇ EA ⊇ EAsB

for the subcategories determined, respectively, by the elliptically admissible hyper-
bolic orbicurves over CAF’s and the finite étale morphisms, and by the elliptically
admissible hyperbolic orbicurves of strictly Belyi type over CAF’s and the finite
étale morphisms; also, we shall use the same notation, except with “EA” replaced
by EA to denote the subcategory determined by the isomorphisms. Thus, for

T ∈ {TF,TCG,TLG,TM,TH,TH�}, the assignment (X
κ
� M) �→ X determines

various compatible natural functors

CholT → EA

[as well as double underlined versions of these functors].

(iv) Observe that [in the notation of (i)] the field structure of k determines,
via the inverse morphism to logk, a structure of topological field on the topological
group k∼; moreover, κk determines a k∼-Kummer structure on Xell

κk∼ : k∼
∼→ AXell

which may be uniquely characterized [i.e., among the two k∼-Kummer structures on
Xell] by the property that the co-holomorphicization determined by κk∼ coincides
with the co-holomorphicization determined by composing the composite of natural
maps k∼ � k× ↪→ k with the co-holomorphicization determined by κk. In par-
ticular, [cf. (i)] the co-holomorphicizations determined by κk, κk∼ are compatible
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with logk. Since the various operations applied here to construct this field struc-
ture on k∼ [such as, for instance, the power series used to define logk] are clearly
intrinsically defined [cf. the natural functors defined in (iii)], we thus obtain that
the construction that assigns

(the topological field k, with its Kummer structure κk)

�→ (the topological field k∼, with its Kummer structure κk∼)

determines a natural functor

logTF,TF : CholTF → CholTF

— which we shall refer to as the log-Frobenius functor. Since logk determines a
functorial isomorphism between the fields k, k∼, it follows immediately that the
functor logTF,TF is isomorphic to the identity functor [hence, in particular, is an
equivalence of categories]. By composing logTF,TF with the various natural functors
defined in (iii), we also obtain, for T ∈ {TLG,TCG,TM}, a functor

logTF,T : CholTF → CholT

— which [by abuse of terminology] we shall also refer to as “the log-Frobenius
functor”. In a similar vein, the assignments

(the topological field k, with its Kummer structure κk)

�→ (the Aut-holomorphic space k×, with its Kummer structure [κk|k× ])

(the topological field k, with its Kummer structure κk)

�→ (the Aut-holomorphic space k∼, with its Kummer structure [κk∼ ])

— where the [−]’s denote the associated co-holomorphicizations; the phrase “the
Aut-holomorphic space” should, strictly speaking, be interpreted as meaning “the
Aut-holomorphic space determined by” — determine natural functors

λ× : CholTF → CholTH ; λ∼ : CholTF → CholTH

together with diagrams of functors

CholTF

log
TF,TF−→ CholTF⏐⏐�λ∼

ιlog

�

⏐⏐�λ×

CholTH = CholTH

CholTF⏐⏐�λ×
ι×
�

⏐⏐�λ∼

CholTH

— where we write ιlog : λ× ◦ logTF,TF → λ∼ for the natural transformation in-

duced by the natural inclusion “(k∼)× ↪→ k∼” and ι× : λ∼ → λ× for the natural
transformation induced by the natural map “k∼ � k×”. Finally, we note that
the fields “k∼” obtained by the above construction [i.e., the arithmetic data of the
objects in the image of the log-Frobenius functor logTF,TF] are equipped with a nat-

ural “subquotient compactum” — i.e., the compact subset “O×
k ⊆ k×” that lies in
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the natural quotient “k∼ � k×” — which we shall refer to as the pre-log-shell of

log
arith
TF,TF((X

κ
� M))

λ
(X

κ
� M)

— where (X
κ
� M) ∈ Ob(CholTF ); λ(X

κ
� M)

is a subquotient of the arithmetic data

log
arith
TF,TF((X

κ
� M)) of the object determined by applying the log-Frobenius functor

logTF,TF to the object (X
κ
� M).

(v) Write LinHol [i.e., “linear holomorphic”] for the category whose objects are
pairs (

X,X
κ
� AX

)
consisting of an object X ∈ Ob(EA), together with the tautological Kummer map

AX
∼→ AX [i.e., given by the identity on the object of TF determined by AX] — all

of which is to be understood as constructed via the algorithms of Corollary 2.7 [cf.
Remark 3.1.2] — and whose morphisms are the morphisms induced by the [finite
étale] morphisms of EA [cf. the functorial algorithms of Corollary 2.7]. Thus, we
obtain a natural functor

EA
κLH−→ LinHol

which [as is easily verified] is an equivalence of categories, a quasi-inverse for which
is given by the natural projection functor LinHol→ EA.

Remark 4.1.1. The topological monoid “O�
k ” associated to a CAF k [cf. Defini-

tion 4.1, (i)] is essentially the data used to construct the archimedean Frobenioids
of [Mzk17], Example 3.3, (ii).

Remark 4.1.2. Although, to simplify the discussion, we have chosen to require
that the structure-orbispace always be elliptically admissible, and that the base field
always be a CAF, many aspects of the theory of the present §4 may be general-
ized to accommodate “structure-orbispaces” that are Aut-holomorphic orbispaces
that arise from more general hyperbolic orbicurves [cf., e.g., Propositions 2.5, 2.6;
Remark 2.6.1] over arbitrary archimedean fields [i.e., either CAF’s or RAF’s — cf.
§0]. Such generalizations, however, are beyond the scope of the present paper.

Proposition 4.2. (First Properties of Aut-Holomorphic Pairs)

(i) Let T ∈ {TM,TF,TLG,TCG}; (X κ
� M), (X∗ κ

� M∗) ∈ Ob(CholT ). Then
the natural functor of Definition 4.1, (iii), induces a bijection [cf. Proposition
3.2, (iv)]

IsomChol
T

((X
κ
� M), (X∗ κ

� M∗))
∼→ IsomEA(X,X

∗)

on sets of isomorphisms. In particular, the categories EA, CholT = CholT , Chol-sBT =

Chol-sBT are id-rigid.

(ii) The equivalence of categories κLH : EA
∼→ LinHol of Definition 4.1, (v)

— i.e., the functorial algorithms of Corollary 2.7 — determines a natural [1-
]factorization [cf. Proposition 3.2, (v)]

CholTF −→ CholTM

log
TM,T−→ CholT
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— where T ∈ {TF,TLG,TCG,TM}; the first arrow is the natural functor of Defini-
tion 4.1, (iii) — of the log-Frobenius functors logTF,T : CholTF → CholT of Definition
4.1, (iv). Moreover, [when T ∈ {TF,TM}] the functor logT,T is isomorphic to the
identity functor [hence, in particular, is an equivalence of categories].

Proof. The bijectivity portion of assertion (i) follows immediately from the required
compatibility of morphisms of CholT with the Kummer structures of the objects in-
volved [cf. also the functorial algorithms of Corollary 2.7]. To verify the id-rigidity
of EA, it suffices to observe that for any object X ∈ Ob(EA), which necessarily
arises from some elliptically admissible hyperbolic orbicurve X over a CAF, the
full subcategory of EA consisting of objects that map to X may, by Corollary 2.3,
(i) [cf. also [Mzk14], Lemma 1.3, (iii)], be identified with the category of finite
étale R-localizations “LocR(X)” [i.e., the subcategory of the category of finite étale
localizations “Loc(X)” of [Mzk10], §2, obtained by considering the R-linear mor-
phisms]. Thus, the id-rigidity of EA follows immediately from the slimness assertion
of Lemma 4.3 below. In light of the bijectivity portion of assertion (i), the id-rigidity

of the categories CholT = CholT , Chol-sBT = Chol-sBT follows in a similar fashion. This
completes the proof of assertion (i). Assertion (ii) follows immediately from the
definitions [and the functorial algorithms of Corollary 2.7]. ©

Remark 4.2.1. Note that, unlike the case with Proposition 3.2, (iv), the id-
rigidity portion of Proposition 4.2, (i), is [as is easily verifed] false for the “C” and
“C” versions of CholT , Chol-sBT .

The following result is well-known.

Lemma 4.3. (Slimness of Archimedean Fundamental Groups) Let
X be a hyperbolic orbicurve over an archimedean field kX . Then the étale
fundamental group ΠX of X is slim.

Proof. Let kX be an algebraic closure of kX . Thus, we have an exact sequence of
profinite groups

1→ ΔX → ΠX → G→ 1

[where ΔX
def
= π1(X ×kX

kX); G
def
= Gal(kX/kX)]. Since ΔX is slim [cf., e.g.,

[Mzk20], Proposition 2.3, (i)], it suffices to consider the case where there exists
an element σ ∈ ΠX that maps to a nontrivial element σG ∈ G ∼= Z/2Z and,
moreover, commutes with some open subgroup H ⊆ ΠX . We may assume without
loss of generality that H ⊆ ΔX , and, moreover, that H corresponds to a finite étale
covering of X ×kX

kX which is a hyperbolic curve of genus ≥ 2. In particular, by
replacing X by the finite étale covering of X determined by the open subgroup of
ΠX generated by H and σ, we may assume that σ lies in the center of ΠX , and,
moreover, that X is a hyperbolic curve of genus ≥ 2. In particular, by filling in
the cusps of X, we may assume further that X is proper. Now if l is any prime
number, then the first Chern class of, say, the canonical bundle of X determines a
generator ofH2(X×kX

kX ,Ql(1)) ∼= H2(ΔX ,Ql(1)) [where the “(1)” denotes a Tate

twist], hence an isomorphism of G-modules H2(ΔX ,Ql)
∼→ Ql(−1). In particular,
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it follows that σ acts nontrivially on H2(ΔX ,Ql), in contradiction to the fact that
σ lies in the center of ΠX . This contradiction completes the proof of Lemma 4.3.
©

Lemma 4.4. (Topological Distinguishability of Additive and Multi-
plicative Structures) Let k be a CAF [cf. Definition 4.1, (i)]. Then [in the
notation of Definition 4.1, (i)] no composite of the form

k×
α−→ (k∼)× ↪→ k∼ � k×

— where the “×” of “(k∼)×” is relative to the field structure of k∼ [cf. Definition
4.1, (iv)]; α is an isomorphism of topological groups; “↪→” is the natural inclusion;
“�” is the natural map — is bijective.

Proof. Indeed, the non-injectivity of k∼ � k× implies that the composite under
consideration fails to be injective. ©

Corollary 4.5. (Aut-Holomorphic Mono-anabelian Log-Frobenius Com-
patibility) Write

X def
= CholT = CholT ; E def

= EA; N def
= CholTH

— where [in the notation of Definition 3.1] T ∈ {TM,TF}. Consider the diagram
of categories D

. . . X log−→ X log−→ X . . .

. . . id�+1 ↘
⏐⏐�id� ↙ id�−1 . . .

X⏐⏐�λ×
⏐⏐�λ∼

N⏐⏐�
E⏐⏐�κLH

LinHol⏐⏐�
E

— where we use the notation “log”, “λ×”, “λ∼” for the arrows “logT,T”, “λ×”,
“λ∼” of Definition 4.1, (iv) [cf. also Proposition 4.2, (ii)]; we employ the conven-
tions of Corollary 3.6 concerning subdiagrams of D; we write L for the countably

ordered set determined by [cf. §0] the infinite linear oriented graph �Γopp
D≤1

[so

the elements of L correspond to vertices of the first row of D] and

L† def
= L ∪ {�}
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for the ordered set obtained by appending to L a formal symbol � [which we think
of as corresponding to the unique vertex of the second row of D] such that � < �,
for all � ∈ L; id� denotes the identity functor at the vertex � ∈ L. Then:

(i) For n = 4, 5, 6, D≤n admits a natural structure of core on D≤n−1. That is
to say, loosely speaking, E, LinHol “form cores” of the functors in D.

(ii) The assignments(
X,X

κ
� AX

)
�→ (X

κ
� A�

X ), (X
κ
� AX)

[where we write “A�
” for the monoid of nonzero elements of absolute value ≤ 1 of

the CAF given by “A”] determine [i.e., for each choice of T] a natural “forgetful”
functor

LinHol
φLH−→ X

which is an equivalence of categories, a quasi-inverse for which is given by
the composite πLH : X → LinHol of the natural projection functor X → E with
κLH : E → LinHol; write ηLH : φLH ◦ πLH

∼→ idX for the tautological isomorphism
arising from the definitions [cf. Definition 4.1, (i), (ii)]. Moreover, φLH gives rise
to a telecore structure TLH on D≤4, whose underlying diagram of categories we
denote by DLH, by appending to D≤5 telecore edges

LinHol

. . . φ�+1 ↙
⏐⏐�φ� ↘ φ�−1 . . .

. . . X log−→ X log−→ X . . .

LinHol
φ�−→ X

from the core LinHol to the various copies of X in D≤2 given by copies of φLH,
which we denote by φ�, for � ∈ L†. That is to say, loosely speaking, φLH determines
a telecore structure on D≤4. Finally, for each � ∈ L†, let us write [β0

�] for the path

on �ΓDLH
of length 0 at � and [β1

�] for the path on �ΓDLH
of length ∈ {4, 5} [i.e.,

depending on whether or not � = �] that starts from �, descends [say, via λ×]
to the core vertex “LinHol”, and returns to � via the telecore edge φ�. Then the
collection of natural transformations

{η��, η
−1
��, η�, η

−1
� }�∈L,�∈L†

— where we write η�� for the identity natural transformation from the arrow φ� :
LinHol→ X to the composite arrow id� ◦ φ� : LinHol→ X and

η� : (DLH)[β1�]
∼→ (DLH)[β0�]

for the isomorphism arising from ηLH — generate a contact structure HLH on
the telecore TLH.

(iii) The natural transformations

ιlog,� : λ× ◦ id� ◦ log→ λ∼ ◦ id�+1, ι× : λ∼ → λ×
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[cf. Definition 4.1, (iv)] belong to a family of homotopies on D≤3 that determines
on D≤3 a structure of observable Slog on D≤2 and, moreover, is compatible with
the families of homotopies that constitute the core and telecore structures of (i),
(ii).

(iv) The diagram of categories D≤2 does not admit a structure of core on
D≤1 which [i.e., whose constituent family of homotopies] is compatible with [the
constituent family of homotopies of ] the observable Slog of (iii). Moreover, the
telecore structure TLH of (ii), the contact structure HLH of (ii), and the
observable Slog of (iii) are not simultaneously compatible [but cf. Remark
3.7.3, (ii)].

(v) The unique vertex � of the second row of D is a nexus of �ΓD. More-
over, D is totally �-rigid, and the natural action of Z on the infinite linear

oriented graph �ΓD≤1
extends to an action of Z on D by nexus-classes of self-

equivalences of D. Finally, the self-equivalences in these nexus-classes are com-
patible with the families of homotopies that constitute the cores and observ-
able of (i), (iii); these self-equivalences also extend naturally [cf. the technique of
extension applied in Definition 3.5, (vi)] to the diagram of categories [cf. Definition
3.5, (iv), (a)] that constitutes the telecore of (ii), in a fashion that is compatible
with both the family of homotopies that constitutes this telecore structure [cf.
Definition 3.5, (iv), (b)] and the contact structure HLH of (ii).

Proof. Assertions (i), (ii) are immediate from the definitions [and the functorial
algorithms of Corollary 2.7] — cf. also the proofs of Corollary 3.6, (i), (ii). Next,
we consider assertion (iii). If, for � ∈ L, one denotes by “k×�” the arithmetic
data of type TLG [which we may be obtained from an arithmetic data of type
T ∈ {TM,TF} via the natural functors of Definition 4.1, (iii)] of a “typical object” of
the copy of X at the vertex � of D≤1, then ι× “applied at the vertex �” corresponds
to the natural surjection k∼� � k×� , while ιlog,� corresponds to the natural inclusion

k×� ↪→ k∼�+1, where we think of k×� as being obtained from k×�+1 via the application
of log. In particular, by letting � ∈ L vary and composing these natural surjections
and inclusions, we obtain a diagram

. . . ↪→ k∼� � k×� ↪→ k∼�+1 � k×�+1 ↪→ k∼�+2 � k×�+2 ↪→ . . .

[which is compatible with the various Kummer structures — cf. Remark 4.5.1, (i),
below; the definition of CholTH in Definition 4.1, (i), (ii), (iii)]. The paths on [the
oriented graph corresponding to] this diagram may be classified into four types,
which correspond [by composing, in an alternating fashion, various pull-backs of
“ιlog,�” with various pull-backs of ι×] to homotopies on D≤3, as follows [cf. the
notational conventions of the proof of Corollary 3.6]:

(1) the path corresponding to the composite “k×� → k∼�+n”, which yields a
homotopy for pairs of paths ([λ×] ◦ [id�] ◦ [log]n ◦ [γ], [λ∼] ◦ [id�+n] ◦ [γ])

(2) the path corresponding to the composite “k×� → k×�+n”, which yields a
homotopy for pairs of paths ([λ×] ◦ [id�] ◦ [log]n ◦ [γ], [λ×] ◦ [id�+n] ◦ [γ])

(3) the path corresponding to the composite “k∼� → k∼�+n”, which yields a
homotopy for pairs of paths ([λ∼] ◦ [id�] ◦ [log]n ◦ [γ], [λ∼] ◦ [id�+n] ◦ [γ])
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(4) the path corresponding to the composite “k∼� → k×�+n−1”, which yields a

homotopy for pairs of paths ([λ∼]◦[id�]◦[log]n−1◦[γ], [λ×]◦[id�+n−1]◦[γ])
— where n ≥ 1 is an integer and [γ] is a path on D≤1; in the case of type (4), it
is convenient to include also the pair of paths ([λ∼], [λ×]), for which the natural
transformation ι× determines a homotopy. In addition, it is natural to consider the
“identity homotopies” associated to the pairs

(5) ([γ], [γ]), where [γ] is a path on D≤3 whose terminal vertex lies in the
third row of D≤3.

Thus, if we take Elog to be the set of ordered pairs of paths on �ΓD≤3
consisting

of pairs of paths of the above five types, then one verifies immediately that Elog

satisfies the conditions (a), (b), (c), (d), (e) given in §0 for a saturated set. In
particular, the various homotopies discussed above yield a family of homotopies
which determines an observableSlog, as desired. Moreover, it is immediate from the
definitions — i.e., in essence, because the various structure-orbispaces that appear
remain “undisturbed” by the various manipulations involving arithmetic data that
arise from “ιlog,�”, “ι×” — that this family of homotopies is compatible with the
families of homotopies that constitute the core and telecore structures of (i), (ii).
This completes the proof of assertion (iii).

Next, we consider assertion (iv). Suppose that D≤2 admits a structure of core
on D≤1 in a fashion that is compatible with the observable Slog of (iii). Then this
core structure determines a homotopy ζ0 for the pair of paths ([id�], [id�−1] ◦ [log])
[for � ∈ L]; thus, by composing the result ζ ′0 of applying λ

× to ζ0 with the homotopy
ζ1 associated [via Slog] to the pair of paths ([λ×] ◦ [id�−1] ◦ [log], [λ∼] ◦ [id�]) [of
type (1)] and then with the homotopy ζ2 associated [via Slog] to the pair of paths
([λ∼] ◦ [id�], [λ×] ◦ [id�]) [of type (4)], we obtain a natural transformation

ζ ′1 = ζ2 ◦ ζ1 ◦ ζ ′0 : λ× ◦ id� → λ× ◦ id�
— which, in order for the desired compatibility to hold, must coincide with the
“identity homotopy” [of type (5)]. On the other hand, by writing out explicitly the
meaning of such an equality ζ ′1 = id, we conclude that we obtain a contradiction to
Lemma 4.4. This completes the proof of the first incompatibility of assertion (iv).
The proof of the second incompatibility of assertion (iv) is entirely similar [cf. the
proof of Corollary 3.6, (iv)]. This completes the proof of assertion (iv).

Finally, the total �-rigidity portion of assertion (v) follows immediately from
Proposition 4.2, (i) [cf. also the final portion of Proposition 4.2, (ii)]; the remainder
of assertion (v) follows immediately from the definitions. ©

Remark 4.5.1.

(i) The “output” of the observable Slog of Corollary 4.5, (iii), may be summa-
rized intuitively in the following diagram [cf. Remark 3.6.1, (i)]:

. . . k×�+1 � k∼�+1 ←↩ k×� � k∼� ←↩ k×�−1 � k∼�−1 . . .

κ
�

κ
�

κ
�

κ
�

κ
�

κ
�

. . . X�+1
∼← X�+1

∼← X�
∼← X�

∼← X�−1
∼← X�−1 . . .
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— where the arrows “�” are the natural surjections [cf. ι×!]; k
×
� , for � ∈ L, is a

copy of “k×” that arises, via id�, from the vertex � of D≤1; the arrows “←↩” are the
inclusions arising from the fact that k×� is obtained by applying the log-Frobenius

functor log to k×�+1 [cf. ιlog,�!]; the “
κ
� ’s” denote the various Kummer structures

involved; the isomorphic “X�’s” correspond to the coricity of E [cf. Corollary 4.5,
(i)]. Finally, the incompatibility assertions of Corollary 4.5, (iv), may be thought of
as a statement of the non-existence of some “universal reference model”

k×model

that maps isomorphically to the various k×� ’s in a fashion that is compatible with
the various arrows “�”, “←↩” of the above diagram.

(ii) In words, the essential content of Corollary 4.5 may be understood as
follows [cf. the “intuitive diagram” of (i)]:

Although the operation represented by the log-Frobenius functor is com-
patible with the [Aut-holomorphic] structure-orbispaces, hence with the
“software” constituted by the algorithms of Corollary 2.7, it is not compat-
ible with the additive or multiplicative structures on the various arithmetic
data involved — cf. Remark 3.6.1.

That is to say, more concretely, if one starts with an elliptically admissible Aut-
holomorphic orbispace X on which [for some CAF k] k× “acts via the local linear
holomorphic structures of Corollary 2.7, (e)” [i.e., X is equipped with a Kummer

structure X
κ
� k×], then applies logk to the universal covering k∼ → k× to equip

k∼ with a field structure, with respect to which k∼ “acts” on some isomorph X′ of
X

k× � k∼ ←↩ (k∼)×

κ
�

κ
�

X
∼→ X′

[where the “×” of “(k∼)×” is taken with respect to this field structure of k∼], then
although the “actions” of k×, (k∼)× on X

∼→ X′ are not strictly compatible [i.e., the
diagram does not commute], they become “compatible” if one “loosens one’s notion
of compatibility” to the notion of being “compatible with the [Aut-]holomorphic
structure” of the various objects involved [cf. the analogy of Remark 2.7.3]. This
state of affairs may be expressed formally as a compatibility between the various
co-holomorphicizations involved [cf. the definition of CholTH in Definition 4.1, (i),
(ii), (iii)]. In summary, as should be evident from its statement, Corollary 4.5 is
intended as an archimedean analogue of Corollary 3.6. In particular, the “general
formal content” of Remarks 3.6.1, 3.6.2, 3.6.3, 3.6.5, 3.6.6, and 3.6.7 applies to the
present archimedean situation, as well.

Remark 4.5.2. By comparison to the nonarchimedean case treated in §3, certain
— but not all! — of the “arrows” that appear in the archimedean case go in the
opposite direction to the nonarchimedean case. This is somewhat reminiscent of
the “product formula” in elementary number theory, where, for instance, positive
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powers of prime numbers→ 0 at nonarchimedean primes, but→∞ at archimedean
primes. In the context of Corollary 4.5, perhaps the most important example of
this phenomenon is given by “ι×”. This leads to a somewhat different structure for
the observable Slog of Corollary 4.5, (iii) — involving “archimedean” homotopies
of arbitrarily large “length” [cf. the “non-[γ]-portion” of the pairs of paths of types
(1), (2), (3), (4) in the proof of Corollary 4.5, (iii)] — from the structure of the
observable Slog of Corollary 3.6, (iii) — which involves “nonarchimedean” paths of
bounded “length” [cf. the “non-[γ]-portion” of the pairs of paths of types (1), (2)
in the proof of Corollary 3.6, (iii)].

Remark 4.5.3.

(i) By replacing

“λ×pf” by “λ∼”,

“ι× = ι× : λ× → λ×pf” by “ι× = ι× : λ∼ → λ×”, and

“Corollary 1.10” by “Corollary 2.7”,

[and making various other suitable revisions] one obtains an essentially straightfor-
ward “Aut-holomorphic translation” of the bi-anabelian incompatibility result given
in Corollary 3.7. We leave the routine details to the reader.

(ii) The “general formal content” of Remarks 3.7.1, 3.7.2, 3.7.3, 3.7.4, 3.7.5,
3.7.7, and 3.7.8 applies to the archimedean analogue of Corollary 3.7 discussed in
(i) — cf. also the analogy of Remark 2.7.3; the discussion in Remark 2.7.4 of “fixed
reference models” in the context of the definition of the notion of a “holomorphic
structure”.

(iii) With regard to the discussion in Remark 3.7.4 of “functorially trivial mod-
els” [i.e., models that “arise from Π” without essential use of Π, hence are equipped
with trivial functorial actions of Π], we note that although “the Galois group Π”
does not appear in the present archimedean context, the “functorial detachment”
of such “functorially trivial models” means, for instance, that if one regards some
model Xmodel as “arising” from an elliptically admissible Aut-holomorphic orbis-
pace X in a “trivial fashion”, then when one applies the “elliptic cuspidalization”
portion of the algorithm of Corollary 2.7, (b), the various coverings of X involved in
this elliptic cuspidalization algorithm functorially induce trivial coverings of Xmodel,
hence do not give rise to a functorial isomorphism of the respective “base fields”
[cf. Remark 2.7.3] of X, Xmodel.

(iv) With regard to the discussion in Remark 3.7.5, one may give an archimedean
analogue of the “pathological versions of the Kummer map” given in Remark 3.7.5,
(ii), by composing the k-Kummer structure [cf. Definition 4.1, (i)] “κk : k

∼→AXell
”,

restricted, say, to k×, with the [non-additive!] automorphism of

k×
∼→ O×

k × R>0

that acts as the identity on O×
k and is given by raising to the λ-th power [for some

λ ∈ R>0] on R>0.
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Section 5: Global Log-Frobenius Compatibility

In the present §5, we globalize the theory of §3, §4. This globalization allows
one to construct canonical rigid compacta — i.e., canonical integral structures —
that enable one to consider [“pana-”]localizations of global arithmetic line bundles
[cf. Corollary 5.5] without obliterating the “volume-theoretic” information inherent
in the theory of global arithmetic degrees, and in a fashion that is compatible with
the operation of “mono-analyticization” [cf. Corollary 5.10] — i.e., the operation
of “disabling the rigidity” of one of the “two combinatorial dimensions” of a ring
[cf. Remark 5.6.1]. The resulting theory is reminiscent, in certain formal respects,
of the p-adic Teichmüller theory of [Mzk1], [Mzk4] [cf. Remark 5.10.3].

Definition 5.1.

(i) Let F be a number field. Then we shall write V(F ) for the set of [archimedean

and nonarchimedean] valuations of F , and V�(F ) def
= V(F )

⋃ {F }, where the
symbol “F ” is to be thought of as representing the global field F , or, alternatively,
the generic prime of F . If F is an algebraic closure of F , then we shall write

V(F/F )
def
= lim←−

K

V(K); V�(F/F ) def
= lim←−

K

V�(K)

[where K ranges over the finite extensions of F in F ] for the inverse limits relative
to the evident systems of morphisms. The inverse system of “K ’s” determines
a unique global element F ∈ V�(F/F ); the other elements of V�(F/F ) lie in

the image of the natural injection V(F/F ) ↪→ V�(F/F ) and will be called local;
moreover, we have a natural decomposition

V(F/F ) = V(F/F )arc
⋃

V(F/F )non

into archimedean and nonarchimedean local elements. There is a natural contin-
uous action of Gal(F/F ) on the pro-sets V(F/F ), V�(F/F ). For K ⊆ F a fi-
nite extension of F , V(K), V�(K) may be identified, respectively, with the sets
of Gal(F/K) (⊆ Gal(F/F ))-orbits V(F/F )/Gal(F/K), V�(F/F )/Gal(F/K) of
V(F/F ), V�(F/F ).

(ii) Let X be an elliptically admissible [cf. [Mzk21], Definition 3.1] hyperbolic
orbicurve over a totally imaginary number field F [so X is also of strictly Belyi
type — cf. Remark 2.8.3]. Write ΠX for the étale fundamental group of X [for

some choice of basepoint]; ΠX � GF
def
= Gal(F/F ) for the natural surjection onto

the absolute Galois group GF of F [for some choice of algebraic closure F of F ];
ΔX ⊆ ΠX for the kernel of this surjection [which may be characterized “group-
theoretically” as the maximal topologically finite generated closed normal subgroup
of ΠX — cf., e.g., [Mzk9], Lemma 1.1.4, (i)]. Write

Fmod ⊆ F

for the “field of moduli of X”, i.e., the subfield of F determined by the [open] image

of Aut(XF ) [i.e., the group of automorphisms of the scheme XF

def
= X ×F F ] in
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Aut(F ) = Gal(F/Q) (⊇ GF ); Aut(X), Aut(F ) for the respective automorphism
groups of the schemes X, Spec(F ). For simplicity, we also make the following
assumption on X:

F is Galois over Fmod; the natural homomorphism Aut(X) → Aut(F )
surjects onto Gal(F/Fmod) (⊆ Aut(F )); we have a natural isomorphism

Aut(X/F )
∼→ Aut(XF /F )

between the group of F -automorphisms of X and the group of F -automor-
phisms of XF .

This assumption on X implies that we have a natural isomorphism

Aut(X)×Gal(F/Fmod) Gal(F/Fmod)
∼→ Aut(XF )

[induced by the fiber product structure XF = X ×F F ], and hence that the natural

exact sequence 1 → Aut(XF /F ) → Aut(XF ) → Gal(F/Fmod) → 1 admits a
natural surjection onto the natural exact sequence

1→ Aut(X/F )→ Aut(X)→ Gal(F/Fmod)→ 1

[induced by the projection Aut(X) ×Gal(F/Fmod) Gal(F/Fmod) � Aut(X) to the
first factor]. Note that by the functoriality of the algorithms of Theorem 1.9, it fol-

lows that there is a natural isomorphismAut(X)
∼→Out(ΠX) that is compatible with

the natural morphisms Aut(X) � Gal(F/Fmod) ↪→ Aut(F ) ∼= Out(GF ) [cf., e.g.,
[Mzk15], Theorem 3.1], Out(ΠX) → Out(GF ); in particular, one may functorially
construct the image GFmod ↪→ Aut(GF ) as the inverse image [i.e., via the natural
projection Aut(GF )→ Out(GF )] of the image of Out(ΠX)→ Out(GF ). Next, ob-

serve that one may functorially construct “F” from ΠX as the field “k
×
NF

⋃{0} (∼=
kNF)” constructed in Theorem 1.9, (e) [cf. also Remark 1.10.1, (i)]; denote this field

constructed from ΠX by kNF(ΠX); we shall also use the notation k
×
NF(ΠX) for the

group of nonzero elements of this field. In particular, by considering [cf. Corollary
2.8] valuations on the field kNF(ΠX) [where each valuation is valued in the “copy of

R” given by completing the group “k
×
NF” with respect to the “order topology” de-

termined by the valuation], one may functorially construct “V�(F/F )”, “V(F/F )”
from ΠX ; denote the resulting pro-sets constructed in this way by V�(ΠX), V(ΠX)
and the completion of kNF(ΠX) at v ∈ V(ΠX) by kNF(ΠX , v). For v ∈ V(F/F )non,
write

ΠX,v ⊆ ΠX

for the decomposition group of v [i.e., the closed subgroup of elements of ΠX that
fix v]; for v ∈ V(F/F )arc, write

Xell,v

for the Aut-holomorphic orbispace “Xv” [associated to X at v] of Corollary 2.8,

δell,v : ΔX
∼→ π1(Xell,v)

∧

for the natural outer isomorphism of ΔX with the profinite completion [denoted by
the superscript “∧”] of the topological fundamental group of Xell,v, and

κell,v : kNF(ΠX) ↪→ AXell,v
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for the natural inclusion of fields [i.e., arising from the isomorphism of topological
fields of Corollary 2.9, (b)]. When we wish to regard Xell,v as an object constructed
from ΠX [cf. Corollary 2.8], we shall use the notation X(ΠX , v) [where we regard
v as an element of V(ΠX)arc]. Finally, we observe that Aut(ΠX) acts naturally on
all of these objects constructed from ΠX . In particular, we have a natural bijection

V�(ΠX)/Aut(ΠX)
∼→ V�(Fmod). For v ∈ V(Fmod), write dmod

v
def
= [FvF

: (Fmod)v]
for the degree of the completion of F at any vF ∈ V(F ) that divides v over the
completion (Fmod)v of Fmod at v.

(iii) Write

EA�

for the category whose objects are profinite groups isomorphic to ΠX for some X
as in (ii), and whose morphisms are open injections of profinite groups that in-
duce isomorphisms between the respective maximal topologically finitely generated
closed normal subgroups [i.e., the respective “ΔX”]. We shall refer to as a global
Galois-theater any collection of data

V� def
= (Π � V

�
, {Πv}v∈V

non , {(Xv, δv, κv)}v∈V
arc)

— where Π ∈ Ob(EA�); we shall refer to Π as the global Galois group of the Galois-
theater; we write Δ ⊆ Π for the maximal topologically finitely generated closed

normal subgroup of Π; V
�
is a pro-set equipped with a continuous action by Π that

decomposes into a disjoint union V
�
= {V }

⋃
V

non ⋃
V

arc ⊇ V
def
= V

non ⋃
V

arc
;

for v ∈ V
non

, Πv ⊆ Π is the closed subgroup of elements that fix v; for v ∈ V
arc

,
Xv is an Aut-holomorphic orbispace, δv : Δ

∼→ π1(Xv)
∧ is an outer isomorphism of

profinite groups, and κv : kNF(Π) ↪→ AXv
is an inclusion of fields — such that there

exists a(n) [unique! — cf. Remark 5.1.1 below] isomorphism of pro-sets

ψV : V�(Π)
∼→ V

�

— which we shall refer to as a reference isomorphism for V� — that satisfies the fol-
lowing conditions: (a) ψV is Π-equivariant and maps kNF(Π) �→ V , V

�(Π)non
∼→

V
non

, V�(Π)arc
∼→ V

arc
; (b) for V�(Π)arc � vell �→ v ∈ V

arc
, there exists a(n)

[unique! — cf. Remark 5.1.1 below] isomorphism ψv : X(Π, vell)
∼→ Xv of Aut-

holomorphic spaces that is compatible with δell,vell
, δv, as well as with κell,vell

, κv.
A morphism of global Galois-theaters

φ : (Π1 � V
�
1 ,{(Π1)v1

}, {((X1)v1
, δv1

, κv1
)})

→ (Π2 � V
�
2 , {(Π2)v2

}, {((X2)v2
, δv2

, κv2
)})

is defined to consist of a morphism φΠ : Π1 ↪→ Π2 of EA� and a(n) [uniquely

determined — cf. Remark 5.1.1 below] isomorphism of pro-sets φV : V
�
1

∼→ V
�
2

that satisfy the following conditions: (a) φΠ, φV are compatible with the actions

of Π1, Π2 on V
�
1 , V

�
2 , and map V 1

�→ V 2
, V

non

1
∼→ V

non

2 , V
arc

1
∼→ V

arc

2 ; (b)

for V
arc

1 � v1 �→ v2 ∈ V
arc

2 , there exists a [unique! — cf. Remark 5.1.1 below]

isomorphism φv : Xv1

∼→ Xv2
of Aut-holomorphic spaces that is compatible with
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δv1
, δv2

, as well as with κv1
, κv2

. [Here, we note that (a) implies that for V
non

1 �
v1 �→ v2 ∈ V

non

2 , φΠ induces an open injection φv : Πv1
↪→ Πv2

.]

(iv) In the notation of (iii), we shall refer to as a panalocal Galois-theater any
collection of data

V� def
= (V �, {Πv}v∈V non , {Xv}v∈V arc)

— where V � is a set that decomposes as a disjoint union V � = {V }
⋃
V non

⋃
V arc

⊇ V
def
= V non

⋃
V arc; for v ∈ V non, Πv ∈ Ob(Orb(TG)) [cf. §0; Definition 3.1, (iii)];

for v ∈ V arc, Xv ∈ Ob(Orb(EA)) [cf. Definition 4.1, (iii)] — such that there exists
a Π ∈ Ob(EA�) and an isomorphism of sets

ψV : V�(Π)/Aut(Π)
∼→ V �

— which we shall refer to as a reference isomorphism for V� — that satisfies the
following conditions: (a) the composite of ψV with the quotient map V�(Π) �
V�(Π)/Aut(Π) maps kNF(Π) �→ V , V(Π)non � V non, V(Π)arc � V arc; (b)

for each v ∈ V non, Πv is isomorphic to the object of Orb(TG) determined by
“the decomposition group Πv ⊆ Π of v, considered up to automorphisms of Πv,
as v ∈ V(Π) ranges over the elements lying over v”; (c) for each v ∈ V arc, Xv is
isomorphic to the object of Orb(EA) determined by “the Aut-holomorphic orbispace
X(Π, v), considered up to automorphisms of X(Π, v), as v ∈ V(Π) ranges over the
elements lying over v”. A morphism of panalocal Galois-theaters

φ : (V �
1 , {(Π1)v1}, {(X1)v1})→ (V �

2 , {(Π2)v2}, {(X2)v2})

is defined to consist of a bijection of sets φV : V �
1

∼→ V �
2 that induces bijections

V non
1

∼→ V non
2 , V arc

1
∼→ V arc

2 , together with open injections of [orbi-]profinite groups
(Π1)v1 ↪→ (Π2)v2 [where V non

1 � v1 �→ v2 ∈ V non
2 ; we recall that, in the notation

of (ii), “F/Fmod” is Galois], and isomorphisms of [orbi-]Aut-holomorphic orbis-

paces (X1)v1

∼→ (X2)v2 [where V arc
1 � v1 �→ v2 ∈ V arc

2 ]. [Here, we observe that

the existence of the isomorphisms “(X1)v1
∼→ (X2)v2” implies — by considering

Euler characteristics [cf. also [Mzk20], Theorem 2.6, (v)] — that the open injec-

tions “(Π1)v1 ↪→ (Π2)v2” induce isomorphisms “Δ1
∼→ Δ2” between the respective

geometric fundamental groups.] Write Th
� (respectively, Th�) for the category

of global (respectively, panalocal) Galois-theaters and morphisms of global (respec-
tively, panalocal) Galois-theaters. Thus, it follows immediately from the definitions
that we obtain a natural “panalocalization functor”

Th
� → Th

�

— which is essentially surjective.

(v) Let T ∈ {TF,TM,TLG} [cf. the notation of Definition 3.1, (i)]. If T = TF,

then let T� def
= T; if T �= TF, then let T� def

= TLG; if T� �= T, then a superscript
“T�” will be used to denote the operation of groupification of a monoid [i.e., “gp”];
if T� = T, then a superscript “T�” will be used to denote the “identity operation”
[i.e., may be ignored]. If Π ∈ Ob(EA�), then let us write MT�(Π) for the object of
T�, equipped with a continuous action by Π, determined by kNF(Π) [if T� = TF],
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k
×
NF(Π) [if T� = TLG], equipped with the discrete topology; if v ∈ V(Π), then let

us write MT(Π, v) for the object of T, equipped with a continuous action by the

decomposition group Πv ⊆ Π of v, determined by kNF(Π, v) [if T
� = TF], k

×
NF(Π, v)

[if T� = TLG], O�
kNF(Π,v)

[if T� = TM]. A global T-pair is defined to be a collection

of data

M� def
= (V�,M�, {ρv}v∈V , {(Πv �Mv)}v∈V

non , {(Xv
κ
� Mv)}v∈V

arc)

— where

V� = (Π � V
�
, {Πv}v∈V

non , {(Xv, δv, κv)}v∈V
arc)

is a global Galois-theater; V = V
non⋃

V
arc

; M� ∈ Ob(T�), which we shall refer
to as the global arithmetic data of M�, is equipped with a continuous action by
Π; for each v ∈ V

non
, (Πv � Mv) is an MLF-Galois T-pair with Galois group

given by Πv; for each v ∈ V
arc

, (Xv
κ
� Mv) is an Aut-holomorphic T-pair with

structure-orbispace given by Xv; for each v ∈ V , ρv : M� → MT�
v is a [“re-

striction”] morphism in T� — such that, relative to some reference isomorphism

ψV : V�(Π)
∼→ V

�
for V� as in (iii), there exist isomorphisms [in T�, T, respec-

tively]

ψ� :MT�(Π)
∼→ M�; {ψv :MT(Π, v)

∼→ Mv}v∈V

— which we shall refer to as reference isomorphisms for M� — that satisfy the
following conditions: (a) ψ� is Π-equivariant; (b) for v ∈ V non

, ψv is Πv-equivariant;

(c) for v ∈ V
arc

, the composite of ψv with the Kummer structure of (Xv
κ
� Mv)

is compatible with κv; (d) ψ
�, {ψv}v∈V are compatible with the {ρv}v∈V , relative

to the natural restriction morphisms ρv(Π) : MT�(Π) → MT(Π, v)
T�

. In this
situation, if T �= TF, then we shall refer to the profinite Π-module

μ
Ẑ
(M�) def

= Hom(Q/Z,M�)

[which is isomorphic to Ẑ] as the cyclotome associated to this global T-pair and

write μQ/Z(M
�) def

= μ
Ẑ
(M�)⊗Q/Z. A morphism of global T-pairs

φ : (V�
1 ,M

�
1 , {ρv1

}, {((Π1)v1
� (M1)v1

)}, {((X1)v1

κ
� (M1)v1

)})
→ (V�

2 ,M
�
2 , {ρv2

}, {((Π2)v2
� (M2)v2

)}, {((X2)v2

κ
� (M2)v2

)})

is defined to consist of a morphism of global Galois-theaters φV� : V�
1 → V�

2 ,

together with an isomorphism φ� : M�
1

∼→ M�
2 of T�, and isomorphisms φv1

:

(M1)v1

∼→ (M2)v2
[where V 1 � v1 �→ v2 ∈ V 2] in T, that satisfy the following

compatibility conditions: (a) φ� is equivariant with respect to the open injection

Π1 ↪→ Π2 arising from φV� ; (b) for v1 ∈ V
non

1 , the isomorphism φv1
is compatible

with the actions of (Π1)v1
, (Π2)v2

, relative to the open injection (Π1)v1
↪→ (Π2)v2

induced by φV� ; (c) for v1 ∈ V
arc

1 , the isomorphism φv1
is compatible with the

Kummer structures of ((X1)v1

κ
� (M1)v1

), ((X2)v2

κ
� (M2)v2

), relative to the iso-

morphism (X1)v1

∼→ (X2)v2
induced by φV� ; (d) φ�, {φv1

}v1∈V 1
are compatible

with the {ρv1
}v1∈V 1

, {ρv2
}v2∈V 2

.
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(vi) In the notation of (v), a panalocal T-pair is defined to be a collection of
data

M� def
= (V�, {(Πv �Mv)}v∈V non , {(Xv

κ
� Mv)}v∈V arc)

— where V� = (V �, {Πv}v∈V non , {Xv}v∈V arc) is a panalocal Galois-theater; for each
v ∈ V non, (Πv � Mv) is a(n) [strictly speaking, “orbi-”]MLF-Galois T-pair with

Galois group given by Πv; for each v ∈ V arc, (Xv
κ
� Mv) is a(n) [strictly speaking,

“orbi-”]Aut-holomorphic T-pair with structure-orbispace given by Xv. A morphism
of panalocal T-pairs

φ : (V�
1 ,{((Π1)v1 � (M1)v1)}, {((X1)v1

κ
� (M1)v1)})

→ (V�
2 , {((Π2)v2 � (M2)v2)}, {((X2)v2

κ
� (M2)v2)})

is defined to consist of a morphism of panalocal Galois-theaters φV� : V�
1 →

V�
2 , together with compatible T-isomorphisms of [orbi-]MLF-Galois T-pairs φv1 :

((Π1)v1 � (M1)v1) → ((Π2)v2 � (M2)v2) [where V non
1 � v1 �→ v2 ∈ V non

2 ] and

[orbi-]Aut-holomorphic T-pairs φv1 : ((X1)v1
κ
� (M1)v1) → ((X2)v2

κ
� (M2)v2)

[where V arc
1 � v1 �→ v2 ∈ V arc

2 ]. Write Th
�
T (respectively, Th�T ) for the category

of global (respectively, panalocal) T-pairs and morphisms of global (respectively,
panalocal) T-pairs. Thus, it follows immediately from the definitions that we ob-
tain a natural “panalocalization functor”

Th
�
T → Th

�
T

— lying over the functor Th
� → Th

� of (iv) — which is essentially surjective.
Moreover, we have compatible natural functors Th

� → EA�, Th�T → EA�, as well
as natural functors

Th
�
TF → Th

�
TM; Th

�
TM → Th

�
TLG; Th

�
TF → Th

�
TM; Th

�
TM → Th

�
TLG

[cf. Definition 3.1, (iii); Definition 4.1, (iii)].

Remark 5.1.1. Note that the reference isomorphism ψV of Definition 5.1, (iii), is
uniquely determined by the conditions stated. Indeed, for nonarchimedean elements,
this follows by considering the stabilizers in Π of elements of V

non
, together with the

well-known fact that a nonarchimedean prime of F [cf. the notation of Definition
5.1, (ii)] is uniquely determined by any open subgroup of its decomposition group
in GF [cf., e.g., [NSW], Corollary 12.1.3]; for archimedean elements, this follows

by considering the topology induced on kNF(Π) by AXv
via “κv” for v ∈ V

arc
.

Moreover, for v ∈ V
arc

, the isomorphism ψv of Definition 5.1, (iii), is uniquely
determined by the condition of compatibility with δell,vell

, δv. Indeed, by Corollary
2.3, (i) [cf. also [Mzk14], Lemma 1.3, (iii)], this follows from the well-known fact
that any automorphism of a hyperbolic orbicurve that induces the identity outer
automorphism of the profinite fundamental group of the orbicurve is itself the
identity automorphism. Similar uniqueness statements [with similar proofs] hold
for the morphisms φV , φv of Definition 5.1, (iii).

Corollary 5.2. (First Properties of Galois-theaters and Pairs) Let T ∈
{TF,TM}. We shall apply a subscript “TM” to [global or local] arithmetic data of
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“T-pairs” to denote the result of applying the natural functor whose codomain is
the corresponding category of “TM-pairs” [i.e., the identity functor if T = TM —
cf. Proposition 3.2]; we shall also use the subscript “TLG” in a similar way.

(i) Write An
�[Th�] for the category whose objects are data of the form

V�(Π)
def
= (Π � V�(Π), {Πv}v∈V(Π)non , {(X(Π, v), δell,v, κell,v)}v∈V(Π)arc)

[cf. the notation of Definition 5.1, (i)] for Π ∈ Ob(EA�) and whose morphisms are
the morphisms induced by morphisms of EA�. Then we have natural functors

EA� → An
�[Th�]→ Th

� → EA�

— where the first arrow is the functor obtained by assigning Ob(EA�) � Π �→
V�(Π); the second arrow is the functor obtained by forgetting the way in which
the global Galois-theater data V�(Π) arose from Π; the third arrow is the natu-
ral functor of Definition 5.1, (vi); the composite EA� → EA� of these arrows is
naturally isomorphic to the identity functor — all of which are equivalences of
categories.

(ii) Let

(V�,M�, {ρv}v∈V , {(Πv �Mv)}v∈V
non , {(Xv

κ
� Mv)}v∈V

arc)

be a global T-pair [as in Definition 5.1, (v)]. Then there is a unique [hence, in par-
ticular, there exists a functorial — relative to Th

�
T — algorithm for constructing

the] isomorphism

μ
Ẑ
(M�

TM)
∼→ μ

Ẑ
(Π)

[cf. Theorem 1.9, (b); Remark 1.10.1, (ii)] of Π-modules that is compatible
— relative to the restriction morphisms {ρv}v∈V

non — with the isomorphisms

μ
Ẑ
((Mv)TM)

∼→ μ
Ẑ
(Πv), for v ∈ V

non
, obtained by composing the isomorphisms of

Corollary 1.10, (c); Remark 3.2.1.

(iii) In the notation of (ii), there exists a functorial [i.e., relative to Th
�
T ]

algorithm for constructing the Kummer map

M�
TM

∼→ (M�
TM)

gp ∼→ M�
TLG ↪→ lim−→

J

H1(J,μ
Ẑ
(M�

TM))
∼→ lim−→

J

H1(J,μ
Ẑ
(Π))

— where “J” ranges over the open subgroups of Π. In particular, the reference
isomorphisms ψ�, {ψv} of Definition 5.1, (v), are uniquely determined by the
conditions stated in Definition 5.1, (v); in a similar vein, the isomorphisms φ�,
{φv} that appear in the definition of a “morphism φ of global T-pairs” in Definition
5.1, (v), are uniquely determined by φV� .

(iv) Write An
�[Th�T ] for the category whose objects are data of the form

M�
T (Π)

def
= (V�(Π),MT�(Π), {ρv(Π)}v∈V(Π),

{(Πv �MT(Π, v))}v∈V(Π)non , {(X(Π, v) κ
� MT(Π, v))}v∈V(Π)arc)



120 SHINICHI MOCHIZUKI

[cf. the notation of Definition 5.1, (v)] for Π ∈ Ob(EA�) and whose morphisms are
the morphisms induced by morphisms of EA�. Then we have natural functors

EA� → An
�[Th�T ]→ Th

�
T → EA�

— where the first arrow is the functor obtained by assigning Ob(EA�
T ) � Π �→

M�
T (Π); the second arrow is the functor obtained by forgetting the way in which

the global T-pair data M�
T (Π) arose from Π; the third arrow is the natural functor

of Definition 5.1, (vi); the composite EA� → EA� of these arrows is naturally
isomorphic to the identity functor — all of which are equivalences of categories
that are [1-]compatible [in the evident sense] with the functors of (i).

(v) Write An
�[Th�] for the category whose objects are data of the form

V�(Π)
def
= (Π, {V�(Π)}�)

— where V�(Π) is as in (i); we use the notation “{−}�” to denote the data obtained

by applying the panalocalization functor Th
� → Th

� of Definition 5.1, (iv) —
for Π ∈ Ob(EA�) and whose morphisms are the morphisms induced by morphisms
of EA�. Then we have natural functors

EA� → An
�[Th�]→ Th

�

— where the first arrow is the functor obtained by assigning Ob(EA�) � Π �→
V�(Π); the second arrow is the functor obtained by forgetting the way in which
the panalocal Galois-theater data {V�(Π)}� arose from Π. Here, the first arrow

EA� → An
�[Th�] is an equivalence of categories.

(vi) Write An
�[Th�T ] for the category whose objects are data of the form

M�
T (Π)

def
= (Π, {M�

T (Π)}�)

— where M�
T (Π) is as in (iv); we use the notation “{−}�” to denote the data

obtained by applying the panalocalization functor Th
� → Th

� of Definition
5.1, (vi) — for Π ∈ Ob(EA�) and whose morphisms are the morphisms induced by
morphisms of EA�. Then we have natural functors

EA� → An
�[Th�T ]→ Th

�
T

— where the first arrow is the functor obtained by assigning Ob(EA�) � Π �→
M�

T (Π); the second arrow is the functor obtained by forgetting the way in which
the panalocal T-pair data {M�

T (Π)}� arose from Π. Here, the first arrow EA� →
An

�[Th�T ] is an equivalence of categories.

(vii) By replacing, in the definition of the objects of Th
�
T [cf. Definition

5.1, (iv)], the data in Orb(TG) (respectively, Orb(EA)) labeled by a(n) nonar-
chimedean (respectively, archimedean) valuation by [the result of applying (−)T
to] the data that constitutes the corresponding object of Orb(Anab) [cf. Definition
3.1, (vi)] (respectively, Orb(LinHol) [cf. Definition 4.1, (v)]), we obtain a category

An
�[Th�T ]
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— i.e., whose morphisms are the morphisms induced by morphisms of Th
� —

together with natural functors

Th
� → An

�[Th�T ]→ Th
�
T → Th

�

— where the first arrow is the functor arising from the definition of An�[Th�T ]; the
second arrow is the “forgetful functor” [cf. the “forgetful functors” of assertion
(ii) of Corollaries 3.6, 4.5]; the third arrow is the natural functor [cf. Definition

5.1, (vi)]; the composite Th
� → Th

� of these arrows is naturally isomorphic to the
identity functor — all of which are equivalences of categories.

Proof. In light of Remark 5.1.1, assertion (i) is immediate from the definitions
and the results of §1, §2 [cf., especially, Theorem 1.9; Corollaries 1.10, 2.8] quoted
in these definitions. Assertion (ii) follows, for instance, by comparing the given
global T-pair with the global T-pair data M�

T (Π) of assertion (iv) via the reference
isomorphisms that appear in Definition 5.1, (v). In light of assertion (ii), assertion
(iii) is immediate from the definitions [cf. also Proposition 3.2, (ii), (iv), at the

nonarchimedean v; “κv”, the Kummer structure of “(Xv
κ
� Mv)” at archimedean

v]. In light of assertion (iii), assertion (iv) is immediate from the definitions and the
results of §1, §2 [cf., especially, Theorem 1.9; Corollaries 1.10, 2.8] quoted in these
definitions. In a similar vein, assertions (v), (vi), and (vii) are immediate from the
definitions and the results quoted in these definitions [cf. also Proposition 3.2, (ii),

(iv), at the nonarchimedean v; “κv”, the Kummer structure of “(Xv
κ
� Mv)” at

archimedean v]. ©

Remark 5.2.1. Note that neither of the composite functors EA� → Th
�, EA� →

Th
�
T of Corollary 5.2, (v), (vi) is an equivalence of categories! Put another way,

there is no natural, functorial way to “glue together” the various local data of
a panalocal Galois-theater/T-pair so as so obtain a “global profinite group” that
determines an object of EA�.

Remark 5.2.2. By applying the equivalence EA� ∼→ Th
� of Corollary 5.2, (i),

one may obtain a factorization

EA� → Th
� → An

�[Th�T ]

of the functor EA� → An
�[Th�T ] of Corollary 5.2, (iv). Thus, we obtain equivalences

of categories Th
� ∼→ An

�[Th�T ]
∼→ Th

�; the functor Th
� → An

�[Th�T ] may be

thought of as a “global analogue” of the panalocal functor Th
� → An

�[Th�T ] of
Corollary 5.2, (vii).

Remark 5.2.3. A similar result to Corollary 5.2, (ii) [hence also similar re-
sults to Corollary 5.2, (iii), (iv)], may be obtained when T = TLG, by using the
archimedean primes, which are “immune” to the {±1}-indeterminacy of Proposi-

tion 3.3, (i). Indeed, in the notation of Definition 5.1, (iii), (v), if v ∈ V
arc

, then
by combining “κell,vell

” with the isomorphism “ψv” arising from the reference iso-
morphism of the global Galois-theater under consideration yields an inclusion of



122 SHINICHI MOCHIZUKI

fields kNF(Π) ↪→ AX(Π,vell)
∼→ AXv

. On the other hand, by applying Corollary 1.10,

(c); Remark 1.10.3, (ii), at any of the nonarchimedean elements of V , it follows
that μ

Ẑ
(Π) may be related to the roots of unity of kNF(Π), while the restriction

morphism at v of the global T-pair under consideration, together with the Kummer
structure at v, allow one to relate μ

Ẑ
(M�) to the roots of unity of AXv

. Thus,

we obtain a functorial algorithm [albeit somewhat more complicated than the al-
gorithm discussed in Corollary 5.2, (ii)] for constructing the natural isomorphism

μ
Ẑ
(M�) ∼→ μ

Ẑ
(Π).

Definition 5.3. Let T ∈ {TF,TM,TLG}. We shall apply a subscript “TLG”
(respectively, “TCG”) to arithmetic data of “T-pairs” to denote the result of ap-
plying the natural functor whose codomain is the corresponding category of “TLG-
(respectively, TCG) pairs” [cf. Proposition 3.2; Corollary 5.2]. In the following, the
symbols

�, �

are to be understood as shorthand for the terms “multiplicative” and “additive”,
respectively. Let

M� def
= (V�,M�, {ρv}v∈V , {(Πv �Mv)}v∈V

non , {(Xv
κ
� Mv)}v∈V

arc)

be a global T-pair [where V� is as in Definition 5.1, (iii)]. Thus, M� is equipped
with a natural Aut(Π)-action [cf. Corollary 5.2, (iv); Remark 5.2.3]. In the follow-
ing, we shall use a superscript profinite group to denote the sub-object of invariants

with respect to that profinite group; if v ∈ V def
= V /Aut(Π), then we shall write Mv

for the arithmetic data of the [orbi-]MLF-Galois/Aut-holomorphic T-pair indexed
by v of the panalocal T-pair determined byM�, and Πv for the [orbi-]decomposition
group of v.

(i) Suppose that T = TLG. Then a �-line bundle L� on M� is defined to be
a collection of data

(L�[]; {τ [v] ∈ L�[v]TV}v∈V )

— where L�[] is an (M�)Π-torsor equipped with an Out(Π)-action that is com-
patible with the natural Out(Π)-action on (M�)Π and, moreover, factors through
the quotient Out(Π)� Im(Out(Π)→ Out(Π/Δ)); for each v ∈ V ,

τ [v] ∈ L�[v]TV

is a trivialization of the torsor L�[v]TV over (MΠv
v )TV

def
= MΠv

v /(MΠv
v )TCG deter-

mined by the MΠv
v -torsor L�[v] obtained from L�[] via ρv, for v ∈ V lying over v

— such that any element of L�[] determines [by restriction] the element of L�[v]TV
given by τ [v], for all but finitely many v ∈ V . [Here, we note that the “[topological]
value group” (MΠv

v )TV is equipped with a natural ordering [which may be used to
define its topology] and is ∼= Z if v ∈ V non and ∼= R if v ∈ V arc; moreover the nat-
ural ordering on (MΠv

v )TV determines a natural ordering on L�[v]TV.] A morphism
of �-line bundles on M�

ζ : L�
1 → L�

2
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is defined to be an Out(Π)-equivariant isomorphism ζ[] : L�
1 []

∼→ L�
2 [] between

the respective (M�)Π-torsors such that each v ∈ V induces an isomorphism ζ[v]TV :

L�
1 [v]TV

∼→ L�
2 [v]TV that maps τ1[v] to an element of L�

2 [v]TV that is ≤ τ2[v]. Write

Th
��
T [M�]

for the category of �-line bundles onM� and morphisms of �-line bundles onM�.
If φ : M�

1 → M�
2 is a morphism of global T-pairs, then there is a natural pull-

back functor φ∗ : Th��
T [M�

2 ] → Th
��
T [M�

1 ]. In particular, the various categories

Th
��
T [M�] together form a fibered category

Th
��
T → Th

�
T

over Th�T , whose fibers are the categories Th��
T [M�]. Finally, we observe that one

may generalize these definitions to the case of arbitrary T ∈ {TF,TM,TLG} by
applying the subscript “TLG”, where necessary.

(ii) Suppose that T = TF. Write OM� for the ring of integers of the field M�.
Then an �-line bundle L	 on M� is defined to be a collection of data

(L	[]; {| − |L�[v]}v∈V arc)

— where L	[] is a rank one projective OΠ
M�-module equipped with an Out(Π)-

action that is compatible with the natural Out(Π)-action on (M�)Π and, moreover,
factors through the quotient Out(Π) � Im(Out(Π) → Out(Π/Δ)); for each v ∈
V arc,

| − |L�[v]

is a Hermitian metric on the Mv-vector space L	[v] obtained from L	[]⊗ (M�)Π

via ρv, for v ∈ V lying over v. [Here, we recall that Mv is an [orbi-]complex
archimedean field.] In this situation, we shall also write L	[v] for the MΠv

v -vector
space obtained from L	[] ⊗ (M�)Π via ρv, for v ∈ V lying over v ∈ V non. In
particular, the OΠ

M� -module OΠ
M� , equipped with its usual Hermitian metrics at

elements of V arc, determines an �-line bundle which we shall refer to as the trivial
�-line bundle. A morphism of �-line bundles on M�

ζ : L	
1 → L	

2

is defined to be a nonzero Out(Π)-equivariant morphism of OΠ
M�-modules ζ[] :

L	
1 [] → L	

2 [] such that for each v ∈ V arc, the induced isomorphism ζ[v] :

L	
1 [v]

∼→ L	
2 [v] maps integral elements [i.e., elements of norm ≤ 1] with respect to

| − |L�
1 [v] to integral elements with respect to | − |L�

2 [v]. Write

Th
�	
T [M�]

for the category of �-line bundles onM� and morphisms of �-line bundles onM�.
If φ : M�

1 → M�
2 is a morphism of global T-pairs, then there is a natural pull-

back functor φ∗ : Th�	
T [M�

2 ] → Th
�	
T [M�

1 ]. In particular, the various categories

Th
�	
T [M�] “glue together” to form a fibered category

Th
�	
T → Th

�
T
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over Th
�
T , whose fibers are the categories Th

�	
T [M�]. Finally, the assignment [in

the notation of the above discussion]

L	[] �→
(
the (M�

TLG)
Π-torsor of nonzero sections of L	[]⊗ (M�)Π

)
determines [in an evident fashion] an equivalence of categories

Th
�	
T

∼→ Th
��
T

over Th�T , i.e., an “equivalence of �- and �-line bundles”.

(iii) Let � ∈ {�,�}; if � = �, then assume that T = TF. Then observe

that the automorphism group of any object of Th�

T [M�] is naturally isomorphic

to the finite abelian group μQ/Z(M
�
TLG)

Aut(Π). To avoid various problems arising
from these automorphisms, it is often useful to work with “coarsified versions” of
the categories introduced in (i), (ii), as follows. Write

Th
�|
|
T [M�]

for the [small, id-rigid!] category whose objects are isomorphism classes of objects

of Th�

T [M�] and whose morphisms are μQ/Z(M

�
TLG)

Aut(Π)-orbits of morphisms of

Th
�

T [M�]. Thus, by allowing “M�” to vary, we obtain a fibered category

Th
�|
|
T → Th

�
T

over Th�T , whose fibers are the categories Th
�|
|
T [M�]. Finally, the equivalence of

categories of (ii) determines an equivalence of categories Th
�|	|
T

∼→ Th
�|�|
T .

Remark 5.3.1. In the notation of Definition 5.3, (iii), one may define — in the
style of Corollary 5.2, (iv) — a category An

�[Th�T , |�|] whose objects are data of
the form

M�|
|
T (Π)

def
= (M�

T (Π),Th
�|
|
T [M�

T [Π]])

for Π ∈ Ob(EA�) and whose morphisms are the morphisms induced by morphisms

of EA�. Here, we think of the datum “Th
�|
|
T [M�

T [Π]]” as an object of the category
whose objects are small categories with trivial automorphism groups and whose
morphisms are contravariant functors. Then, just as in Corollary 5.2, (iv), one
obtains a sequence of natural functors

EA� → An
�[Th�T , |�|]→ An

�[Th�T ]→ Th
�
T → EA�

— where the first arrow is the functor obtained by assigning Ob(EA�
T ) � Π �→

M�|
|
T (Π) — all of which are equivalences of categories.

Definition 5.4. Let T ∈ {TF,TM}, • ∈ {,�}.

(i) If Z is an elliptically admissible hyperbolic orbicurve over an algebraic clo-
sure of Q, then we shall refer to a hyperbolic orbicurve X as in Definition 5.1, (ii),
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as geometrically isomorphic to Z if [in the notation of loc. cit.] there exists an
isomorphism of schemes XF

∼= Z. Write

EA�[Z] ⊆ EA�

for the full subcategory determined by the profinite groups isomorphic to ΠX for
some X as in Definition 5.1, (i), that is geometrically isomorphic to Z. This full
subcategory determines, in an evident fashion, full subcategories

Th
•[Z] ⊆ Th

•; Th
•
T[Z] ⊆ Th

•
T

—as well as full subcategories of the “An�[−]” versions of these categories discussed
in Corollary 5.2 and the “�-, �-line bundle versions” discussed in Remark 5.3.1
[cf. also the “measure-theoretic versions” discussed in Remark 5.9.1 below].

(ii) By applying the functors “logT,T” of Proposition 3.2, (v); Proposition 4.2,
(ii), to the various local data of a panalocal T-pair, we obtain a panalocal log-
Frobenius functor

log
�
T,T : Th�T → Th

�
T

which is naturally isomorphic to the identity functor, hence, in particular, an equiv-
alence of categories. Note that the construction underlying this functor leaves the
underlying panalocal Galois-theater unchanged, i.e., log�T,T “lies over” Th

�. Now
suppose that

M� def
= (V�,M�, {ρv}v∈V , {(Πv �Mv)}v∈V

non , {(Xv
κ
� Mv)}v∈V

arc)

is a global T-pair [where V� is as in Definition 5.1, (iii)]. Note that the various
restriction morphisms ρv determine a Π-equivariant embedding

M� ↪→
∏
v∈V

MT�
v

ofM� into a certain product of local data. Thus, by applying the functors “logT,T”

of Proposition 3.2, (v); Proposition 4.2, (ii), to the various local data of M� [i.e.,
more precisely: the data, other than the {ρv}, that is indexed by v ∈ V ], we obtain

a “local log-Frobenius functor logvT,T” on the portion of a global T-pair constituted
by this local data which is naturally isomorphic to the identity functor. More-
over, by composing this natural isomorphism to the identity functor with the above
embedding of M�, we obtain a new Π-equivariant embedding

M� ↪→
∏
v∈V

log
v
T,T(M

T�
v )

of M� into the product [as above] that arises from the output “logvT,T(M
T�
v )” of

log
v
T,T. In particular, by taking the image of this new embedding to be the global

data ∈ Ob(T�) [i.e., the “M�”] of a new global T-pair whose local data is given by

applying log
v
T,T to the local data of M�, we obtain a global log-Frobenius functor

log
�
T,T : Th�T → Th

�
T
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which is naturally isomorphic to the identity functor, hence, in particular, an equiv-
alence of categories. Moreover, the construction underlying this functor leaves the
underlying global Galois-theater unchanged, i.e., log�T,T “lies over” Th

�. In the fol-

lowing discussion, we shall often denote [by abuse of notation] the restriction of
log

•
T,T to the categories “(−)[Z]” by log

•
T,T. Note that if one restricts to the cat-

egories “(−)[Z]”, then the set “V /Aut(Π)” has a meaning which is independent
of the choice of a particular object of one of these categories [cf. the discussion of

Definition 5.1, (ii)]. In the following, let us fix a v ∈ V def
= V /Aut(Π).

(iii) Consider, in the notation of Definition 3.1, (iv), the commutative diagram
of natural maps

O×
k

↪→ k
×

↪→ k ...space-link⏐⏐�shell

⏐⏐�
post-log... k∼

id−→ k∼ ↪→ (k
×
)pf

— where we recall that k∼
def
= (O×

k
)pf — a diagram which determines an oriented

graph �Γlog
non [i.e., whose vertices and oriented edges correspond, respectively, to the

objects and arrows of the above diagram]; write �Γ�
non (respectively, �Γ�

non) for the

oriented subgraph of �Γlog
non obtained by removing the upper right-hand arrow “↪→ k”

(respectively, the lower left-hand arrow “k∼
id−→”) and �Γ×

non for the intersection of
�Γ�
non, �Γ

�
non. Let us refer to the lower left-hand vertex of �Γlog

non [i.e., the first “k∼”]
as the post-log vertex and to the other vertices of �Γlog

non as pre-log vertices; also we

shall refer to the upper right-hand vertex of �Γlog
non [i.e., “k”] as the space-link vertex.

Here, we wish to think of the pre-log copy of “k∼” as an object [i.e., “(O×
k
)pf”]

formed from k
×

and of the post-log copy of “k∼” as the “new field” — i.e., the
new copy of the space-link vertex “k” — obtained by applying the log-Frobenius

functor. Observe that the entire diagram �Γlog
non may be considered as a diagram in

the category TS, whereas the diagram �Γ�
non may be considered either as a diagram

in the category TS or as a diagram in the category TS� [i.e., relative to the additive
topological group structure of the field k∼]. Write pk for the residue characteristic

of k; set p∗k
def
= pk if pk is odd and p∗k

def
= p2k if pk = 2. Then since [as is well-known]

the pk-adic logarithm determines a bijection 1 + p∗k · Ok

∼→ p∗k · Ok, it follows that

OΠk

k∼ ⊆ I def
= (p∗k)

−1 · I∗ ⊆ (k∼)Πk

— where the superscript “Πk” denotes the submodule of Galois-invariants, and we
write I∗ for the image of O×

k = (O×
k
)Πk ⊆ O×

k
via the left-hand vertical arrow

of the above diagram, i.e., in essence, the compact submodule constituted by the
pre-log-shell discussed in Definition 3.1, (iv). We shall refer to I as the log-shell of
�Γ×
non and to the left-hand vertical arrow of the above diagram as the shell-arrow. In

fact, if k is absolutely unramified and pk is odd, then we have an equality OΠk

k∼ = I
[cf. Remark 5.4.2 below].

(iv) Next, let us suppose that v ∈ V non; recall the categories CMLF-sB
TS	 , CMLF-sB

TS

of Definition 3.1, (iii). Thus, we have natural functors CMLF-sB
TS	 → CMLF-sB

TS → TG.
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Let us write

N	
v

def
= Orb(CMLF-sB

TS	 )×Orb(TG),v Th
•[Z]; Nv

def
= Orb(CMLF-sB

TS )×Orb(TG),v Th
•[Z]

— where the “, v” in the fibered product is to be understood as referring to the
natural functor Th

•[Z] → Orb(TG) given by the assignment “V• �→ Πv” [cf. Defi-
nition 5.1, (iv), (b)]. Thus, we have natural functors N	

v → Nv → Th
•[Z]. Next,

in the notation of (iii), let us set �Γlog
v

def
= �Γlog

non, �Γ
×
v

def
= �Γ×

non, �Γ
�
v

def
= �Γ�

non, �Γ
�
v

def
= �Γ�

non.

Then for each vertex ν of �Γ×
v , by assigning to “k” or “O�

k
” [i.e., depending on

the choice of T ∈ {TF,TM}] the object at the vertex ν of the diagram of (iii), we
obtain a natural functor CMLF-sB

T → CMLF-sB
TS	 , hence by considering the portion of

the panalocal or global T-pair under consideration that is indexed by v or v ∈ V
lying over v, a natural functor λ	v,ν : Th•T[Z]→ N	

v . In a similar vein, if ν is either

the space-link or the post-log vertex of �Γlog
v , then by assigning to “k” or “O�

k
” the

underlying additive topological group of the field “k” [cf. the functorial algorithms
of Corollary 1.10, as applied in Proposition 3.2, (iii)], we obtain a natural functor
CMLF-sB
T → CMLF-sB

TS	 , hence by considering the portion of the panalocal or global

T-pair under consideration that is indexed by v or v ∈ V lying over v, a natural
functor λ	v,ν : Th•T[Z]→ N	

v . Thus, in summary, we obtain natural functors

λ	v,ν : Th•T[Z]→ N	
v ; λv,ν : Th•T[Z]→ Nv

— where the latter functor is obtained by composing the former functor with the

natural functor N	
v → Nv — that “lie over” Th

•[Z], for each vertex ν of �Γlog
v .

(v) Consider, in the notation of Definition 4.1, (iv), the commutative diagram
of natural maps

post-log... k∼
id−→ k∼

shell−→ k× ↪→ k ...space-link

— a diagram which determines an oriented graph �Γlog
arc [i.e., whose vertices and

oriented edges correspond, respectively, to the objects and arrows of the above

diagram]; write �Γ�
arc (respectively, �Γ�

arc) for the oriented subgraph of �Γlog
arc obtained

by removing the arrow “↪→ k” on the right (respectively, the arrow “k∼
id−→” on

the left) and �Γ×
arc for the intersection of �Γ�

arc,
�Γ�
arc. Let us refer to the vertex of

�Γlog
arc given by the first “k∼” as the post-log vertex and to the other vertices of �Γlog

arc

as pre-log vertices; also we shall refer to the vertex of �Γlog
arc given by “k” as the

space-link vertex. Here, we wish to think of the pre-log copy of “k∼” as an object
formed from k× and of the post-log copy of “k∼” as the “new field” — i.e., the
new copy of the space-link vertex “k” — obtained by applying the log-Frobenius

functor. Observe that the entire diagram �Γlog
arc may be considered as a diagram in

the category TH, whereas the diagram �Γ�
arc may be considered either as a diagram

in the category TH or as a diagram in TH� [i.e., relative to the additive topological
group structure of the field k∼]. Note that it follows from well-known properties of
the [complex] logarithm that

Ok∼ =
1

π
· I ⊆ I def

= O×
k∼ · I∗ ⊆ k∼
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— where we we write I∗ for the uniquely determined “line segment” [i.e., more
precisely: closure of a connected pre-compact open subset of a one-parameter sub-
group] of k∼ which is preserved by multiplication by ±1 and whose endpoints differ
by a generator of Ker(k∼ � k×). Thus, I∗ maps bijectively, except for the end-
points of the line segment, to the pre-log-shell discussed in Definition 4.1, (iv). We

shall refer to I as the log-shell of �Γ×
arc and to the arrow k∼ � k× as the shell-arrow.

Also, we observe that I may be constructed as the closure of the union of the im-
ages of I∗ via the finite order automorphisms of the Aut-holomorphic group k∼; in
particular, the formation of I from I∗ depends only on the structure of k∼ as an
object of TH�.

(vi) Next, let us suppose that v ∈ V arc; recall the categories Chol
TH	, CholTH of

Definition 4.1, (iii). Thus, we have natural functors Chol
TH	 → CholTH → EA. Let us

write

N	
v

def
= Orb(CholTH	)×Orb(EA),v Th

•[Z]; Nv
def
= Orb(CholTH )×Orb(EA),v Th

•[Z]

— where the “, v” in the fibered product is to be understood as referring to the nat-
ural functor Th•[Z]→ Orb(EA) given by the assignment “V• �→ Xv” [cf. Definition
5.1, (iv), (c)]. Thus, we have natural functors N	

v → Nv → Th
•[Z]. Next, in the

notation of (v), let us set �Γlog
v

def
= �Γlog

arc,
�Γ×
v

def
= �Γ×

arc,
�Γ�
v

def
= �Γ�

arc,
�Γ�
v

def
= �Γ�

arc. Then for

each vertex ν of �Γ×
v , by assigning to “k” or “O�

k ” [i.e., depending on the choice of
T ∈ {TF,TM}] the object at the vertex ν of the diagram of (v), we obtain a natural
functor CholT → Chol

TH	, hence by considering the portion of the panalocal or global

or T-pair under consideration that is indexed by v or v ∈ V lying over v, a natural
functor λ	v,ν : Th•T[Z] → N	

v . In a similar vein, if ν is either the space-link or the

post-log vertex of �Γlog
v , then by assigning to “k” or “O�

k ” the underlying additive
topological group of the field “k” [cf. the functorial algorithms of Corollary 2.7, as
applied in Proposition 4.2, (ii)], we obtain a natural functor CholT → Chol

TH	, hence by
considering the portion of the panalocal or global T-pair under consideration that
is indexed by v or v ∈ V lying over v, a natural functor λ	v,ν : Th•T[Z]→ N	

v . Thus,
in summary, we obtain natural functors

λ	v,ν : Th•T[Z]→ N	
v ; λv,ν : Th•T[Z]→ Nv

— where the latter functor is obtained by composing the former functor with the

natural functor N	
v → Nv — that “lie over” Th

•[Z], for each vertex ν of �Γlog
v .

(vii) Finally, in the notation of (iv) (respectively, (vi)) for v ∈ V non (respec-

tively, v ∈ V arc): For each edge ε of �Γ�
v (respectively, �Γlog

v ) running from a vertex
ν1 to a vertex ν2, the arrow in the diagram of (iii) (respectively, (v)) corresponding
to ε determines a natural transformation

ι	v,ε : λ
	
v,ν1

◦ Λν1 → λ	v,ν2
(respectively, ιv,ε : λv,ν1 ◦ Λν1 → λv,ν2)

— where, for each pre-log vertex ν of �Γlog
v , we take Λν to be the identity functor on

Th
•
T[Z]; for the post-log vertex ν of �Γlog

v , we take Λν to be the log-Frobenius functor
log

•
T,T : Th•T[Z]→ Th

•
T[Z].
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Remark 5.4.1. Note that the diagrams of Definition 5.4, (iii), (v), [hence also
the natural transformations of Definition 5.4, (vii)] cannot be extended to global
number fields! Indeed, this observation is, in essence, a reflection of the fact that
the various logarithms that may be defined at the various completions of a number
field do not induce maps from, say, the group of units of the number field to the
number field!

Remark 5.4.2. Note that in the context of Definition 5.4, (iii), when k is not

absolutely unramified, the “gap” between OΠk

k∼ and I may be bounded in terms of
the ramification index of k over Qpk

. We leave the routine details to the interested
reader.

Remark 5.4.3. The inclusions “OΠk

k∼ ⊆ I”, “Ok∼ ⊆ I” of Definition 5.4, (iii), (v),
may be thought of as inclusions, within the log-shell I, of the various localizations of
the trivial �-line bundle of Definition 5.3, (ii) — an �-line bundle whose structure is
determined by the global ring of integers [i.e., “OM�” in the notation of Definition
5.3, (ii)], equipped its natural metrics at the archimedean primes. That is to say,
the definition of the trivial �-line bundle involves, in an essential way, not just the
additive [i.e., “�”] structure of the global ring of integers, but also the multiplicative
[i.e., “�”] structure of the global ring of integers.

Next, we consider the following global/panalocal analogue of Corollaries 3.6,
4.5.

Corollary 5.5. (Global and Panalocal Mono-anabelian Log-Frobenius
Compatibility) Let Z be an elliptically admissible hyperbolic orbicurve over
an algebraic closure of Q, with field of moduli Fmod [cf. Definition 5.1, (ii)];

T ∈ {TF,TM}; • ∈ {,�}. Set X def
= Th

•
T[Z], E• def

= Th
•[Z]. Consider the

diagram of categories D•

. . . X log−→ X log−→ X . . .

. . . id�+1
↘

⏐⏐�id� ↙ id�−1
. . .

X

. . . λ�
v′ ↙ . . .↙

⏐⏐� . . .⏐⏐�λ�
v ↘ . . .↘ λ�

v′ . . .

. . . N	
v′ N	

v N	
v′′ . . .

. . .
⏐⏐� ⏐⏐� ⏐⏐� . . .

. . . Nv′ Nv Nv′′ . . .

. . . ↘
⏐⏐� ↙ . . .

E•⏐⏐�κAn•

An
•[X ]
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E•

— where we use the notation “log” for the evident restriction of the arrows “log•T,T”
of Definition 5.4, (ii); for positive integers n ≤ 7, we shall denote by D•

≤n the

subdiagram of categories of D• determined by the first n [of the seven] rows
of D•; we write L for the countably ordered set determined [cf. §0] by the infinite

linear oriented graph �Γopp
D•

≤1
[so the elements of L correspond to vertices of the

first row of D•] and

L† def
= L ∪ {�}

for the ordered set obtained by appending to L a formal symbol � [which we think
of as corresponding to the unique vertex of the second row of D•] such that � < �,
for all � ∈ L; id� denotes the identity functor at the vertex � ∈ L; the vertices
of the third and fourth rows of D• are indexed by the elements v′, v, v′′, . . . of
the set of valuations V(Fmod) of Fmod; the arrows from the second row to the

category N	
v in the third row are given by the collection of functors λ	v

def
= {λ	v,ν}ν

of Definition 5.4, (iv), (vi), where ν ranges over the pre-log vertices of �Γlog
v [or,

alternatively, over all the vertices of �Γlog
v , subject to the proviso that we identify

the functors associated to the space-link and post-log vertices]; the arrows from
the third to fourth and from the fourth to fifth rows are the natural functors
N	

v → Nv → E• of Definition 5.4, (iv), (vi); the arrows from the fifth to sixth
and from the sixth to seventh rows are the natural equivalences of categories
E• ∼→ An

•[X ]
∼→ E•, the first of which we shall denote by κAn• , of Corollary 5.2,

(i), (iv), (vii) [cf. also Remark 5.2.2], restricted to “[Z]”; we shall apply “[−]” to
the names of arrows appearing in D• to denote the path of length 1 associated to
the arrow. Also, let us write

φAn• : An•[X ]
∼→ X

for the equivalence of categories given by the “forgetful functor” of Corollary
5.2, (iv), (vii), restricted to “[Z]”, πAn• : X → An

•[X ] for the quasi-inverse for
φAn• given by the composite of the natural projection functor X → E• with κAn• :
E• → An

•[X ], and ηAn• : φAn• ◦ πAn•
∼→ idX for the isomorphism that exhibits

φAn• , πAn• as quasi-inverses to one another. Then:

(i) For n = 5, 6, 7, D•
≤n admits a natural structure of core on D•

≤n−1. That is

to say, loosely speaking, E•, An•[X ] “form cores” of the functors in D. If, moreover,
• = , then one obtains a natural structure of core on D• by appending to the final
row of D• the natural arrow E• → EA�[Z].

(ii) The “forgetful functor” φAn• gives rise to a telecore structure TAn•

on D•
≤5, whose underlying diagram of categories we denote by DAn• , by appending

to D•
≤6 telecore edges

An
•[X ]

. . . φ�+1 ↙
⏐⏐�φ� ↘ φ�−1 . . .

. . . X log−→ X log−→ X . . .
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An
•[X ]

φ�−→ X
from the core An

•[X ] to the various copies of X in D•
≤2 given by copies of φAn• ,

which we denote by φ�, for � ∈ L†. That is to say, loosely speaking, φAn• de-
termines a telecore structure on D•

≤5. Finally, for each � ∈ L†, let us write [β0
�]

for the path on �ΓDAn• of length 0 at � and [β1
�] for some [cf. the coricity of

(i)!] path on �ΓDAn• of length ∈ {5, 6} [i.e., depending on whether or not � = �]
that starts from �, descends via some path of length ∈ {4, 5} to the core vertex
“An•[X ]”, and returns to � via the telecore edge φ�. Then the collection of natural
transformations

{η��, η
−1
��, η�, η

−1
� }�∈L,�∈L†

— where we write η�� for the identity natural transformation from the arrow φ� :
An

•[X ]→ X to the composite arrow id� ◦ φ� : An•[X ]→ X and

η� : (DAn•)[β1�]
∼→ (DAn•)[β0�]

for the isomorphism arising from ηAn• — generate a contact structure HAn• on
the telecore TAn• .

(iii) The natural transformations [cf. Definition 5.4, (vii)]

ι	v,ε : λ
	
v,ν1

◦ Λν1 → λ	v,ν2
(respectively, ιv,ε : λv,ν1 ◦ Λν1 → λv,ν2)

— where v ∈ V(Fmod); ε is an edge of �Γ�
v (respectively, �Γlog

v ) running from a
vertex ν1 to a vertex ν2; if ν1 is a pre-log vertex, then we interpret the domain
and codomain of ι	v,ε (respectively, ιv,ε) as the arrows associated to the paths of
length 1 (respectively, 2) from the second to third (respectively, fourth) rows of D•

determined by v and ν1, ν2; if ν1 is a post-log vertex, then we interpret the domain
of ι	v,ε (respectively, ιv,ε) as the arrow associated to the path of length 3 (respectively,
4) from the first to the third (respectively, fourth) rows of D• determined by v, ν1,
and the condition that the initial length 2 portion of the path be a path of the form
[id�] ◦ [log] [for � ∈ L], and we interpret the codomain of ι	v,ε (respectively, ιv,ε)
as the arrow associated to the path of length 2 (respectively, 3) from the first to
the third (respectively, fourth) rows of D• determined by v, ν2, and the condition
that the initial length 1 portion of the path be a path of the form [id�+1] [for the
same � ∈ L] — belong to a family of homotopies on D•

≤3 (respectively, D•
≤4)

that determines on the portion of D•
≤3 (respectively, D•

≤4) indexed by v a structure

of observable Slog	 (respectively, Slog) on D•
≤2 (respectively, the portion of D•

≤3

indexed by v). Moreover, the families of homotopies that constitute Slog and Slog	
are compatible with one another as well as with the families of homotopies that
constitute the core and telecore structures of (i), (ii).

(iv) The diagram of categories D•
≤2 does not admit a structure of core on D•

≤1

which [i.e., whose constituent family of homotopies] is compatible with [the con-
stituent family of homotopies of ] the observables Slog, Slog	 of (iii). Moreover,
the telecore structure TAn• of (ii), the contact structure HAn• of (ii), and the
observables Slog, Slog	 of (iii) are not simultaneously compatible.

(v) The unique vertex � of the second row of D• is a nexus of �Γ•
D. More-

over, D• is totally �-rigid, and the natural action of Z on the infinite linear
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oriented graph �ΓD•
≤1

extends to an action of Z on D• by nexus-classes of self-

equivalences of D•. Finally, the self-equivalences in these nexus-classes are com-
patible with the families of homotopies that constitute the cores and observ-
ables of (i), (iii); these self-equivalences also extend naturally [cf. the technique of
extension applied in Definition 3.5, (vi)] to the diagram of categories [cf. Definition
3.5, (iv), (a)] that constitutes the telecore of (ii), in a fashion that is compatible
with both the family of homotopies that constitutes this telecore structure [cf.
Definition 3.5, (iv), (b)] and the contact structure HAn• of (ii).

(vi) There is a natural panalocalization morphism of diagrams of categories

D� → D�

[cf. the panalocalization functors of Definition 5.1, (iv), (vi)] that lies over the

evident isomorphism of oriented graphs �Γ�
D

∼→ �Γ�
D and is compatible with

the cores of (i), the telecore and contact structures of (ii), the observables
of (iii), and the Z-actions of (v).

Proof. Assertions (i), (ii) are immediate from the definitions — cf. also the proofs
of Corollary 3.6, (i), (ii); Corollary 4.5, (i), (ii). Next, we consider assertion (iii).

The data arising from applying the collection of functors λv
def
= {λv,ν}ν to the data

arising from id�, as � ranges over the elements of L, yields a diagram of copies of
�Γlog
v indexed by elements of L

. . . � (�Γlog
v )�+1 � (�Γlog

v )� � (�Γlog
v )�−1 � . . .

— where the symbol “�” denotes the result of gluing (�Γlog
v )�+1 onto (�Γlog

v )� by

identifying the post-log vertex of (�Γlog
v )�+1 with the space-link vertex of (�Γlog

v )�.
Now the existence of a family of homotopies as asserted follows, in a routine fashion,
from the fact that the above diagram is commutative [i.e., one does not obtain any
pairs of distinct maps by traveling along distinct co-verticial pairs of paths of the
diagram] — cf. the relationship of the diagrams

. . . ←↩ k
×
�+1 → (k

×
�+1)

pf ←↩ k
×
� → (k

×
�)

pf ←↩ . . .

. . . ←↩ k×�+1 � k∼�+1 ←↩ k×� � k∼� ←↩ . . .

of Remarks 3.6.1, (i); 4.5.1, (i), to the proofs of assertion (iii) of Corollaries 3.6,
4.5; we leave the routine details [which are entirely similar to the proofs of assertion
(iii) of Corollaries 3.6, 4.5] to the reader. Finally, the compatibility of the resulting
family of homotopies with the families of homotopies that constitute the core and
telecore structures of (i), (ii) is immediate from the definitions. This completes the
proof of assertion (iii).

Next, we consider assertion (iv). Recall that the proofs of the incompatibil-
ity assertions of assertion (iv) of Corollaries 3.6, 4.5 amount, in essence, to the
incompatibility of the introduction of a single model that maps isomorphically to
various copies of the model indexed by elements of L in the diagrams of Remarks
3.6.1, (i); 4.5.1, (i). In the present situation, the incompatibility assertions of as-
sertion (iv) of the present Corollaries 5.5 amount, in an entirely similar fashion, to
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the incompatibility of the introduction of a single model (�Γlog
v )� of �Γlog

v that maps
isomorphically

(�Γlog
v )�

. . . ↙ ↓ ↘ . . .

. . . � (�Γlog
v )�+1 � (�Γlog

v )� � (�Γlog
v )�−1 � . . .

to each copy (�Γlog
v )� that appears in the diagram that was used in the proof of

assertion (iii). We leave the routine details [which are entirely similar to the proofs
of assertion (iv) of Corollaries 3.6, 4.5] to the reader. This completes the proof of
assertion (iv).

Next, we consider assertion (v). The fact that � is a nexus of �Γ•
D is immediate

from the definitions. When • = , the total �-rigidity of D• follows immediately
from the equivalence of categories Th�T

∼→ EA� of Corollary 5.2, (iv), together with

the slimness of the profinite groups that appear as objects of EA� [cf., e.g., [Mzk20],
Proposition 2.3, (ii)]. When • = �, the total �-rigidity of D• follows, in light of
the “Kummer theory” of Propositions 3.2, (iv); 4.2, (i), from the fact that the
orbi-objects that appear in the definition of a panalocal Galois-theater are defined in
such a way as to eliminate all the automorphisms [cf. Definition 5.1, (iv), (b), (c)].
The remainder of assertion (v) is immediate from the definitions and constructions
made thus far. This completes the proof of assertion (v). Finally, we observe that
assertion (vi) is immediate from the definitions and constructions made thus far.
©

Remark 5.5.1. The “general formal content” of the remarks following Corollaries
3.6, 3.7 applies to the situation discussed in Corollary 5.5, as well. We leave the
routine details of translating these remarks into the language of the situation of
Corollary 5.5 to the interested reader.

Remark 5.5.2. Note that it does not appear realistic to attempt to construct
a theory of “geometric panalocalization” with respect to the various closed points
of the hyperbolic orbicurve over an MLF under consideration [cf. the discussion of
Remarks 1.11.5; 3.7.7, (ii)]. Indeed, the decomposition groups of such closed points
[which are either isomorphic to the absolute Galois group of an MLF or an extension

of such an absolute Galois group by a copy of Ẑ(1)] do not satisfy an appropriate
analogue of the crucial mono-anabelian result Corollary 1.10 [hence, in particular,
do not lead to a situation in which both of the two combinatorial dimensions of the
absolute Galois group of an MLF under consideration are rigidified — cf. Remark
1.9.4].

Definition 5.6.

(i) Recall the categories TG, TM, and TS of Definition 3.1, (i), (iii). Write

TG ⊆ TG
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for the subcategory given by the profinite groups isomorphic to the absolute Galois
group of an MLF and open injections of profinite groups, and

TGcs ⊆ Orb(TG)

for the full subcategory determined by the [“coarsified”] objects of Orb(TG) obtained
by considering an object G ∈ Ob(TG) up to its group of automorphisms AutTG(G).
Write

TM

for the category whose objects (C,
−→
C ) consist of a topological monoid C isomorphic

to O�
C and a topological submonoid

−→
C ⊆ C [necessarily isomorphic to R≥0] such

that the natural inclusions C× ↪→ C [where C×, which is necessarily isomorphic to

S1, denotes the topological submonoid of invertible elements],
−→
C ↪→ C determine

an isomorphism

C× ×−→
C

∼→ C

of topological monoids, and whose morphisms (C1,
−→
C 1) → (C2,

−→
C 2) are isomor-

phisms of topological monoids C1
∼→ C2 that induce isomorphisms

−→
C 1

∼→ −→
C 2. If

G ∈ Ob(TG), then let us write
Lie(G)

for the associated group germ — i.e., the associated group pro-object of TS de-
termined by the neighborhoods of the identity element — and, when G is abelian,
Lie

±(G) for the orbi-group germ obtained by working with Lie(G) up to “{±1}”.
Write

TB�
for the category whose objects (B,B′, B′′, β) consist of a two-dimensional connected
topological Lie group B equipped with two one-parameter subgroups B′, B′′ ⊆ B
that determine an isomorphism

B′ ×B′′ ∼→ B

of topological groups, together with an isomorphism β : Lie±(B′)
∼→ Lie

±(B′′), and
whose morphisms (B1, B

′
1, B

′′
1 , β1)→ (B2, B

′
2, B

′′
2 , β2) are the surjective homomor-

phisms B1 → B2 of topological groups that are compatible with the B′
i, B

′′
i , βi for

i = 1, 2. Write TB for the category of orientable topological orbisurfaces [i.e., which
are topological surfaces over the complement, in the “coarse space” associated to
the orbisurface, of some discrete closed subset] and local isomorphisms between such
orbisurfaces. Thus, we obtain natural “forgetful functors”

TM → TM; TB�→ TB

determined by the assignments (C,
−→
C ) �→ C, (B,B′, B′′, β) �→ B, as well as natural

“decomposition functors”

decTM� : TM → TG× TGcs; decTB	 : TB�→ TG× TGcs

determined by the assignments (C,
−→
C ) �→ (C×, (

−→
C

gp
)cs), (B,B′, B′′, β) �→ (B′, (B′′)cs)

[where “gp” denotes the groupification of a monoid; “cs” denotes the result of con-
sidering a topological group up to its group of automorphisms].
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(ii) We shall refer to as a mono-analytic Galois-theater any collection of data

W def
= (W�, {(Gw, |Π|w)}w∈Wnon , {(Gw, |X|w)}w∈W arc)

— where W� is a set that admits a decomposition as a disjoint union W� =

{W }
⋃

W non
⋃
W arc ⊇ W

def
= W non

⋃
W arc; for each w ∈ W non, Gw ∈

Ob(Orb(TG)), and |Π|w is an isomorphism class of pro-objects of the category

TG; for each w ∈W arc, Gw ∈ Ob(Orb(TM)), and |X|w is an isomorphism class of
EA — such that there exists a panalocal Galois-theater

V� def
= (V �, {Πv}v∈V non , {Xv}v∈V arc)

[cf. the notation of Definition 5.1, (iv)] and an isomorphism of sets

ψW : V � ∼→ W�

— which we shall refer to as a reference isomorphism for W — that satisfies the
following conditions: (a) ψW maps V �→ W , V non ∼→ W non, V arc ∼→ W arc;
(b) for each v ∈ V non mapping to w ∈ W non, Gw is isomorphic to the [group-
theoretically characterizable — cf. Remark 1.9.2] quotient Πv � Gv determined
by the absolute Galois group of the base field, and the class |Π|w contains the
pro-object of TG determined by the projective system of open subgroups of Πv

arising from open subgroups of Gv; (c) for each v ∈ V arc mapping to w ∈W arc, Xv

belongs to the class |X|w, and Gw is isomorphic to the object of TM determined
by (O�

AXv

,O�
AXv

⋂
R>0). A morphism of mono-analytic Galois-theaters

φ : (W�
1 ,{((G1)w1 , |Π|w1)}w1∈Wnon

1
, {((G1)w1 , |X|w1)}w1∈W arc

1
)

→ (W�
2 , {((G2)w2 , |Π|w2)}w2∈Wnon

2
, {((G2)w2 , |X|w2)}w2∈W arc

2
)

is defined to consist of a bijection of sets φW : W�
1

∼→ W�
2 that induces bijec-

tions W non
1

∼→ W non
2 , W arc

1
∼→ W arc

2 that are compatible with the isomorphism
classes |Π|wi , |X|wi [for i = 1, 2], together with open injections of [orbi-]profinite
groups (G1)w1 ↪→ (G2)w2 [where W non

1 � w1 �→ w2 ∈ W non
2 ], and isomorphisms

(G1)w1

∼→ (G2)w2 [where W arc
1 � w1 �→ w2 ∈ W arc

2 ]. Write Th
 for the category

of mono-analytic Galois-theaters and morphisms of mono-analytic Galois-theaters.
Thus, if Z is an elliptically admissible hyperbolic orbicurve over an algebraic clo-
sure of Q, then we have a full subcategory Th

[Z] ⊆ Th
, together with natural

“mono-analyticization functors”

Th
� → Th

; Th
�[Z]→ Th

[Z]

— which are essentially surjective.

(iii) Next, let us fix a mono-analytic Galois-theaterW as in (ii), together with
a w ∈ W non. Recall the categories CMLF

TS	 , CMLF
TS of Definition 3.1, (iii). Thus, we

have a [1-]commutative diagram of natural functors

CMLF-sB
TS	 −→ CMLF-sB

TS −→ TGsB⏐⏐� ⏐⏐� ⏐⏐�
CMLF
TS	 −→ CMLF

TS −→ TG
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— in which the vertical arrows are “mono-analyticization functors” [cf. the mono-
analyticization functors of (ii); the construction implicit in (ii), (b)]; the arrows

CMLF-sB
TS → TGsB, CMLF

TS → TG are the natural projection functors. Let us write

N	
w

def
= Orb(CMLF

TS	 )×Orb(TG�),w Th
[Z]

N
w

def
= Orb(CMLF

TS )×Orb(TG�),w Th
[Z]

— where the “, w” in the fibered product is to be understood as referring to the
natural functor Th

[Z] → Orb(TG) given by the assignment “W �→ Gw” [cf.

(ii)]. Thus, we have natural functors N	
w → N

w → Th
[Z].

(iv) Next, let us fix a mono-analytic Galois-theaterW as in (ii), together with
a w ∈W arc. Recall the categories Chol

TH	, CholTH of Definition 4.1, (iii). Write

CholTB	

for the category whose objects are triples (G,M, κM ), where G ∈ Ob(TM), M ∈
Ob(TB�), and κM : decTB	(M) � decTM�(G) — which we shall refer to as the
Kummer structure of the object — is a pair of surjective homomorphisms of TG,
TGcs, and whose morphisms φ : (G1,M1, κM1) → (G2,M2, κM2) consist of an

isomorphism φG : G1
∼→ G2 of TM and a morphism φM :M1 →M2 of TB� that

are compatible with κM1 , κM2 ; write CholTB

def
= TM × TB. Next:

Suppose that (Xell
κ
� Mk) ∈ Ob(Chol

TH	) [cf. Definition 4.1, (i)]. Recall

that the Kummer structure of (Xell
κ
�Mk) consists of an Aut-holomorphic

homomorphism from Mk to an isomorph of “C× (∼= S1 × R>0)”; observe
that the Aut-holomorphic automorphisms of Lie(C×) of order 4 determine

an isomorphism Lie
±(S1×{1}) ∼→ Lie

±({1}×R>0). Thus, by pulling back

to Mk, via the Kummer structure of (Xell
κ
� Mk), the two one-parameter

subgroups “S1 × {1}, {1} × R>0 ⊆ C×”, we obtain, in a natural way, an
object of Chol

TB	 .

In particular, we obtain a [1-]commutative diagram of natural functors

Chol
TH	 −→ CholTH −→ EA⏐⏐� ⏐⏐� ⏐⏐�
Chol
TB	 −→ CholTB −→ TM

— in which the vertical arrows are “mono-analyticization functors” [cf. the mono-
analyticization functors of (ii); the construction implicit in (ii), (c)]; the arrows

CholTH → EA, CholTB → TM are the natural projection functors. Let us write

N	
w

def
= Orb(Chol

TB	)×Orb(TM�),w Th
[Z]

N
w

def
= Orb(CholTB )×Orb(TM�),w Th

[Z]

— where the “, w” in the fibered product is to be understood as referring to the
natural functor Th

[Z] → Orb(TM) given by the assignment “W �→ Gw” [cf.

(ii)]. Thus, we have natural functors N	
w → N

w → Th
[Z].
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Remark 5.6.1.

(i) Observe that a monoidM may be thought of as a [1-]category CM consisting
of a single object whose monoid of endomorphisms is given byM . In a similar vein,
a ring R, whose underlying additive group we denote by R	, may be thought of
as a 2-category consisting of the single 1-category CR� , together with the functors
CR� → CR� arising from left multiplication by elements of R.

(ii) The constructions of (i) suggest that whereas a monoid may be thought
of as a mathematical object with “one combinatorial dimension”, a ring should be
thought of as a mathematical object with “two combinatorial dimensions”. More-
over, in the case of an MLF k, these two combinatorial dimensions may be thought
of as corresponding to the two cohomological dimensions of the absolute Galois
group of k, while in the case of a CAF k, these two combinatorial dimensions may
be thought of as corresponding to the two real or topological dimensions of k. Thus,
from this point of view, it is natural to think of ring structures as corresponding
to holomorphic structures — i.e., both ring and holomorphic structures are based
on a certain complicated “intertwining of the underlying two combinatorial
dimensions”. So far, in the theory of §1, §2, §3, and §4 of the present paper, the
emphasis has been on “holomorphic structures”, i.e., of restricting ourselves to sit-
uations in which this “complicated intertwining” is rigid. By contrast, the various
ideas introduced in Definition 5.6 relate to the issue of disabling this rigidity —
i.e., of “passing from one holomorphic to two underlying combinatorial/topological
dimensions” — an operation which, as was discussed in Remarks 1.9.4, 2.7.3, has
the effect of leaving only one of the two combinatorial dimensions rigid. Put an-
other way, this corresponds to the operation of “passing from rings to monoids”;
this is the principal motivation for the term “mono-analyticization”.

The following result is elementary and well-known.

Proposition 5.7. (Local Volumes) Let k be either a mixed-characteristic
nonarchimedean local field or a complex archimedean field.

(i) Suppose that k is nonarchimedean [cf. Definition 3.1, (i)]. Write mk ⊆
Ok for the maximal ideal of Ok and M(k) for the set of compact open subsets
of k. Then:

(a) There exists a unique map

μk : M(k)→ R>0

that satisfies the following properties: (1) additivity, i.e., μk(A
⋃
B) =

μk(A)+μk(B), for A,B ∈M(k) such that A
⋂
B = ∅; (2) �-translation

invariance, i.e., μk(A+ x) = μk(A), for A ∈ M(k), x ∈ k; (3) normal-
ization, i.e., μk(Ok) = 1. We shall refer to μk(−) as the volume on k.

Also, we shall write μlog
k (−) def

= log(μk(−)) [where log denotes the natural

logarithm R>0 → R] and refer to μlog
k (−) as the log-volume on k. If the

residue field of k is of cardinality pf , where p is a prime number and f

a positive integer, then, for n ∈ Z, μlog
k (mn

k ) = −f · n · log(p).
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(b) Let x ∈ k×; set μ̇k(x)
def
= μk(x · Ok), μ̇

log
k (x)

def
= log(μ̇k(x)). Then for

A ∈M(k), we have μlog
k (x·A) = μlog

k (A)+μ̇log
k (x); in particular, if x ∈ O×

k ,

then μlog
k (x ·A) = μlog

k (A).

(c) Write logk : O×
k → k for the [p-adic] logarithm on k. Let A ⊆ O×

k be

an open subset such that logk induces a bijection A
∼→ logk(A). Then

μlog
k (A) = μlog

k (logk(A)).

(ii) Suppose that k is archimedean [cf. Definition 4.1, (i)]; thus, we have a
natural decomposition k× ∼= O×

k × R>0, where O×
k
∼= S1, and we note that the

projection k× → R>0 extends to a continuous map prR : k → R. Write

M(k) (respectively, M̆(k))

for the set of nonempty compact subsets A ⊆ k (respectively, A ⊆ k×) such that
A projects to a [compact] subset of R (respectively, O×

k ) which is the closure of its

interior in R (respectively, O×
k ). Then:

(a) The standard R-valued absolute value on k determines a Riemannian
metric [as well as a Kähler metric] on k that restricts to Riemannian met-

rics on O×
k

∼→ O×
k ×{1} ↪→ k× and R>0

∼→ {1}×R>0 ↪→ k×. Integrating

these metrics over the projection of A ∈ M(k) (respectively, A ∈ M̆(k))
to R (respectively, O×

k ) [i.e., “computing the length of A relative to these
metrics”] yields a map

μk : M(k)→ R>0 (respectively, μ̆k : M̆(k)→ R>0)

that satisfies the following properties: (1) additivity, i.e., μk(A
⋃
B) =

μk(A) + μk(B) (respectively, μ̆k(A
⋃
B) = μ̆k(A) + μ̆k(B)), for A,B ∈

M(k) (respectively, A,B ∈ M̆(k)) whose projections to R (respectively,
O×

k ) are disjoint; (2) normalization, i.e., μk(Ok) = 1 (respectively,

μ̆k(O×
k ) = 2π). We shall refer to μk(−) (respectively, μ̆k(−)) as the ra-

dial volume (respectively, angular volume) on k. Also, we shall write

μlog
k (−) def

= log(μk(−)) (respectively, μ̆log
k (−) def

= log(μ̆k(−))) and refer to

μlog
k (−) (respectively, μ̆log

k (−)) as the radial log-volume (respectively,
angular log-volume) on k.

(b) Let x ∈ k×; set μ̇k(x)
def
= μk(x · Ok), μ̇

log
k (x)

def
= log(μ̇k(x)). Then for

A ∈M(k) (respectively, A ∈ M̆(k)), we have μlog
k (x·A) = μlog

k (A)+μ̇log
k (x)

(respectively, μ̆log
k (x ·A) = μ̆log

k (A)); in particular, if x ∈ O×
k , then μ

log
k (x ·

A) = μlog
k (A).

(c) Write expk : k → k× for the exponential map on k. Let A ∈ M(k) be
such that expk(A) ⊆ O×

k , and, moreover, the maps prR and expk induce

bijections A
∼→ prR(A), A

∼→ expk(A). Then μlog
k (A) = μ̆log

k (expk(A)).
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Proof. First, we consider assertion (i). Part (a) follows immediately from well-
known properties of the Haar measure on the locally compact [additive] group k.
Part (b) follows immediately from the uniqueness portion of part (a). To verify
part (c) for arbitrary A, it suffices [by the additivity property of μk(−)] to verify
part (c) for A of the form x+mn

k for n a sufficiently large positive integer, x ∈ O×
k .

But then logk determines a bijection x + mn
k

∼→ logk(x) + mn
k , so the equality

μlog
k (A) = μlog

k (logk(A)) follows from the �-translation invariance of μlog
k (−). This

completes the proof of assertion (i). Assertion (ii) follows immediately from well-
known properties of the geometry of the complex plane. ©

Remark 5.7.1. The “log-compatibility” [i.e., part (c)] of Proposition 5.7, (i), (ii),
may be regarded as a sort of “integrated version” of the fact that the derivative of
the formal power series log(1 + X) = X + . . . at X = 0 is equal to 1. Moreover,
the opposite directions of the “arrows involved” [i.e., logarithm versus exponential]
in the nonarchimedean and archimedean cases is reminiscent of the discussion of
Remark 4.5.2.

Proposition 5.8. (Mono-analytic Reconstruction of Log-shells)

(i) Let Gk be the absolute Galois group of an MLF k. Then there exists a

functorial [i.e., relative to TG] “group-theoretic” algorithm for constructing
the images of the embeddings O�

k ↪→ Gab
k , k× ↪→ Gab

k of local class field theory
[cf. [Mzk9], Proposition 1.2.1, (iii), (iv)]. Here, the asserted “functoriality” is con-
travariant and induced by the Verlagerung, or transfer, map on abelianizations.
In particular, we obtain a functorial “group-theoretic” algorithm for reconstructing
the residue characteristic p [cf. [Mzk9], Proposition 1.2.1, (i)], the invariant
p∗ [i.e., p if p is odd; p2 if p is even — cf. Definition 5.4, (iii)], the cardinality
pf of the residue field of k [i.e., by adding 1 to the cardinality of the prime-to-p
torsion of k×], the absolute degree [k : Qp] [i.e., as the dimension of O×

k ⊗ Qp

over Qp], the absolute ramification index e = [k : Qp]/f , and the order pm of
the subgroup of p-th power roots of unity of k×.

(ii) The algorithms of (i) yield a functorial [i.e., relative to TG] “group-
theoretic” algorithm “Ob(TG) � G �→ �Γ×

non(G)” for constructing from G the
�Γ×
non-diagram in CMLF

TS	 [cf. §0]

O×
k
(G) ↪→ k

×
(G)⏐⏐� ⏐⏐�

k∼(G) ↪→ (k
×
)pf(G)

determined by the diagram of Definition 5.4, (iii), hence also the log-shell I(G) ⊆
k∼(G) of �Γ×

non(G).

(iii) The algorithms of (i) yield a functorial [i.e., relative to TG] “group-
theoretic” algorithm “Ob(TG) � G �→ Rnon(G)” for constructing from G the
topological group [which is isomorphic to R]

Rnon(G)
def
= (k

×
(G)/O×

k
(G))∧
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— where “∧” stands for the completion with respect to the order structure deter-
mined by the nonnegative elements, i.e., the image of O�

k
(G)/O×

k
(G) — equipped

with a distinguished element, namely, the “Frobenius element” F(G) ∈ Rnon(G)
[cf. [Mzk9], Proposition 1.2.1, (iv)], which we think of as corresponding to the el-
ement fG · log(pG) ∈ R, where pG, fG are the invariants “p”, “f” of (i). Finally,
these algorithms also yield a functorial, “group-theoretic” algorithm for constructing
the log-volume map

μlog(G) : M(k∼(G)G)→ Rnon(G)

— where “M(−)” is as in Proposition 5.7, (i); the superscript “G” denotes the
submodule of G-invariants; if we write mG, eG, p

∗
G for the invariants “m”, “e”,

“p∗” of (i), then one may think of μlog(G) as being normalized via the formula

μlog(G)(I(G)) = {−1−mG/fG + eG · log(p∗G)/log(pG)} · F(G)

— determined by composing the map μlog
k∼(G)G

of Proposition 5.7, (i), (a), with the

isomorphism R
∼→ Rnon(G) given by fG · log(pG) �→ F(G). That is to say, “μlog(G)”

and “M(k∼(G)G)” are well-defined despite the fact one does not have an algorithm
for reconstructing the field structure on k∼(G)G [i.e., unlike the situation discussed
in Proposition 5.7, (i)].

(iv) Let G = (C,
−→
C ) ∈ Ob(TM); write C∼ → C× for the [pointed] universal

covering of C× [cf. the definition of “k∼ � k×” in Definition 4.1, (i)]; thus, we
regard C∼ as a topological group [isomorphic to R]. Then the evident isomorphism

Lie
±(C∼) ∼= Lie

±(C×) allows one to regard k∼(G)
def
= C∼×C∼, k×(G)

def
= C××C∼

as objects of TB�. Write Seg(G) for the equivalence classes of compact line
segments on C∼ [i.e., compact subsets which are either equal to the closure of a
connected open set or are of cardinality one], relative to the equivalence relation
determined by translation on C∼. Then forming the union of two compact line
segments whose intersection is of cardinality one determines a monoid structure
on Seg(G) with respect to which Seg(G)

∼→ R≥0. In particular, this monoid structure
determines a structure of topological monoid on Seg(G).

(v) The constructions of (iv) yield a functorial [i.e., relative to TM] algo-
rithm “Ob(TM) � G �→ �Γ×

arc(G)” for constructing from G the �Γ×
arc-diagram in

Chol
TB	 [cf. §0]

k∼(G) = C∼ × C∼ � k×(G) = C× × C∼

determined by the diagram of Definition 5.4, (v), hence also the log-shell

I(G) def
= {(a · x, b · x) | x ∈ IC∼ ; a, b ∈ R; a2 + b2 = 1} ⊆ k∼(G)

— where we write IC∼ ⊆ C∼ for the unique compact line segment on C∼ that is
invariant with respect to the action of ±1 and, moreover, maps bijectively, except

for its endpoints, to C× — of �Γ×
arc(G).
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(vi) The constructions of (iv) yield a functorial [i.e., relative to TM] al-

gorithm “Ob(TM) � G �→ Rarc(G)” for constructing from G the topological
group [which is isomorphic to R]

Rarc(G)
def
= Seg(G)gp

equipped with a distinguished element, namely, the “Frobenius element” F(G) ∈
Seg(G) ⊆ Rarc(G) determined by a compact line segment that maps bijectively,
except for its endpoints, to C×; we shall think of F(G) as corresponding to 2π ∈
R. Finally, these algorithms also yield a functorial, algorithm for constructing the
radial and angular log-volume maps

μlog(G) : M(k∼(G))→ Rarc(G); μ̆log(G) : M̆(k∼(G))→ Rarc(G)

— where “M(−)”, “M̆(−)” are as in Proposition 5.7, (ii); if, in the style of the
definition of I(G) in (v), we write ∂IC∼ for the boundary [i.e., the two endpoints]
of IC∼ and

O×
k∼(G)

def
= {(a · x, b · x) | x ∈ ∂IC∼ ; a, b ∈ R; a2 + b2 = π−2} ⊆ k∼(G)

[so one has a natural bijection R>0 ×O×
k∼(G)

∼→ k∼(G)\{0}], then one may think

of μlog(G), μ̆log(G) as being normalized via the formulas

μlog(G)(I(G)) = μ̆log(G)(O×
k∼(G))− log(2) · F(G)/2π = log(π) · F(G)/2π

— determined by composing the maps μlog
k∼(G), μ̆

log
k∼(G) of Proposition 5.7, (ii), (a),

with the isomorphism R
∼→ Rarc(G) given by 2π �→ F(G). That is to say, “μlog(G)”,

“μ̆log(G)”, “M(k∼(G))”, and “M̆(k∼(G))” are well-defined despite the fact one
does not have an algorithm for reconstructing the field structure on k∼(G) [i.e.,
unlike the situation discussed in Proposition 5.7, (ii)].

(vii) Let Z be an elliptically admissible hyperbolic orbicurve over an alge-

braic closure of Q; V� ∈ Ob(Th�[Z]) [cf. the notation of Definition 5.1, (iv);

Definition 5.4, (i)]; W ∈ Ob(Th[Z]) the mono-analyticization of V� [cf. the
notation of Definition 5.6, (ii)]; w ∈W non (respectively, w ∈W arc). Write

An
[N	

w ]

for the category whose objects consist of an object of Th[Z], together with the

object of Orb(CMLF
TS	 [�Γ×

non]) (respectively, Orb(Chol
TB	 [�Γ×

arc])) given by applying the

algorithm “G �→ �Γ×
non(G)” of (ii) (respectively, “G �→ �Γ×

arc(G)” of (v)) to the object

of Orb(TG) (respectively, Orb(TM)) obtained by projecting [at w — cf. Defini-

tion 5.6, (ii)] the given object of Th[Z], and whose morphisms are the morphisms

induced by Th
[Z]. Thus we obtain a natural equivalence of categories

Th
[Z]

∼→ An
[N	

w ]

together with a “forgetful functor”

ψAn�	
w,ν : An[N	

w ]→ N	
w
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[cf. Definition 5.6, (iii), (iv)] for each vertex ν of �Γ×
w

def
= �Γ×

non (respectively,
�Γ×
w

def
= �Γ×

arc), and a natural transformation

ιAn�	
w,ε : ψAn�	

w,ν1
→ ψAn�	

w,ν2

for each edge ε of �Γ×
w running from a vertex ν1 to a vertex ν2. Finally, we shall

omit the symbol “�” from the above notation to denote the result of composing
the functors and natural transformations discussed above with the natural functor
N	

w → N
w ; also, we shall replace the symbol “An” by the symbol “�” in

the superscripts of the above notation to denote the result of restricting the functors
and natural transformations discussed above to Th

[Z].

Proof. The various assertions of Proposition 5.8 are immediate from the definitions
and the references quoted in these definitions. ©

Remark 5.8.1.

(i) One way to summarize the archimedean portion of Proposition 5.8 is as
follows: Suppose that one starts with the [Aut-]holomorphic monoid given by an
isomorph of O�

C [i.e., where one thinks of the [Aut-]holomorphic structure on O�
C as

consisting of a(n) [Aut-]holomorphic structure on (O�
C )

gp = C×] arising as the O�
AX

for some X ∈ Ob(EA). The operation ofmono-analyticization consists of “forgetting
the rigidification of the [Aut-]holomorphic structure furnished by X” [cf. Remark
2.7.3]. Thus, applying the operation of mono-analyticization to an isomorph of O�

C

yields the object of TM consisting of an isomorph of the topological monoid O�
C

equipped with the submonoid corresponding to O�
C ∩ R>0, which is non-rigid, in

the sense that it is subject to dilations [cf. Remark 2.7.3]. On the other hand:

From the point of view of the theory of log-shells, one wishes to per-
form the operation of mono-analyticization — i.e., of “forgetting the [Aut-
]holomorphic structure” — in such a way that one does not obliterate the
metric rigidity [i.e., the “applicability” of the theory of Proposition 5.7]
of the log-shells involved.

This is precisely what is achieved by the use of the category TB� — cf., especially,
the construction of the natural functor Chol

TH	 → Chol
TB	 in Definition 5.6, (iv); the

constructions of Proposition 5.8, (iv), (v), (vi). That is to say, the “metric rigidity”
of log-shells is preserved even after mono-analyticization by thinking of the “metric
rigidity” of the original [Aut-]holomorphic O�

C as being constituted by

“the metric rigidity of S1 ∼= O×
C , together with the rotation automor-

phisms of Lie(C×) of order 4” [cf. Definition 5.6, (iv)].

That is to say, this approach to describing “[Aut-]holomorphic metric rigidity” has
the advantange of being “immune to mono-analyticization” — cf. the construction
of k∼(G) as “C∼ × C∼” in Proposition 5.8, (iv). On the other hand, it has the
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disadvantage that it is not compatible [as one might expect from any sort of mono-
analyticization operation!] with preserving the complex archimedean field structure
of “k∼”. That is to say, the two factors of C∼ appearing in the product “C∼×C∼”
— which should correspond to the imaginary and real portions of such a complex
archimedean field structure — may only be related to one another up to a {±1}
indeterminacy, an indeterminacy that has the effect of obliterating the ring/field
structure involved.

(ii) It is interesting to note that the discussion of the archimedean situation
of (i) is strongly reminiscent of the nonarchimedean portion of Proposition 5.8,
which allows one to construct metrically rigid log-shells which are immune to
mono-analyticization, but only at the expense of sacrificing the ring/field
structures involved.

Definition 5.9.

(i) By pulling back the various functorial algorithms of Proposition 5.8 defined

on TG, TM via the mono-analyticization functors TGsB → TG, EA→ TM, we
obtain functorial algorithms defined on TGsB, EA. In particular, if, in the notation
of Definition 5.1, (iii) (respectively, Definition 5.1, (iv); Definition 5.6, (ii)), V�

(respectively, V�; W) is a global (respectively, panalocal; mono-analytic) Galois-

theater, then for each v ∈ V def
= V /Aut(Π) (respectively, v ∈ V ; v ∈ W ), we obtain

— i.e., by applying the functorial algorithms “Rnon(−)”, “Rarc(−)” of Proposition
5.8, (iii), (vi) — [orbi-]topological groups [isomorphic to R]

Rv

equipped with distinguished Frobenius elements Fv ∈ Rv. Moreover, if we write V

for the unique global element of V � def
= V

�
/Aut(Π) (respectively, V �; W�), then

we obtain a(n) [orbi-]topological group [isomorphic to R]

R�V
⊆
∏
v

Rv

— where the product ranges over v ∈ V (respectively, v ∈ V ; v ∈ W ) — obtained
as the “graph” of the correspondences between the Rv’s that relate the Fv/(fv ·
log(pv)) [where “fv”, “pv” are the invariants “fG”, “pG” of Proposition 5.8, (iii)]
for nonarchimedean v to the Fv/2π for archimedean v. Thus, R�V

is equipped with
a distinguished element F�V

∈ R�V
[which we think of as corresponding to 1 ∈ R],

and we have natural isomorphisms of [orbi-]topological groups R�V

∼→ Rv that map
F�V

�→ Fv/(fv · log(pv)) for nonarchimedean v and F�V
�→ Fv/2π for archimedean

v [where we note that division of elements of the abstract topological group Rv by a
positive real number is well-defined].

(ii) In the notation of Definition 5.1, (v) (respectively, Definition 5.1, (vi)),
let M� (respectively, M�) be a global (respectively, panalocal) T-pair, for T ∈
{TF,TM}. In the non-resp’d case, write V � def

= V
�
/Aut(Π). Then the various

log-volumes defined in Proposition 5.7, (i), (ii), determine maps

{μlog
v : M(MΠv

v )→ Rv}v∈V ; {μ̆log
v : M̆(MΠv

v )→ Rv}v∈V arc
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— where we write M(MΠv
v ), [when v ∈ V arc] M̆(MΠv

v = Mv) for the set of sub-
sets determined [via the reference isomorphisms “ψv” of Definition 5.1, (v); the
“forgetful functors” of Corollary 5.2, (iv), (vii)] by intersecting with MT(Π, v)

Πv ⊆
kNF(Π, v)

Πv the corresponding collection of subsets of M(kNF(Π, v)
Πv ), [when v ∈

V arc] M̆(k
×
NF(Π, v)

Πv ).

(iii) In the non-resp’d [i.e., global] case of (ii), suppose further that T = TF.
Then for any �-line bundle L	 on M�, one verifies immediately that there exist
morphisms of �-line bundles on M�

ζ : L	
1 → L	; ζ0 : L	

1 → L	
0

such that L	
0 is isomorphic to the trivial �-line bundle. Thus, for each v ∈

V , we obtain isomorphisms of MΠv
v -vector spaces ζ[v] : L	

1 [v]
∼→ L	[v], ζ0[v] :

L	
1 [v]

∼→ L	
0 [v]. Moreover, by applying these isomorphisms, we obtain subsets

Sv ⊆ L	
0 [v] for each v ∈ V as follows: If v ∈ V non, then we take Sv to be the subset

determined by the closure of the image [via the various ρv, for v ∈ V lying over v]
of L	[]. If v ∈ V arc, then we take Sv to be the subset determined by the set of
elements of L	[v] for which | − |L�[v] ≤ 1. Now set

μlog
� (L	) def

=
∑

v∈V arc

2μlog
v (Sv)

�/dmod
v +

∑
v∈V non

μlog
v (Sv)

�/dmod
v ∈ R�V

— where dmod
v is as in Definition 5.1, (ii), for v ∈ V ∼= V(Fmod); the superscript

“” denotes the result of applying the natural isomorphisms R�V

∼→ Rv of (i); we
note that the sum is finite, since μlog

v (Sv) = 0 for all but finitely many v ∈ V . As
is well-known [or easily verified!] from elementary number theory — i.e., the so-
called “product formula”! — it follows immediately that [as the notation suggests]

“μlog
� (L	)” depends only on the isomorphism class of L	 and, in particular, is

independent of the choice of ζ, ζ0. Finally, by applying the equivalences of categories
of Definition 5.3, (ii), (iii), it follows immediately that we may extend the R�V

-
valued function [on isomorphism classes of �-line bundles on M�]

μlog
� (−)

to a function that is also defined on isomorphism classes of �-line bundles on M�,
for arbitrary T ∈ {TF,TM,TLG}.

Remark 5.9.1. Just as in Remark 5.3.1, one may define — in the style of
Corollary 5.2 — a category An

�[Th•T, μ], where • ∈ {,�}, whose objects are data
of the form

M•μ
T (Π)

def
= (M•

T(Π),

{(Rv, μ
log
v (Πv)(−))}v∈V non , {(Rv, μ

log
v (Xv)(−), μ̆log

v (Xv)(−))}v∈V arc)

— where the “(Πv)’s”, “(Xv)’s” preceding the “(−)’s” are to be understood as
denoting the log-volumes associated, as in Definition 5.9, (ii), to the various con-
stituent data of M•

T(Π) — for Π ∈ Ob(EA�), and whose morphisms are the mor-
phisms induced by morphisms of EA�. In a similar vein, by combining the data
that constitutes an object of An�[Th�T ] with the data

{(Rv, μ
log
v (Πv)(−))}v∈V , {(Rv, μ

log
v (Xv)(−), μ̆log

v (Xv)(−))}v∈V arc
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— where the “(Πv)’s”, “(Xv)’s” preceding the “(−)’s” are to be understood as
denoting the log-volumes associated, as in Definition 5.9, (ii), to the various con-

stituent data of the original object of An�[Th�T ] — and considering the morphisms

induced by morphisms of Th�, we obtain a category An
�[Th�T , μ]. Finally, by com-

bining the constructions of Definitions 5.3, 5.9; Remark 5.3.1, we obtain a category
An

�[Th�T , |�|, μ] whose objects are data of the form

M�|
|μ
T (Π)

def
= (M�|
|

T (Π),R�V
,

{μlog
v (Π)(−)�}v∈V non , {μlog

v (Π)(−)�, μ̆log
v (Π)(−)�}v∈V arc , μlog

� (Π)(−))

— where the “(Π)’s” preceding the “(−)’s” are to be understood as denoting the
log-volumes associated, as in Definition 5.9, (ii), (iii), to the various constituent

data of M�|
|
T (Π) — for Π ∈ Ob(EA�), and whose morphisms are the morphisms

induced by morphisms of EA�. Then, just as in Corollary 5.2, Remark 5.3.1, one
obtains sequences of natural functors

EA� → An
�[Th•T, μ]→ An

�[Th•T]→ Th
•
T → Th

•

Th
� → An

�[Th�T , μ]→ An
�[Th�T ]→ Th

�
T → Th

�

EA� → An
�[Th�T , |�|, μ]→ An

�[Th�T , |�|]→ Th
�
T → EA�

— where the first arrows are the functors arising from the definitions of the cat-
egories “An�[−, μ]”, “An�[−, μ]”; with the exception of the second to last arrow
of the first line of the above display in the case where • = �, every arrow of the
above display is an equivalences of categories [cf. Corollary 5.2, (i), (iv), (v), (vii);
Remark 5.3.1].

Remark 5.9.2. The significance of measuring [log-]volumes in units that belong
to the copies of R determined by “Rnon(−)”, “Rarc(−)” lies in the fact that such
measurements may compared on both sides of the “log-wall”, as well as in a fashion
compatible with the operation ofmono-analyticization [cf. the discussion of Remark
3.7.7; Corollary 5.10, (ii), (iv), below].

We are now ready to state the main result of the present §5 [and, indeed, of
the present paper!].

Corollary 5.10. (Fundamental Properties of Log-shells) In the notation
of Corollary 5.5; Proposition 5.8, (vii), write

E def
= Th

[Z]; An
[N	] def=

∏
v∈V(Fmod)

An
[N	

v ]

— where the product is a fibered product of categories over E = Th
[Z]. Consider



146 SHINICHI MOCHIZUKI

the diagram of categories D

. . . N	
v′ N	

v N	
v′′ . . .

. . .
⏐⏐� ⏐⏐� ⏐⏐� . . .

. . . N
v′ N

v N
v′′ . . .

. . . ↘
⏐⏐� ↙ . . .

E⏐⏐�
An

[N	]⏐⏐�
E

— where we regard the rows of D as being indexed by the integers 3, 4, 5, 6, 7
[relative to which we shall use the notation “D

≤n” — cf. Corollary 5.5]; the ar-

rows of D
≤5 are those discussed in Definition 5.6, (iii), (iv); the arrows of the

rows numbered 5, 6, 7 of D are the arrows deterimined by the equivalence of cat-
egories of Proposition 5.8, (vii). Note, moreover, that we have a natural mono-
analyticization morphism [consisting of arrows between corresponding vertices
belonging to rows indexed by the same integer!] of diagrams of categories

D•
≥3 → D

[cf. Definition 5.4, (iv), (vi), as well as the discussion, involving panalocalization
and mono-analyticization functors, of Corollary 5.5, (vi); Definition 5.6, (ii), (iii),
(iv)] — where the subscript “≥ 3” refers to the portion involving the rows numbered

3, 4, 5, 6, 7, and we take the arrow An
•[X ]→ An

[N	] to be the arrow induced, via
the equivalence of categories κAn• of Corollary 5.5 and the equivalence of categories
of Proposition 5.8, (vii), by the mono-analyticization functor E• → E; write

D•

for the diagram of categories obtained by gluing D•, D via this mono-analyticization
morphism. We shall refer to the various isomorphisms between composites of func-
tors inherent in the definition of the mono-analyticization morphism D•

≥3 → D

[e.g., the natural isomorphisms between the functors associated to the two length 2
paths N	

v → N	
v → N

v , N	
v → Nv → N

v , where v ∈ V(Fmod), in the third and
fourth rows of D•] as mono-analyticization homotopies. We shall refer to the
natural transformation “ι	v,ε” of Corollary 5.5, (iii), as a shell-homotopy [at v]

if ε is a shell-arrow [cf. Definition 5.4, (iii), (v)]; we shall refer to “ι	v,ε” as a log-

homotopy [at v] if the initial vertex of ε is a post-log vertex. If v ∈ V(Fmod)non

(respectively, v ∈ V(Fmod)arc), then we shall refer to as a •-shell-container struc-
ture on an object S ∈ Ob(N	

v ) the datum of an object S′ ∈ Ob(X ) together with an

isomorphism S
∼→ λ	v,ν(S

′), where ν is the terminal (respectively, initial) vertex of
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the shell-arrow of �Γ×
v ; an object of N	

v equipped with a •-shell-container structure
will be referred to as a •-shell-container. Note that the shell-homotopies deter-
mine •-log-shells “I” [cf. Definition 5.4, (iii), (v)] inside the underlying object of
TS� (respectively, TH�) determined by each •-shell-container. If v ∈ V(Fmod)non

(respectively, v ∈ V(Fmod)arc), and S is an object of N	
v or N	

v , then we shall
write SGal for the topological submodule of Galois-invariants of (respectively, the
topological submodule constituted by) the underlying object of TS� (respectively,
TH� or TB�) determined by S.

(i) (Finite Log-volume) Let v ∈ V(Fmod)non (respectively, v ∈ V(Fmod)arc).
For each •-shell-container S ∈ Ob(N	

v ), SGal is equipped with a well-defined log-
volume (respectively, well-defined radial and angular log-volumes) [cf. Defini-
tion 5.9, (ii)] that depend(s) only on the •-shell-container structure of S. Moreover,
the •-log-shell is contained in SGal and [relative to these log-volumes] is of finite
log-volume (respectively, finite radial log-volume).

(ii) (Log-Frobenius Compatibility of Log-volumes) For v, S as in (i),
the log-volume (respectively, radial log-volume), computed “at � ∈ L”, is com-
patible [cf. part (c) of Proposition 5.7, (i), (ii)], relative to the relevant log-
homotopy, with the log-volume (respectively, angular log-volume), computed
“at �+ 1 ∈ L”.

(iii) (Panalocalization) The log-volumes of (i), as well as the construction
of the •-log-shells from the various shell-homotopies, are compatible with the
panalocalization morphism D� → D� of Corollary 5.5, (vi).

(iv) (Mono-analyticization) If v ∈ V(Fmod)non (respectively, v ∈ V(Fmod)arc),
then we shall refer to as a •�-shell-container structure on an object S ∈ Ob(N	

v )
the datum of an object S′ ∈ Ob(X ) together with an isomorphism from S to the
image in N	

v of λ	v,ν(S
′), where ν is the terminal (respectively, initial) vertex of

the shell-arrow of �Γ×
v ; an object of N	

v equipped with a •�-shell-container struc-
ture will be referred to as a •�-shell-container. Note that the shell-homotopies
determine •�-log-shells “I” [cf. Definition 5.4, (iii), (v)] inside each •�-shell-
container, as well as a well-defined log-volume (respectively, well-defined radial
and angular log-volumes) on the Gal-superscripted module associated to a •�-
shell-container [cf. (i)]. These •�-log-shells and log-volumes depend only on the
mono-analyticized data [i.e., roughly speaking, the data contained in D], in the
following sense [cf., especially, (d)]:

(a) (Mono-analytic Cores) For n = 5, 6, 7, D•
≤n admits a natural structure

of core on the subdiagram of categories of D• determined by the union
D•

≤n−1

⋃D•
≤n — i.e., loosely speaking, E, An[N	] “form cores” of the

functors in D•.

(b) (Mono-analytic Telecores) As v ranges over the elements of V(Fmod)

and ν over the elements of �Γ×
v , the restrictions

φAn�	
v,ν : An[N	]→ N	

v

to An
[N	] of the “forgetful functors” ψAn�	

v,ν of Proposition 5.8,

(vii), give rise to a telecore structure TAn� on D•
≤5

⋃D•
≤6, whose
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underlying diagram of categories we denote by DAn� , by appending to

D•
≤6 telecore edges corresponding to the arrows φAn�	

v,ν from the core

An
[N	] to the vertices of the row of D indexed by the integer 3. More-

over, the respective family of homotopies of TAn� and the observables Slog,
Slog	 of Corollary 5.5, (iii), are compatible.

(c) (Mono-analytic Contact Structures) For v ∈ V(Fmod), ν ∈ �Γ×
v ,

there is a natural isomorphism ηv,ν from the composite functor deter-

mined by the path γ1v,ν [of length 6]

X
λ�
v,ν−→ N	

v −→ Nv −→ E•⏐⏐�
E −→ An

[N	]
φAn��
v,ν−→ N	

v

on �ΓD
An� — where the first three arrows lie in D•

≤5, the fourth arrow

arises from the mono-analyticization morphism D•
≥3 → D, and the

fifth arrow lies in D — to the composite functor determined by the path
γ0v,ν [of length 2]

X
λ�
v,ν−→ N	

v −→ N	
v

on �ΓD
An� . Moreover, the resulting homotopies ηv,ν , (η


v,ν)

−1, together
with the mono-analyticization homotopies and the homotopies on

DAn� arising from the “ιAn�	
v,ε ” [cf. Proposition 5.8, (vii)], generate a

contact structure HAn� on TAn� that is compatible with the telecore
and contact structures TAn• , HAn• of Corollary 5.5, (ii), as well as with
the homotopies of the observables Slog, Slog	 of Corollary 5.5, (iii), that

arise from the “ι	v,ε”, “ιv,ε” indexed by ε ∈ �Γ×
v [not �Γlog

v !].

(d) (Mono-analytic Log-shells) If v ∈ V(Fmod)non (respectively, v ∈
V(Fmod)arc), then we shall refer to as a �-shell-container structure

on an object S ∈ Ob(N	
v ) the datum of an object S′ ∈ Ob(An[N	]),

together with an isomorphism from S
∼→ φAn�	

v,ν (S′), where ν is the ter-

minal (respectively, initial) vertex of the shell-arrow of �Γ×
v ; an object of

N	
v equipped with a �-shell-container structure will be referred to as a

�-shell-container. Note that the portion of the data that constitutes an
object of An[N	

v ] determined by the shell-arrow gives rise to a �-log-
shell “I” inside each �-shell-container, as well as to a log-volume on the
Gal-superscripted module associated to a �-shell-container [cf. Proposition
5.8, (ii), (iii), (v), (vi)]. Finally, every •�-shell-container structure on
an object of N 	

v determines, by applying the isomorphism ηv,ν of (c), a
corresponding �-shell-container structure on the object; this correspon-
dence between •�-, �-shell-container structures is compatible with the
•�-, �-log-shells, as well as with the various log-volumes, determined,
respectively, by these •�-, �-shell-container structures.
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Proof. The various assertions of Corollary 5.10 are immediate from the definitions,
together with the references quoted in the statement of Corollary 5.10. Here, we
note that in the nonarchimedean portion of part (c) of assertion (iv), in order to
construct the isomorphisms ηv,ν , it is necessary to relate the construction of the
base field as a subset of abelianizations of various open subgroups of the Galois
group [cf. Proposition 5.8, (i)] to the Kummer-theoretic construction of the base
field as performed in Theorem 1.9, (e). This may be achieved by applying the
group-theoretic construction algorithms of Corollary 1.10 — i.e., more precisely, by
combining the “fundamental class” natural isomorphism of Corollary 1.10, (a) [cf.
also the first isomorphism of the display of Corollary 1.10, (b)], with the cyclotomic
natural isomorphism of Corollary 1.10, (c) [cf. also Remark 1.10.3, (ii)]. Put another
way, this series of algorithms may be summarized as a “group-theoretic algorithm
for constructing the reciprocity map of local class field theory”. ©

Remark 5.10.1.

(i) Note that, in the notation of Corollary 5.10, (iv), (c), by pre-composing
ηv,ν with the telecore arrow φ� : An•[X ] → X of Corollary 5.5, (ii), and applying
the coricity of Corollary 5.5, (i), together with an appropriate mono-analyticization
homotopy, we obtain that one may think of ηv,ν as yielding a homotopy from the
path

An
•[X ] −→ An

[N	]
φAn��
v,ν−→ N	

v

— which is somewhat simpler [hence perhaps easier to grasp intuitively] than the
domain path of the original homotopy ηv,ν — to the path

An
•[X ]

φ�−→ X
λ�
v,ν−→ N	

v −→ N	
v

[i.e., obtained by simply pre-composing γ0v,ν with φ�].

(ii) Note that the isomorphism of (i) between the two composites of functors
An

•[X ] → N	
v depends only on “Galois-theoretic/Aut-holomorphic data”. In

particular, one may construct — in the style of Remarks 5.3.1, 5.9.1 — a category
“An•[X , η]” whose objects consist of the data of objects of An•[X ], together with
the algorithms used to construct the various homotopies of (i) arising from ηv,ν
[i.e., associated to the various v ∈ V(Fmod), ν ∈ �Γ×

v ], and whose morphisms are the
morphisms induced by morphisms of An•[X ]. That is to say, objects of An•[X , η]
consist of objects of An

•[X ], together with “group-theoretic algorithms encoding
the reciprocity law of local class field theory at the nonarchimedean primes and the
archimedean analogue of these algorithms at the archimedean primes”. Moreover,
the “forgetful functor”

An
•[X , η] ∼→ An

•[X ]

determines a natural equivalence of categories. Finally, one verifies immediately
that one may replace “An•[X ]” by “An•[X , η]” in Corollaries 5.5 and 5.10 with-
out affecting the validity of their content — e.g., without affecting the coricity of
Corollary 5.5, (i). We leave the routine details to the interested reader.

Remark 5.10.2. The significance of the theory of log-shells as summarized in
Corollary 5.10 — and, more generally, of the entire theory of the present paper —
may be understood in more intuitive terms as follows.
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(i) One important aspect of the classical theory of line bundles on a proper
curve [over a field] is that although such line bundles exhibit a certain rigidity arising
from the properness of the curve, this rigidity is obliterated by Zariski localization on
the curve. Put another way, to work with line bundles up to isomorphism amounts
to allowing oneself to “multiply the line bundle by a rational function”, i.e., to work
up to rational equivalence. Although rational equivalence does not obliterate the
global degree of a line bundle over the entire proper curve, if one thinks of a line
bundle as a collection of integral structures at the various primes of the curve, then
rational equivalence has the effect of “rearranging these integral structures” at the
various primes.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
�

�

�

v1

�

�
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�
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. . .
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�
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If one restricts oneself to working globally on the proper curve, then such “rear-
rangements” are coordinated with one another in such a way as to preserve, for
instance, the global degree; on the other hand, if one further imposes the condition
of compatibility with Zariski localization, then such “coordination of integral struc-
ture” mechanisms are obliterated. By contrast, the “MF∇-objects” of [Falt] satisfy
a certain “extraordinary rigidity” with respect to Zariski localization that reflects
the fact that they form a category that is equivalent to a certain category of Galois
representations. From the point of view of thinking of line bundles as collections
of integral structures at the various primes, the rigidity of MF∇-objects may be
thought of as a sort of “freezing of the integral structures” at the various
primes in a fashion that is immune to the gluing indeterminacies that occur for line
bundles upon execution of Zariski localization operations. Put another way, this
rigidity may be thought of as a sort of “immunity to social isolation” from
other primes. In the context of Corollary 5.10, this property corresponds to the
panalocalizability [i.e., Corollary 5.10, (iii)] of [the integral structures constituted
by] log-shells.
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(ii) At this point, it is useful to observe that, at least from an a priori point of
view, there exist other ways in which one might attempt to “freeze the local integral
structures”. For instance, instead of working strictly with line bundles, one could
consider the ring structure of the global ring of integers of a number field [which
gives rise to the trivial line bundle — cf. Definition 5.3, (ii)]; that is to say, by con-
sidering ring structures, one obtains a “rigid integral structure” that is compatible
with Zariski localization — i.e., by considering the ring structure “O” of the local
rings of integers [cf. Remark 5.4.3]. Indeed, log-shells may be thought of — and,
moreover, were originally intended by the author — as a sort of approximation
of these local integral structures “O” [cf. Remark 5.4.2]. On the other hand, this
sort of rigidification of local integral structures that makes essential use of the ring
structure is no longer compatible with the operation of mono-analyticization [cf.
Remark 5.6.1], i.e., of forgetting one of the two combinatorial dimensions “�”, “�”
that constitute the ring structure. Thus, another crucial property of log-shells is
their compatibility with mono-analyticization, as documented in Corollary 5.10,
(iv) [cf. also Remarks 5.8.1, 5.9.2; Definition 5.9, (iii)], i.e., their “immunity to
social isolation” from the given ring structures. From the point of view of
the theory of §1, §2, §3, §4, such ring structures may be thought of as “arithmetic
holomorphic structures” [i.e., outer Galois actions at nonarchimedean primes and
Aut-holomorphic structures at archimedean primes] — cf. Remark 5.6.1. Thus, if
one thinks of the result of forgetting such “arithmetic holomorphic structures” as
being like a sort of “arithmetic real analytic core” on which various “arithmetic
holomorphic structures” may be imposed — i.e., a sort of arithmetic analogue of
the underlying real analytic surface of a Riemann surface, on which various holo-
morphic structures may be imposed [cf. Remark 5.10.3 below] — then the theory
of mono-analyticization of log-shells guarantees that log-shells remain meaningful
even as one travels back and forth between various “zones of arithmetic holo-
morphy” joined — in a fashion reminiscent of spokes emanating from a core —
by a single “mono-analytic core”.

. . .
arith.
hol.

str. A

. . .

arith. hol. str. B
mono-analytic

core arith. hol. str. C

. . .
arith.
hol.

str. D

. . .
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(iii) Another approach to constructing “mono-analytic rigid local integral struc-
tures” is to work with the local monoids “O�” [i.e., as opposed to “log(O×)”, as
was done in the case of log-shells]. Here, “O�” may be thought of as a [possibly
twisted] product of “O×” with some “valuation monoid” that consists of a sub-
monoid of R≥0. For instance, in the [complex] archimedean case, O�

C
∼= O×

C ×R>0.
On the other hand [cf. Remark 5.6.1], the dimension constituted by the “valua-
tion monoid” R>0 fails to retain its rigidity when subjected to the operation of
mono-analyticization. The resulting “dilations” of R>0 [i.e., by raising to the λ-
th power, for λ ∈ R>0] may be thought of as being like Teichmüller dilations of
the mono-analytic core discussed in (ii) above [cf. also the discussion of Remark
5.10.3 below]. If, moreover, one is to retain a coherent theory of global degrees
of arithmetic line bundles in the presence of such “arithmetic Teichmüller dila-
tions”, then [in order to preserve the “product formula” of elementary number
theory] it is necessary to subject the valuation monoids at nonarchimedean primes
to “arithmetic Teichmüller dilations” which are “synchronized” with the dilations
that occur at the archimedean primes. From the point of the theory of Frobenioids
of [Mzk16], [Mzk17], such “arithmetic Teichmüller dilations” at nonarchimedean
primes are given by the unit-linear Frobenius functor studied in [Mzk16], Proposi-
tion 2.5. Thus, in summary:

In order to guarantee the rigidity of the local integral structures under
consideration when subject to mono-analyticization, one must abandon
the “valuation monoid” portion of “O�”, i.e., one is obliged to restrict
one’s attention to the “O×” portion of “O�”.

On the other hand, within each zone of arithmetic holomorphy [cf. (ii)], one wishes
to consider various diverse modifications of integral structure on the “rigid standard
integral structures” that one constructs. Since this is not possible if one restricts
oneself to “O×” regarded multiplicatively, one is thus led to working with “log(O×)”
— i.e., in effect with the log-shells discussed in Corollary 5.10. Thus, within each
zone of arithmetic holomorphy, one wishes to convert the “�” operation of “O×”
into a “�” operation, i.e., by applying the logarithm. On the other hand, when
one leaves that zone of arithmetic holomorphy, one wishes to return again to work-
ing with “O×” multiplicatively, so as to achieve compatibility with the operation of
mono-analyticization. Here, we note that �-line bundles — i.e., in other words, line
bundles regarded from an idèlic point of view — have the virtue of being defined
using only the multiplicative structure of the rings involved [cf. the theory of Frobe-
nioids of [Mzk16], [Mzk17]], hence of being compatible with mono-analyticization.
[We remark here that the detailed specification of precisely which monoids we wish
to use when we apply the theory of Frobenioids is beyond the scope of the present
paper.] By contrast, although �-line bundles — i.e., line bundes regarded as mod-
ules of a certain type — are not compatible with mono-analyticization, they have
the virtue of allowing us to relate, within each zone of arithmetic holomorphy, the
additive module “log(O×)” to the theory of �-line bundles [which is compatible
with mono-analyticization]. Thus, in summary:

This state of affairs obliges one to work in a “framework” in which one
may pass freely, within each zone of arithmetic holomorphy, back and
forth between “�” and “�” via application of the logarithm at the various
nonarchimedean and archimedean primes.



TOPICS IN ABSOLUTE ANABELIAN GEOMETRY III 153

On the other hand, since the logarithm is not a ring homomorphism, it is not
at all clear, a priori, how to establish a framework in which one may apply the
logarithm at will [within each zone of arithmetic holomorphy], without obliterating
the foundations [e.g., scheme-theoretic!] underlying the mathematical objects
that one works with, and, moreover, [a related issue — cf. Remark 5.4.1] without
obliterating the crucial global structure of the number fields involved [which is
necessary to make sense of global arithmetic line bundles!].

A solution to this problem of finding an appropriate “framework” as dis-
cussed above is precisely what is provided by “Galois theory” [cf. also
the “log-invariant log-volumes” of Corollary 5.10, (i), (ii)] — which is both
global and “log-invariant”; the sufficiency of this “framework” [from the
point of view of carrying out various arithmetic operations involving line
bundles, as discussed above] is precisely what is guaranteed by the mono-
anabelian theory of Corollaries 3.6, 4.5, 5.5.

� � �
log ↗ ↘ log

�

�

�

core:
some fixed

arithmetic holomorphic
structure

�

�

�

log ↖ ↙ log

. . .

At a more philosophical level, the “log-invariant core” furnished by “Galois theory”
[cf. the remarks concerning telecores following Corollaries 3.6, 3.7] and supported,
in content, by “mono-anabelian geometry” may be thought of as a “geometry over
F1” [i.e., over the fictitious field of absolute constants in Z] with respect to which
the logarithm is “F1-linear”.

(iv) Note that in order to work with �-line bundles [cf. the discussion of (iii);
Definition 5.3, (ii)], it is necessary [unlike the case with �-line bundles] to work
with all the primes of a number field. Indeed, to work with “line bundles” in a
fashion that allows one to ignore some nonempty set of primes of the number field
amounts to working with a notion of rational equivalence that involves some proper
subgroup of the multiplicative group F× associated to the number field F . On the
other, the only subgroups of F× that [if one considers the union of F× with {0}]
are closed under addition are the subgroups of F× that arise from subfields of F ,
i.e., which correspond, in effect, to �-line bundles as in Definition 5.3, (ii).

(v) The importance of the process of mono-analyticization in the discussion of
(ii), (iii) is reminiscent of the discussion in [Mzk18], Remark 1.10.4, concerning the
topic of “restricting oneself to working only with multiplicative structures” in the
context of the theory of the étale theta function.
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(vi) Finally, we recall that from the point of view of the discussion of telecores
in the remarks following Corollaries 3.6, 3.7, the various “forgetful functors” of
assertion (ii) of Corollaries 3.6, 4.5, 5.5 may be thought of as being analogous to
passing to the “underlying vector bundle plus Hodge filtration” of an MF∇-object
[cf. Remark 3.7.2]. From this point of view:

Log-shells may be thought of, in the context of this analogy with MF∇-
objects, as corresponding to the section of a [projective] nilpotent ad-
missible indigenous bundle in positive characteristic determined by the
p-curvature [i.e., in other words, the Frobenius conjugate of the Hodge
filtration].

Remark 5.10.3. From the point of the view of the analogy of the theory of mono-
anabelian log-compatibility [cf. §3, §4] with the theory of uniformizingMF∇-objects
[cf. Remark 3.7.2], the global/panalocal/mono-analytic theory of log-shells presented
in the present §5 may be understood as follows.

(i) The mathematical apparatus on a number field arising from the global/pana-
local mono-anabelian log-compatibility of Corollary 5.5 may be thought of as being
analogous to the [mod p]MF∇-object constituted by a nilpotent indigenous bundle
on a hyperbolic curve in positive characteristic [cf. the theory of [Mzk1], [Mzk4]].
Note that this mathematical apparatus on a number field arises, essentially, from
the outer Galois representation determined by a once-punctured elliptic curve over
the number field. That is to say, roughly speaking, we have correspondences as
follows:

number field F ←→ hyperbolic curve C in pos. char.

once-punctured ell. curve X over F ←→ nilp. indig. bundle P over C.

Here, we note that the correspondence between number fields and curves over finite
fields is quite classical; the correspondence between families of elliptic curves and
indigenous bundles is natural in the sense that the most fundamental example of an
indigenous bundle is given by the projectivization of the first de Rham cohomology
module of the tautological family of elliptic curves over the moduli stack of elliptic
curves. Note, moreover, that:

Just as in the case of indigenous bundles, the fact that the Kodaira-Spencer
morphism is an isomorphism may be interpreted as asserting that the
base curve “entrusts its local moduli to the indigenous bundle”, in the
mono-anabelian theory of the present paper, the various localizations of
a number field “entrust their ring structures to the mono-anabelian
data determined by the once-punctured elliptic curve” [cf. Remarks 1.9.4,
2.7.3, 5.6.1; Remark 5.10.2, (iii)].

Relative to this analogy, we observe that panalocalizability corresponds to the local
rigidity of MF∇-objects [cf. Remark 5.10.2, (i)]. Moreover, the operation of mono-
analyticization — i.e., “forgetting the once-punctured elliptic curve” — corresponds
to forgetting the indigenous bundle, hence to relinquishing control of the local moduli
of the base curve C; thus, just as this led to “Teichmüller dilations” in the discussion
of Remark 5.10.2, (ii), (iii), in the theory of indigenous bundles, forgetting the
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indigenous bundle means, in particular, loss of control of the deformation moduli
of the base curve C. Another noteworthy aspect of this analogy may be seen in the
fact that:

Just as the log-Frobenius operation only exists for local fields [cf. Re-
mark 5.4.1], in the theory of indigenous bundles, Frobenius liftings only
exist Zariski locally on the base curve C.

On the other hand, unlike the “linear algebra-theoretic” nature of the theory of
indigenous bundles [which may be thought of as sl2-bundles], the outer Galois
representations that appear in the theory of the present paper are fundamentally
“anabelian” in nature — i.e., their “non-abelian nature” is not limited to a rela-
tively weak “linear algebra-theoretic” departure from abelianity, but rather on a
par with that of [profinite] free groups. In particular, unlike the linear algebra-
theoretic [i.e., “sl2-theoretic”] nature of the intertwining of the two dimensions of
an indigenous vector bundle, the two combinatorial dimensions involved [cf. Re-
mark 5.6.1] are intertwined in an essentially anabelian fashion [i.e., constitute a
sort of “noncommutative plane”].

(ii) Once one has the “rigid standard integral structures” constituted by log-
shells [cf. Remark 5.10.2, (iii)], it is natural to consider modifying these integral
structures by means of the “Gaussian zeroes” [i.e., the inverse of the “Gaussian
poles”] that appear in the Hodge-Arakelov theory of elliptic curves [cf., e.g.,
[Mzk6], §1.1]. From the point of view of this theory, this amounts, in effect, to
considering the “crystalline theta object” [cf. [Mzk7], §2]. That is to say, the
mathematical apparatus developed in the present §5 may be thought of as a sort
of preparatory step, relative to the goal of constructing a “global MF∇-object-
type version of the crystalline theta object”. This point of view is in line with the
point of view of the Introduction to [Mzk18] [cf. also [Mzk18], Remark 5.10.2],
together with the fact that the theory of the étale theta function given in [Mzk18],
§1, involves, in an essential way, the theory of elliptic cuspidalizations [cf. Remark
2.7.2]. Moreover, this point of view is reminiscent of the discussion in [Mzk7], §2,
of the relation of crystalline theta objects to MF∇-objects — that is to say, the
crystalline theta object has many properties that are similar to those of an MF∇-
object, with the notable exception constituted by the vanishing of the higher p-
curvatures despite the fact that the Kodaira-Spencer morphism is an isomorphism
[cf. [Mzk7], Remark 2.11]. This vanishing of higher p-curvatures, when viewed
from the point of view of the theory of “VF-patterns” of indigenous bundles in
[Mzk4], seems to suggest that, whereas the indigenous bundles considered in the
p-adic uniformization theory of [Mzk4] are of “finite Frobenius period” [in the sense
that they are fixed, up to isomorphism, by some finite number of applications of
Frobenius], the crystalline theta object may only be equipped with an “MF∇-
object structure” if one allows for infinite Frobenius periods. On the other
hand, by comparison to the Frobenius morphisms that appear in the theory of
[Mzk4], the log-Frobenius operation log certainly has the feel of an operation of
“infinite order”. Moreover, as discussed in Remark 3.6.5, the telecoricity of the
mathematical apparatus of Corollary 5.5 may be regarded as being analogous to
nilpotent, but non-vanishing p-curvature. That is to say:

By considering the crystalline theta object not in the scheme-theoretic
framework of [scheme-theoretic!] Hodge-Arakelov theory, but rather in
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the mono-anabelian framework of the present paper, one obtains a theory
in which the “contradiction” [from the point of view of the classical
theory ofMF∇-objects] of “vanishing higher p-curvatures in the presence
of a Kodaira-Spencer isomorphism” is naturally resolved.

The above discussion suggests that one may refine the correspondence between
“once-punctured elliptic curves” and “indigenous bundles” discussed in (i) as fol-
lows:

crystalline theta objects
in scheme-theoretic

Hodge-Arakelov theory

←→
the scheme-theoretic

aspects of
indigenous bundles

[cf. [Mzk1], Chapter I]

the theory of mono-anabelian
log-Frobenius compatibility

of the present paper — i.e., in
essence, Belyi cuspidalization

←→

the positive characteristic
Frobenius-theoretic aspects

of indigenous bundles
— e.g., the Verschiebung

on ind. buns.
[cf. [Mzk1], Chapter II]

Note that the mono-anabelian theory of the present paper depends, in an essential
way, on the technique of Belyi cuspidalization [cf. §1]. Since the technique of elliptic
cuspidalization [cf., e.g., the theory of [Mzk18], §1!] may be thought of as a sort
of simplified, linearized [cf. (v) below] version of the technique of Belyi cuspidal-
ization, and the Frobenius action on square differentials in the theory of [Mzk1],
Chapter II, may be identified with the derivative [i.e., a sort of “simplified, linearized
version”] of the Verschiebung on indigenous bundles, it is natural to supplement
the correspondences given above with the following further correspondence:

the theory of the étale
theta function given in [Mzk18]
— i.e., in essence, elliptic

cuspidalization

←→
the Frobenius action on the

linear space of
square differentials
[cf. [Mzk1], Chapter II]

These analogies with the theory of [Mzk1], Chapter II, suggest the following further
possible correspondences:

hyp. orbicurves of strictly Belyi type
?←→ nilp. admissible ind. buns.

elliptically admissible hyp. orbicurves
?←→ nilp. ordinary ind. buns.

[i.e., where all of the hyperbolic orbicurves involved are defined over number fields
— cf. Remark 2.8.3]. At any rate, the correspondence with the theory of Chapters
I, II of [Mzk1] suggests strongly the existence of a theory of canonical liftings
for number fields equipped with a once-punctured elliptic curve that is
analogous to the theory of Chapter III of [Mzk1]. The author hopes to develop
such a theory in a future paper.

(iii) Relative to the discussion of “units” versus “valuation monoids” in Re-
mark 5.10.2, (iii), the fact that the logarithm [i.e., log-Frobenius] has the effect of
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converting [a certain portion of] the “units” into a “new log-generation valuation
monoid” is very much in line with the “positive slope” — i.e., “telecore-theoretic”
— nature of a uniformizing MF∇-object [cf. the discussion of (i), (ii)]. Indeed,
from the point of view of uniformizations of a Tate curve [cf. the discussion of
Remark 2.7.2; the discussion of the Introduction of [Mzk18]] the valuation monoid
portion of an MLF corresponds precisely to “slope zero”, whereas the units of an
MLF correspond to “positive slope”; a similar such correspondence also appears in
classical formulations of local class field theory.

(iv) One important aspect of the theory of the present paper is that it is
only applicable to elliptically admissible hyperbolic orbicurves, i.e., hyperbolic or-
bicurves that are closely related to a once-punctured elliptic curve. In light of the
“entrusting of local moduli/ring structure” aspect of the theory of the present paper
discussed in (i) above, it seems reasonable to suspect that this special nature of
once-punctured elliptic curves [i.e., relative to the theory of the present pa-
per] may be closely related to the fact that, unlike arbitrary hyperbolic orbicurves,
the moduli stack of once-punctured elliptic curves has precisely one [holomorphic]
dimension [i.e., corresponding to the “one holomorphic dimension” of a number
field]. This “special nature of once-punctured elliptic curves” is also reminiscent
of the observation made in [Mzk6], §1.5.2, to the effect that it does not appear
possible [at least in any immediate way] to generalize the scheme-theoretic Hodge-
Arakelov theory of elliptic curves either to higher-dimensional abelian varieties or
to higher genus curves. Moreover, it is reminiscent of the parallelogram-theoretic
reconstruction algorithms of Corollary 2.7, which, from the point of view of the the-
ory of [Mzk14], §2, may only be performed canonically once one chooses some fixed
“one-dimensional space of square differentials” — a choice which is not necessary
in the elliptically admissible case, precisely because of the one-dimensionality of the
moduli of once-punctured elliptic curves.

(v) Observe that the “arithmetic Teichmüller dilations” discussed in Remark
5.10.2, (iii) — which deform the “arithmetic holomorphic structure” — are linear in
nature [cf., e.g., the “unit-linear Frobenius functor”]. On the other hand, the log-
Frobenius operation within each “zone of arithmetic holomorphy” is “non-linear”,
with respect to both the additive and multiplicative structures of the rings involved.
Indeed, as discussed extensively in the remarks following Corollaries 3.6, 3.7 [cf. also
the discussion in the latter half of Remark 5.10.2, (iii)], the essential reason for the
introduction of mono-anabelian geometry in the present paper is precisely the need
to deal with this non-linearity. In the classical theory of Teichmüller deformations
of Riemann surfaces, the deformations of holomorphic structure are linear [cf. the
approach to this theory given in [Mzk14], §2]. On the other hand, non-linearity
may be witnessed in classical Teichmüller theory in the quadratic nature of the
square differentials. Typically, non-linearity is related to some sort of “bounded
domain”. In the complex theory, the bounded nature of the upper half-plane, as
well as of Teichmüller space itself, constitute examples of this phenomenon — cf.
the discussion of “Frobenius-invariant integral structures” in [Mzk4], Introduction,
§0.4. In the case of elliptic curves, the quadratic nature of the square differentials
corresponds precisely to the quadratic nature of the exponent that appears in the
classical series representation of the theta function; moreover, this quadratic cor-
respondence “Z � n �→ n2 ∈ Z” is [unlike the linear correspondence n �→ c · n,
for c ∈ Z] bounded from below. Returning to the theory of log-shells, let us recall
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that the non-linear log-Frobenius operation is used precisely to achieve the cru-
cial boundedness [i.e., “compactness”] property of log-shells [cf. the discussion of
Remark 5.10.2!]. Also, relative to the discussion of (ii) above, let us recall that
the goal of constructing a comparison isomorphism between non-linear compact
domains of function spaces formed one of the key motivations for the development
of the Hodge-Arakelov theory of elliptic curves [cf. [Mzk6], §1.3.2, §1.3.3].

(vi) Relative to the analogy between “once-punctured elliptic curves over num-
ber fields” and “nilpotent indigenous bundles” [cf. (i)], it is interesting to note that
if one thinks of the number fields involved as “log number fields” — i.e., number
fields equipped with a finite set of primes at which the elliptic curve is allowed to
have bad [but multiplicative!] reduction — then Siegel’s classical finiteness theorem
[which implies the finiteness of the set of isomorphism classes of elliptic curves over
a given “log number field”] may be regarded as the analogue of the finiteness of
the Verschiebung on indigenous bundles given in [Mzk1], Chapter II, Theorem 2.3
[which implies the finiteness of the set of isomorphism classes of nilpotent indigenous
bundles over a given hyperbolic curve in positive characteristic].

Remark 5.10.4. The analogy with Frobenius liftings that appears in the discus-
sion of Remark 5.10.3 is interesting from the point of view of the theory of [Mzk21],
§2 [cf., especially [Mzk21], Remark 2.9.1]. Indeed, [Mzk21], §2, may be thought
of as a theory concerning the issue of passing from decomposition groups to ring
[i.e., additive!] structures in a p-adic setting [cf. [Mzk21], Corollary 2.9], hence
may be thought of as a sort of p-adic analogue of the lemma of Uchida reviewed in
Proposition 1.3.
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Appendix: Complements on Complex Multiplication

In the present Appendix, we expose the portion of the well-known theory of
abelian varieties with complex multiplication [cf., e.g., [Lang-CM], [Milne-CM], for
more details] that underlies the observation “(∗CM)” — i.e., roughly speaking, to
the effect that, if p is a prime number, then

every Lubin-Tate character on an open subgroup of the inertia group
of the absolute Galois group of a p-adic local field arises, after possible
restriction to an open subgroup, from a subquotient of the p-adic Tate
module associated to an abelian variety with complex multiplication

— related to the author by A. Tamagawa [cf. [Mzk20], Remark 3.8.1]. In particular,
we verify that this observation (∗CM) does indeed hold. [Here, we remark in passing
that the proof of (∗CM) given in the present Appendix is, according to Tamagawa,
apparently somewhat different from the proof that he originally considered. Unfor-
tunately, however, he was unable to recall the details of his original argument.] This
implies that the observation “(∗A-qLT)” discussed in [Mzk20], Remark 3.8.1, also
holds, and hence, in particular, that the hypothesis of [Mzk20], Corollary 3.9, to the
effect that “either (∗A-qLT) or (∗CM) holds” may be eliminated [i.e., that [Mzk20],
Corollary 3.9, holds unconditionally]. On the other hand, we conclude the present
Appendix by observing that, in this context, there still remains an interesting open
problem that could serve to stimulate further research.

In the following, we shall fix a prime number p and write Q for the field of
rational numbers, Zp for the topological ring of p-adic integers, Qp for the topolog-
ical field of p-adic numbers, R for the topological field of real numbers, C for the
topological field of complex numbers, ι : C → C for the automorphism of C given
by complex conjugation, and Qalg ⊆ C for the subfield of algebraic numbers. Also,
we shall use the notation “O” to denote the ring of integers associated to a finite
extension of Q or Qp and the notation “tr(−)” to denote the trace map associated
to a finite field extension “(−)”.

(CM1) Fix a finite extension L of degree d ≥ 1 of Qp. Thus, L = Qp(α) for some
α ∈ L. Let f(x) ∈ Qp[x] be a monic irreducible polynomial such that f(α) = 0. If

d = 2, then set g(x)
def
= x2 +1; if d �= 2, then set g(x)

def
= (x− 1)(x− 2) · . . . · (x− d).

Thus, both f(x) ∈ Qp[x] and g(x) ∈ Q[x] are of degree d. Then by approximating
the coefficients of f and g by elements of Q at the p-adic and real places of Q, we
conclude that there exists a monic polynomial h(x) ∈ Q[x] of degree d such that
the following conditions hold:

(a) there exists an element β ∈ L such that h(β) = 0 and L = Qp(β);
(b) if d = 2, then the complex roots of h(x) are non-real and distinct;
(c) if d �= 2, then the complex roots of h(x) are real and distinct.

Indeed, (a) follows by arguing as in [Kobl], pp. 69-70; (b) follows by considering
the sign of the discriminant of h(x); (c) follows by considering the signs of values
of g(x) as x varies over the real numbers in the various intervals between roots of
g(x). Note that it follows from (a) that the polynomial h(x) ∈ Q[x] is irreducible.
Thus, we obtain a number field
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F
def
= Q[x]/(h(x))

such that [F : Q] = d, and F ⊗Q Qp is isomorphic to L. If d = 2, then F is a
complex quadratic extension of Q, hence admits an element γ ∈ F \ Q such that
γ2 ∈ Q [which implies that γ2 < 0, F = Q(γ)]. Next, let us observe [cf. [Kobl],
p. 81] that 1 − p3 admits a square root in Qp. Thus, if d �= 2, then the number
field F is totally real and hence linearly disjoint over Q from the complex quadratic

extension K0
def
= Q(λ0), where λ

2
0 = 1−p3. In particular, if d �= 2, then the number

field

K
def
= F ·K0

is a CM field [cf., e.g., [Lang-CM], Chapter 1, §2] of degree 2d over Q.

(CM2) Suppose that d = 2. Let ϕ0 : F ↪→ C be an embedding such that the
imaginary part of ϕ0(γ) is positive. Write ιF ∈ Gal(F/Q) for the unique nontrivial
element of Gal(F/Q) [so ϕ0 ◦ ιF = ι ◦ ϕ0]. Then recall [cf., e.g., [Lang-CM],
Chapter 1, §4] that the complex torus C/ϕ0(OF ), together with the Riemann
form determined by the pairing (ξ, η) �→ trF/Q(ξ · ιF (η) · γ) ∈ Q [where ξ, η ∈ F ],
determine an elliptic curve E with complex multiplication by OF , which is
defined over some finite subextension M of ϕ0(F ) in C. Now it is immediate from
the Main Theorem of Complex Multiplication [i.e., Shimura reciprocity —
cf., e.g., [Lang-CM], Chapter 4, Theorem 1.1; [Milne-CM], Theorem 10.1] that there

exists an open subgroup H of the inertia group ⊆ GM
def
= Gal(Qalg/M) associated

to some prime of Qalg that divides p such that H acts on the p-adic Tate module
associated to E via the Lubin-Tate character associated to L. This completes
the proof of (∗CM) in the case d = 2.

(CM3) Suppose that d �= 2. Let Φ0 be a collection of d embeddings K ↪→ C of K
into the complex numbers such that every embedding F ↪→ C is obtained as the
restriction of an element of Φ0, and, moreover, the embeddings of Φ0 map λ0 to
a complex number whose imaginary part is positive. [Thus, the embeddings of Φ0

coincide on K0.] Fix an element ϕ0 ∈ Φ0. Thus, one verifies immediately that both
Φ0 and

Φ
def
= {ϕ0} ∪ {ι ◦ ϕ | ϕ0 �= ϕ ∈ Φ0}

form CM types of K [cf., e.g., [Lang-CM], Chapter 1, §2]. Moreover, if we write

Φι
0

def
= {ι ◦ ϕ | ϕ ∈ Φ0}, then one verifies immediately that the set of embeddings

K ↪→ C [or, equivalently, K ↪→ Qalg]

Φ0 ∪ Φι
0

∼→ Φ0 × {id, ι}

[where id denotes the identity automorphism of C] admits a natural action by GQ
def
=

Gal(Qalg/Q) that preserves the product decomposition [induced by restricting the
embeddings in question to F or K0] of the above display. Then one verifies immedi-

ately that the subgroup of GQ that stabilizes Φ0 is equal to GK0

def
= Gal(Qalg/K0),

and hence that the reflex field [cf., e.g., [Lang-CM], Chapter 1, §5] associated to
(K,Φ0) is equal to ϕ0(K0). On the other hand, observe that our assumption that
d �= 2 implies that the cardinalities [namely, 1 and d−1] of the intersections Φ∩Φ0

and Φ∩Φι
0 are distinct. Thus, since the action of any element of GQ on Φ0 ∪Φι

0 is
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compatible with the projection to the set {id, ι}, one verifies immediately [by consid-
ering the fibers, i.e., Φ0 and Φι

0, of this projection] that our assumption that d �= 2
implies that an element of GQ stabilizes Φ if and only if it fixes ϕ0. In particular,
we conclude that the reflex field [cf., e.g., [Lang-CM], Chapter 1, §5] associated
to (K,Φ) is equal to ϕ0(K).

(CM4) We continue our analysis of the situation discussed in (CM3). Write ιK ∈
Gal(K/F ) for the unique nontrivial element of Gal(K/F ) [so ϕ ◦ ιK = ι ◦ ϕ, for
all ϕ ∈ Φ]. Observe that by approximating λ0 relative to ϕ0 and −λ0 relative to
ϕ ∈ Φ \ {ϕ0}, one may construct an element λ ∈ K such that the imaginary part
of ϕ(λ) is positive for all ϕ ∈ Φ. Moreover, by replacing λ by λ − ιK(λ), one may
assume without loss of generality that ιK(λ) = −λ. Next, recall [cf., e.g., [Lang-
CM], Chapter 1, §4] that the CM type (K,Φ), together with the lattice OK ⊆ K
and the Riemann form determined by the pairing (ξ, η) �→ trK/Q(ξ · ιK(η) ·λ) ∈
Q [where ξ, η ∈ K], determine a polarized abelian variety A with complex
multiplication by OK , which is defined over some finite subextensionM of ϕ0(K)

in C. Next, write GM
def
= Gal(Qalg/M), Tp(A) for the p-adic Tate module associated

to A. Thus, Tp(A) admits a natural structure of rank one free OK ⊗ Zp-module,
as well as a natural GM -action. In particular, since OK ⊗ Zp

∼= OL ⊕OL, we thus
conclude that Tp(A) admits a direct sum decomposition Tp(A) = T ′⊕T ′′ as a direct
sum of rank one free OL-modules T ′, T ′′. On the other hand, let us recall that
the Main Theorem of Complex Multiplication [i.e., Shimura reciprocity
— cf., e.g., [Lang-CM], Chapter 4, Theorem 1.1; [Milne-CM], Theorem 10.1] allows
one to compute the Galois action of GM on Tp(A) by means of the reflex type
norm applied to an idèle of M . In particular, it follows immediately from our
construction of Φ from Φ0 in (CM3), together with the resulting computation of
the associated reflex field, that, after possibly interchanging T ′ and T ′′, there exists
an open subgroup H of the inertia group ⊆ GM associated to some prime of Qalg

that divides p such that H acts on T1 via the Lubin-Tate character

χLT : H → O×
L

associated to L [i.e., in essence, via the embedding ϕ0] and on T2 via the dual
character

χ∗
LT : H → O×

L

[that is to say, the character determined by the relation χLT · χ∗
LT = χcycl, where

χcycl : H → Z×
p is the cyclotomic character, i.e., in essence, via the product of the

embeddings ∈ Φ \ {ϕ0}]. This completes the proof of the observation (∗CM) [for
arbitrary d].

(CM5) The above argument completes the proof of the observation (∗CM) and hence
also of the observation (∗A-qLT), of [Mzk20], Remark 3.8.1. On the other hand,
we conclude by observing that, in this context, the following problem remains
unresolved:

Let X be a hyperbolic curve over a finite extension k of Qp. Then is it
always the case that the étale fundamental group of X is of A-qLT-type
[cf. [Mzk20], Definition 3.1, (v)]?

Here, we recall that, roughly speaking, this condition of being “of A-qLT-type”
may be described as the condition that every Lubin-Tate character on the inertia
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subgroup of an open subgroup of the absolute Galois group of k arises, after possibly
restricting to an open subgroup, from some subquotient of the p-adic Tate module
of the Jacobian of a finite étale covering of X [cf. [Mzk20], Definition 3.1, (v), for
more details]. Thus, (∗A-qLT) consists of the assertion that this problem admits an
affirmative answer whenever X admits a finite étale covering that, in turn, admits
a dominant map to a copy of the projective line minus three points over k. We
recall from [Mzk20], Remark 3.8.1, that (∗A-qLT) is derived from (∗CM) by using
Belyi maps. Thus, the above unresolved problem is particularly of interest in the
case of various “classes” of X for which techniques involving Belyi maps cannot be
applied, e.g., the case of proper X. Finally, we observe that

this problem may also be understood in the context of the general theme
of applications of Belyi maps, i.e., in the style of Belyi injectivity or
[André], Theorems 7.2.1, 7.2.3 [which may be thought of as a sort of p-
adic version of Belyi injectivity].

In the case of Belyi injectivity or André’s results, a version for arbitrary hyperbolic
curves was obtained, by applying techniques from combinatorial anabelian ge-
ometry, in [HM1], Theorem C [in the case of Belyi injectivity] and [HM2], Theorem
B [in the case of André’s results]. On the other hand, in the case of the unresolved
problem discussed above, it is not clear to the author at the present time how to
apply techniques from combinatorial anabelian geometry to resolve this problem.
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[André] Y. André, On a Geometric Description of Gal(Qp/Qp) and a p-adic Avatar of
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